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Abstract

Objectives

Influenza infection is a significant cause of respiratory morbidity among pregnant women.

Seasonal influenza vaccination engages innate immune receptors to promote protective

immunity. A coding polymorphism (R620W) in PTPN22 imparts elevated risk for human

infection and autoimmune disease, predisposes to diminished innate immune responses,

and associates with reduced immunization responses. We sought to quantify the effects of

PTPN22-R620W on humoral and cell-mediated immune responses to the inactivated influ-

enza vaccine among healthy pregnant women.

Study Design

Immune responses were measured in healthy pregnant R620W carrier (n = 17) and non-

carrier (n = 33) women receiving the 2013 quadrivalent inactivated influenza vaccine (Flu-

zone). Hemagglutination inhibition assays were performed to quantify neutralizing antibod-

ies; functional influenza-reactive CD4 T cells were quantified by flow cytometry, and

influenza-specific CD8 T cells were enumerated with MHC Class I tetramers. Antibody sero-

conversion data were evaluated by Chi-square analysis, and the Mann-Whitney or Wilcoxon

signed-rank tests were applied to T cell response data.

Results

PTPN22 R620W carrier (n = 17) and non-carrier (n = 33) groups did not differ in age, parity,

BMI, gestational age at time of vaccine, or history of prior influenza vaccination. After Flu-

zone exposure, 51.5% of non-carriers met criteria for antibody seroconversion to H1N1

influenza, compared with 23.5% of R620W carriers (p = 0.06). Influenza-reactive CD4 T

cells showed modest increase at days 9–15 after vaccination in both R620W carriers and

non-carriers (p = 0.02 and p = 0.04, respectively). However, there was no difference in

PLOS ONE | https://doi.org/10.1371/journal.pone.0181338 July 19, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Tien SH, Crabtree JN, Gray HL, Peterson

EJ (2017) Immunologic response to vaccine

challenge in pregnant PTPN22 R620W carriers and

non-carriers. PLoS ONE 12(7): e0181338. https://

doi.org/10.1371/journal.pone.0181338

Editor: John S Tregoning, Imperial College London,

UNITED KINGDOM

Received: February 26, 2017

Accepted: June 29, 2017

Published: July 19, 2017

Copyright: © 2017 Tien et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Research reported in this publication was

supported by the National Center for Advancing

Translational Sciences of the National Institutes of

Health Award Number UL1TR000114. http://www.

ctsi.umn.edu/about-ctsa-award. The University of

Minnesota Center for Health Equity,

1P60MD003433 from the National Institute on

Minority Health and Health Disparities. http://www.

umnche.umn.edu/. The Department of Obstetrics,

https://doi.org/10.1371/journal.pone.0181338
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181338&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181338&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181338&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181338&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181338&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181338&domain=pdf&date_stamp=2017-07-19
https://doi.org/10.1371/journal.pone.0181338
https://doi.org/10.1371/journal.pone.0181338
http://creativecommons.org/licenses/by/4.0/
http://www.ctsi.umn.edu/about-ctsa-award
http://www.ctsi.umn.edu/about-ctsa-award
http://www.umnche.umn.edu/
http://www.umnche.umn.edu/


overall response between the two groups (p = 0.6). The vaccine did not result in significant

induction of influenza-specific CD8 T cells in either group.

Conclusions

There was no significant difference among healthy pregnant R620W carriers and non-carri-

ers in H1N1 antibody seroconversion rates after influenza vaccination. Studies of larger

cohorts will be needed to define the effect of PTPN22 risk allele carriage on antibody and T

cell responses to influenza vaccination during pregnancy.

Introduction

Pregnancy is a well-recognized risk factor for heightened susceptibility to, and increased sever-

ity of, respiratory and other infections. Multiple physiologic adaptions of pregnancy, including

a reduced pulmonary functional residual capacity, a 30–50% increase in minute ventilation

and tidal volume, mechanical cephalad displacement of the diaphragm, and increased meta-

bolic demands of the fetus, likely contribute to increased morbidity of respiratory infections in

pregnancy [1]. Furthermore, hormonal and immunologic variations in pregnancy likely play a

crucial role in both infectious disease susceptibility and severity [2].

Especially in pregnant women, seasonal influenza infection remains a significant cause of

respiratory morbidity and mortality in the United States [3]. Compared to non-pregnant

adults, pregnant women suffer greater influenza-related morbidity, with increased severity of

symptoms, more frequent medical visits, and higher rates of hospitalization. In every influenza

pandemic since the beginning of the 20th century (1918–1919, 1957–1958, 2009), mortality

was disproportionately increased among pregnant women [4–7]. Given the tremendous dis-

ease burden reflected in pregnant populations, and observations that influenza vaccination

during pregnancy can reduce the risk of influenza infection by 50% [8], both the CDC and the

American College of Obstetricians and Gynecologists recommend annual inactivated influ-

enza vaccination for all pregnant women [9,10], typically as soon as possible in pregnancy.

Despite its reported benefits in pregnant women, influenza vaccination is far from a pana-

cea for protection against infection. Recent meta-analysis estimated the overall efficacy of the

seasonal inactivated influenza vaccine in adults at only 59% [11]. Seroconversion, defined as a

fourfold increase in antibody titers after influenza vaccination, is observed in 41%-78% of

healthy non-pregnant subjects [12,13]. The preponderance of the data suggests that pregnant

women mount humoral responses to influenza vaccination similar to those observed in the

non-pregnant population [14–19]. In one large randomized controlled trial, pregnant women

demonstrated incidence of antibody seroconversion (39%-83%) to influenza vaccination com-

parable to that observed in non-pregnant adults [15]. However, other reports suggest that

pregnancy is associated with diminished antibody responses to certain influenza vaccine

strains [20]. Since pregnant women suffer greater morbidity associated with active influenza

infection, addressing the problem of limited vaccine efficacy is particularly important for the

pregnant population.

Immunogenicity of anti-viral vaccination varies greatly in both pregnant and non-pregnant

populations [21]. Both host and environmental factors may contribute to vaccine immunoge-

nicity. Host variables known to modulate vaccine immunogenicity include age, presence of

autoimmune disease, and use of immunosuppressive medications [22]. Cellular and molecular

determinants of vaccine immunogenicity have also recently been defined in animal studies
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[23]. Innate immune cells of the myeloid lineage respond to influenza vaccination via pattern

recognition receptors that signal cellular activation and trigger the adaptive immune response.

Toll-like receptor (TLR) signals and type 1 Interferons (IFN-1) expressed by myeloid cells

including dendritic cells are necessary for optimal T cell-dependent B cell responses including

production of high-affinity neutralizing antibodies.

Knowledge of the molecular underpinnings for myeloid cell TLR signaling upstream of

IFN-1 promoters is advancing rapidly. A requirement for Protein tyrosine phosphatase non-

receptor type 22 (PTPN22) in optimal myeloid cell production of type 1 IFN was recently

established [24]. PTPN22 is widely expressed in hematopoietic tissue and functions as a nega-

tive regulator of T cell antigen receptor signaling [25–27]. However, in innate immune cells,

PTPN22 is a positive regulator of TLR3/4/7/9 signals that lead to transactivation of IFN-1. Fur-

ther, PTPN22 potentiates dendritic cell activation, supports optimal expansion of virus-specific

CD8 T cells, and protects against lethality after viral infection in vivo [24].

A single nucleotide polymorphism in the PTPN22 gene (rs2476601) imparts altered risk for

infection and autoimmune disease [28]. Carriage of the PTPN22 risk allele is associated with

increased susceptibility to major autoimmune disorders such as diabetes, thyroid syndromes,

rheumatoid arthritis, systemic lupus erythematosus, and myasthenia gravis, as well as with

altered host responses to bacterial and fungal infections [28,29]. The PTPN22 risk allele

encodes an amino acid substitution from arginine-620 to tryptophan (R620W), but the mecha-

nism(s) whereby the R620W variant predisposes to disease are not well-understood [27].

PTPN22 R620W exhibits “loss of function” in TLR signaling and in type 1 IFN production in

both animal models and in human peripheral blood cells [24]. These findings suggest that

R620W carriage may impair innate immune responses entailing type 1 IFN production,

including host response to anti-viral immunization. Our recent study [30] in healthy non-

pregnant adults demonstrated decreased expansion of influenza virus-specific CD4 T cells as

well as a blunted antibody affinity response following influenza vaccination in R620W variant

carriers, demonstrating that the R620W variant may have important implications for vaccine

efficacy. The role of R620W in modulating human immune responses to vaccination in the set-

ting of pregnancy has not yet been studied.

The above observations led us to hypothesize that pregnant PTPN22 R620W carriers would

mount dampened T cell and influenza-specific neutralizing antibody responses compared to

non-carriers after influenza vaccination. To test this hypothesis, we measured the humoral and

cell-mediated immunologic response to the inactivated influenza vaccine among healthy preg-

nant women who are PTPN22 R620W carriers and non-carriers.

Materials and methods

Subjects

We recruited 114 healthy pregnant women receiving routine care in a University obstetrical

clinic from September to November 2013. Exclusion criteria included age< 18, a history of

autoimmune disease, and non-English speaking status. PTPN22 R620W (RW) carrier (variant)

subjects (n = 17) and a group of non-carrier (RR) subjects (n = 33) were selected in a 1:2 ratio

based on patient availability and ability to complete the study. Participants submitted blood

samples pre-influenza vaccine, as well as 9–15 days and 15–30 days post-vaccine. Subjects

received the intramuscular Fluzone quadrivalent vaccine (Sanofi Pasteur Inc., 2013) against

strains A/California/7/2009(H1N1), A/Texas/50/2012(H3N2), B/Massachusetts/2/2012/Yama-

gata, and B/Brisbane/60/2008/Victoria [31]. The gestational age of vaccine receipt depended

upon time of patient presentation to prenatal care as well as vaccine availability in the clinic.

IRB approval (#1210M21901) was obtained through the University of Minnesota IRB Human
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Subjects Committee, and all subjects provided informed written consent. Variable cellular

yields from PBMC isolation procedures determined the listed group sizes for individual T cell

assays.

Genotyping

DNA extraction from whole blood was performed using the DNeasy Blood and Tissue kit

(Qiagen). PTPN22 C1858T genotype on all subjects was determined by TaqMan SNP Geno-

typing (Applied Biosystems). HLA-A genotype was determined through PCR amplification

[32], purification of PCR product using QIAquick PCR Purification Kit (Qiagen), and Sanger

sequencing. HLA-A type was determined by BLAST of PCR sequence against the IMGT/HLA

database.

Hemagglutination inhibition assay

Whole blood was collected into Serum Separator Tube (SST) Vacutainers (BD) and serum was

obtained by centrifugation. Aliquots of serum were mixed with Aprotinin (Sigma) before

freezing. Hemagglutination inhibition assays (HAI) were performed using the WHO 2013–

2014 Influenza Reagent Kit and Turkey red blood cells in Alsevers (Colorado Serum) accord-

ing to the manufacturer’s instructions. Antibody seroprotection was defined as a HAI titer of

at least 1:40, and seroconversion was defined as a fourfold increase in titer after vaccination

[20].

CD4 T cell assessments

Pre- and post-vaccine whole blood was collected into CPT Vacutainers (BD) and centrifuged

to isolate peripheral blood mononuclear cells (PBMC) which were aliquoted and frozen.

PBMCs were thawed and washed with prewarmed RPMI 1640 containing 10% FBS and 1%

Pen/Strep and rested before stimulating with either 10uL of the 2013–2014 Fluzone vaccine or

PMA (50ng/ml) and ionomycin (1ug/mL) as a positive control, in the presence of Brefeldin A

as a negative control. Cells were stimulated for 6 hours at 37 degrees Celsius. Cells were stained

with live/dead Aqua (Biolegend) and surface antibodies, before permeabilization and intracel-

lular staining. Cells were stained for a panel of antibodies, including CD4, IL-2, IFNγ and

TNFα (BD, Biolegend, eBioscience, Tonbo Biosciences). Cells were run on an LSRFortessa

(BD) and data were analyzed using FlowJo software (Tree Star). Gates for cytokine production

were determined using no stimulation control performed on each sample. Influenza virus-spe-

cific responses were determined by subtracting numbers of cytokine-producing cells in no

stimulation control samples from the total cytokine-producing CD4 fraction observed in Flu-

zone-stimulated samples.

CD8 T cell assessments

We identified influenza-specific CD8 T cells in subjects harboring human leukocyte antigen

HLA-A�02 using influenza peptide-containing MHC Class I tetramers of HLA-A�02. PBMCs

were thawed and stained with HLA-A�0201 Influenza M1 tetramer for peptide GILFVFTL

(Beckman Coulter) [33] along with surface antibodies before permeabilizing and intracellular

staining. Antibodies (BD, Biolegend, eBioscience, Invitrogen) against CD38, HLA-DR, Ki-67,

and Granzyme B were used. Cells were enumerated by flow cytometry.
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Statistics

We performed power calculations based upon the magnitude of differences between human

R620W carriers and non-carriers observed in a previous study of LPS-induced type 1 IFN-

dependent gene upregulation in PBMC [24]. To reach a power of 80% to detect a one standard

deviation difference at a significance level of 0.05 between carrier and non-carrier groups in

humoral and cell-mediated responses to influenza vaccination, we calculated a requirement

for at least 16 subjects in each group. Chi-square or Fisher’s exact tests were used to compare

categorical variables (antibody seroconversion and seroprotection), and the t test was

employed to analyze the geometric mean ratio. The Mann-Whitney test was performed for

non-parametric variables of CD4 and CD8 T cell induction, as well as for evaluation of

increases in antibody titers. The Wilcoxon signed-rank test was employed for paired non-

parametric values. Statistical significance was set at p<0.05. Statistical analysis was performed

using SAS 9.3 and GraphPad Prism 6 software.

Results

Responses to the 2013 quadrivalent inactivated influenza vaccine (Fluzone) were studied in a

cohort of pregnant women comprising 17 PTPN22 R620W carriers (RW) and 33 non-carriers

(RR). Genotyped groups showed no differences in demographic or clinical characteristics,

including age, parity, BMI, ethnicity, gestational age at time of vaccine, time to post vaccine

blood draws, or history of prior influenza vaccination (Table 1).

Humoral responses

Neutralizing serum antibody titers represent the longest-studied correlate of protective anti-

influenza immunity [34][3]. We used Hemagglutination inhibition (HAI) assays to assess anti-

body responses to immunization. Both PTPN22-R620W variant carriers and non-carriers

demonstrated high rates (84.8–100%) of seroprotection (defined as HAI titer> 1:40) pre-vac-

cine, and showed complete seroprotection to H1N1 and H3N2 influenza subtypes after vacci-

nation (Table 2). Four of 17 (23.5%) R620W carriers, compared to 17 of 33 (51.5%) non-

carriers, demonstrated seroconversion in response to the H1N1 influenza subtype; this differ-

ence was not significant (p = 0.06; Table 2). Both genotype groups showed statistically-signifi-

cant increases in absolute antibody titers after immunization (Fig 1A and 1B). There was no

difference in median fold-increase in H1N1 subtype antibody titers between R620W carriers

and non-carriers (p = 0.1; Fig 1C) or in the H3N2 subtype (p = 0.7; Fig 1D). There was no sig-

nificant difference in rates of seroconversion to H3N2 subtype between carriers (29.4%) and

non-carriers (33.3%; p = 0.8; Table 2). Notably, overall seroconversion rates for H3N2 were

lower than for H1N1, a finding that has been reported previously in both pregnant and non-

pregnant women [20].

T cell responses

CD4 T cells provide “help” that drives B cell activation and antibody production during

responses to viral infection and immunization [35]. We evaluated the role of PTPN22 R620W

carriage in CD4 T cell responses to influenza vaccination. To identify influenza-responsive T

cells, we stimulated PBMCs with influenza vaccine (Fluzone) in vitro. We detected and enu-

merated cytokine (IFNγ, TNFα, IL-2) -producing CD4 T cells by flow cytometry [36]. Flow

cytometry data yield varied for subjects, thus accounting for the variation in available T cell

data for statistical analysis. We observed modest, but significantly-increased fractions of influ-

enza-reactive cells among total CD4 T cells at 9–15 days after vaccination, compared to pre-
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vaccination (Fig 2A). However, we found no significant difference between PTPN22 R620W

variant carriers and non-carriers in influenza-reactive CD4 T cell induction (Fig 2A). We

observed statistically-significant increases in TNFα+ CD4 T cell fractions after vaccination in

non-carriers (Fig 2C). Although higher fractions of TNFα+ CD4 T cells were observed in

R620W carriers after vaccination, the carriers also displayed higher fractions of pre-vaccine

TNFα+ CD4 T cells, compared to non-carriers (Fig 2C). No differences between groups were

observed in the minimally-increased fractions of vaccination-induced IFNγ+ CD4 T cells,

which is consistent with the reduced helper T cell type 1 response and dampened production

of IFN-γ seen in pregnancy [37] (Fig 2D).

Immunization-induced CD8 T cells contribute to viral clearance upon influenza rechal-

lenge [34]. To assess the role of PTPN22 R620W carriage on CD8 T cell responses to immuni-

zation, PBMC from subjects harboring Class I MHC HLA-A�02 were stained with HLA-A2

tetramers containing a peptide from the Influenza M1 protein [38]. Influenza-specific (tetra-

mer-reactive) CD8 T cells were detected by flow cytometry. We found no significant change in

Table 1. Pregnant subject characteristics.

All subjects (N = 50) R/R* (N = 33) R/W* (N = 17) P value

Values are Mean (SD)

Maternal age in years 31.1 (4.4) 31.7 (3.8) 29.9 (5.2) 0.2

Gestational age at time of vaccine in weeks 25.5 (9.2) 25.9 (9.1) 24.8 (9.6) 0.7

BMI

Pre-pregnancy 24.4 (4.9) 24.2 (5.0) 24.3 (4.9) 0.9

At time of vaccine 27.4 (5.6) 27.3 (5.4) 27.5 (6.2)

Days post vaccine draw

9–15 12.2 (1.9) 12.4 (2.0) 11.9 (1.9) 0.4

15–30 23.4 (3.9) 23.9 (4.3) 22.3 (2.9) 0.2

Change in days 11.1 (4.3) 11.5 (4.5) 10.4 (3.9) 0.4

Values are N (%)

Parity

0 25 (50.0) 16 (48.5) 9 (52.9) 0.8

>0 25 (50.0) 17 (51.5) 8 (47.1)

Ethnicity

Caucasian 47 (94.0) 30 (90.9) 17 (100.0) 0.5

Non-Caucasian 3 (6.0) 3 (9.1) 0 (0.0)

Smoking

Yes 2 (4.0) 1 (3.03) 1 (5.9) 1.0

No 48 (96.0) 32 (96.9) 16 (94.1)

HLA-A02

Yes 23 (46.0) 14 (42.4) 9 (52.9) 0.5

No 27 (54.0) 19 (57.6) 8 (47.1)

Fetal Number

Singleton 43 (86.0) 28 (84.8) 15 (88.2) 1.0

Twins 7 (14.0) 5 (15.2) 2 (11.8)

Prior influenza vaccine?

Yes 42 (84.0) 24 (84.8) 14 (82.4) 1.0

No/Unknown 8 (16.0) 5 (15.2) 3 (17.6)

* R/W = R620W variant carriers; R/R = Non-carriers

Data are expressed as mean (SD) for continuous variables (t-test) and N (percentage) for categorical variables (Chi square)

https://doi.org/10.1371/journal.pone.0181338.t001
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influenza-specific CD8 T cell numbers in either PTPN22 R620W carriers or non-carriers after

influenza vaccination (Fig 3A). Moreover, we found no vaccination-associated increase in

CD8 T cells staining positive for CD38, Ki-67, or Granzyme B, markers for cell activation and

proliferation, and effector function, respectively, in the cohort (Fig 3B–3D).

Table 2. There is no difference in seroconversion to H1N1 and H3N2 between carriers and non-carriers.

R/R (N = 33) R/W (N = 17) P***

H1N1

Pre-vaccine GMT 109.6 (72.6–165.5) 180.8 (99.8–327.6) 0.2

Post-vaccine GMT 378.6 (278.4–514.8) 376.7 (219–647.9) 0.6

Fold Increase, GMR 3.5 (2.3–5.2) 2.1 (1.2–3.6) 0.1

*Seroconversion, N (%) 17 (51.5%) 4 (23.5%) 0.06

**Baseline seroprotection, N (%) 28 (84.8%) 17 (100%) 0.2

H3N2

Pre-vaccine GMT 129.7 (95.1–176.9) 102.2 (56.6–184.4) 0.8

Post-vaccine GMT 320 (228.6–448) 294.9 (181.4–479.6) 0.9

Fold Increase, GMR 2.5 (1.8–3.4) 2.9 (1.7–4.8) 0.6

*Seroconversion, N (%) 11 (33.3%) 5 (29.4%) 0.8

**Baseline seroprotection, N (%) 33 (100%) 15 (88.2%) 0.1

Data are expressed as mean (95% CI) for continuous variables and N (percentage) for categorical variables. R/W = R620W variant carriers; R/R = Non-

carriers. GMR = geometric mean ratio; GMT = geometric mean titer

*Seroconversion is defined as� 4 fold increase in Hemagglutination Inhibition (HAI) titer after vaccination.

**Seroprotection is defined as a HAI titer�1:40. All study subjects demonstrated 100% seroprotection to H1N1 and H3N2 after vaccination.

***t test was used to compare GMR and GMT between genotypes. Chi square and Fisher’s exact test were used to compare percentages between

genotype seroconversion and seroprotection groups.

https://doi.org/10.1371/journal.pone.0181338.t002

Fig 1. Pregnant PTPN22 R620W carriers (R/W) and non-carriers (R/R) show increases in neutralizing antibody titers after influenza

vaccine. Absolute HAI titers for H1N1 (A) and H3N2 (B) were measured at baseline, and at 15–30 days after vaccination. Fold increases in

antibody titer to H1N1 (C) and H3N2 (D) at 15–30 days after vaccination are shown. Horizontal lines indicate median values.

https://doi.org/10.1371/journal.pone.0181338.g001
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Fig 2. Influenza vaccination induces vaccine-reactive CD4 T cells in pregnant women 9–15 days after vaccination. (A) Frequency,

among total CD4 T cells, of CD4 cells producing any of the cytokines IFNγ, IL-2 or TNFα after Fluzone stimulation (6 hours). (B-D)

Frequency of CD4 T cells producing IL-2 (B), TNFα (C) or IFNγ (D) among total CD4 T cells after Fluzone stimulation. Horizontal lines

indicate median values. P values are determined by Wilcoxon matched-pairs signed rank and Mann-Whitney tests.

https://doi.org/10.1371/journal.pone.0181338.g002

Fig 3. Few influenza-specific CD8 T cells are detectable in PBMC following vaccination of pregnant women. (A) Frequency of

influenza-specific tetramer-reactive CD8 T cells among total CD8 T cells. (B) Percentages of CD38+ HLA-DR+, (C) Ki-67+, and (D)

Granzyme B+ among tetramer-reactive CD8 T cells. Horizontal lines indicate median values. P values are determined by Wilcoxon matched-

pairs signed rank test.

https://doi.org/10.1371/journal.pone.0181338.g003
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Discussion

Our study reports on humoral and cell-mediated influenza vaccine responses in pregnant

women carrying a genetic factor that could modulate vaccination responses (PTPN22
R620W), and characterizes the viral epitope-specific CD8 T cell responses to influenza vaccine

in pregnancy. We observed that PTPN22 R620W variant pregnant carriers exhibited compara-

ble rates of CD4 T cell expansion and seroconversion rates to H1N1 compared to non-carriers.

We confirmed that that modest influenza-specific CD4 T cell increases, but not CD8 T cell

responses, can be detected in pregnant women following influenza vaccination. However,

diminished overall immune responsiveness in pregnant subjects may have reduced our capac-

ity to detect R620W-dependent alteration in the influenza vaccination response.

PTPN22-R620W constitutes a major “risk” allele for human autoimmune and infectious

disease that may confer loss-of-function in anti-viral host defense [27]. R620W-associated

defects in CD4 T cell response to influenza vaccination recently observed by our group [30]

were not reproduced in this study. Among healthy non-pregnant adults, we found that

R620W carriage associated with a fold-change expansion of circulating influenza-specific CD4

T cells approximately half that observed in non-carriers [30]. In contrast, among pregnant sub-

jects, we found no difference between R620W carriers and non-carriers in vaccine-induced

CD4 T cell expansion. Likely factors influencing lack of congruence between vaccine response

results in pregnant and non-pregnant subjects carrying R620W likely include pregnancy-

induced blunting of cellular immune responses, and very high rates of pre-existing influenza

humoral immunity observed among pregnant subjects.

Pregnancy induces profound immunologic alterations that establish maternal tolerance of

the semi-allogeneic fetal “graft”, but also may result in dampening of maternal protective anti-

body responses to infection or anti-viral vaccination [39][40]. We observed a vaccine-induced

fold-increase (2.0) in influenza-specific CD4 T cells among pregnant subjects that was lower

than in non-pregnant subjects (2.5 fold)[30], and at the low end of the range of vaccine-

induced CD4 changes reported by others for non-pregnant healthy adults [36, 41–42]. These

data suggest that generally blunted vaccine-inducible CD4 T cell responses associated with

pregnancy may have contributed to our inability to detect a R620W-dependent effect in the

cohort.

Specific cytokine-producing T cell subsets induced by vaccine in the pregnant subjects var-

ied. There was a significant increase in non-carriers of TNFα+ CD4 T cells after vaccination,

though not in carriers. There was also a significant difference in the baseline levels of TNFα+

CD4 T cells between the two groups, as well as the post vaccination response. Carriers had a

significant increase in IL2+ T cells after immunization. For IFNγ CD4 T cells, there was no dif-

ference in baseline or response post vaccination between carriers and non-carriers, or within

each individual group’s T cell production (p = 0.2 for non-carriers, p = 0.05 for carriers).

These data are consistent with observations of skewing towards Th2 in pregnancy and a reduc-

tion in Th1 response (IFNγ–secreting T cells) [37]. However, varying T cell yields after flow

cytometry precluding inclusion of all subjects makes interpretation of this T cell subset data

challenging.

Overall post-vaccination seroconversion rates of 37.5% for H1N1 and 31.4% to H3N2 in

the present study are lower than previously reported for pregnant women. Others reported

84–95% seroconversion to H1N1 influenza subtype [15–17, 43], and 69% seroconversion to

H3N2 subtype [15,16], in pregnant women after vaccination. The lower overall seroconversion

rates that we observed could be influenced by host genetic factors, including PTPN22 R620W.

Another determinant could be the high rate of pre-vaccine seroprotection in the pregnant sub-

jects studied here (88.2–100%). Pre-existing high-affinity antibodies likely facilitate more rapid
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early clearance of injected immunogens, leading to lower rates of seroconversion to vaccina-

tion [44–45]. In our study of non-pregnant adults, these subjects also had high rates of previ-

ous vaccination history. For the H1N1 subtype, non-carriers had baseline seroprotection of

88% and carriers had baseline seroprotection of 100%, and for H3N2, 82% and 94%, respec-

tively. Nonetheless, larger studies of pregnant women with lower rates of previous vaccination

or influenza infection will be required to ascertain a role for R620W.

We employed MHC-I tetramers to study influenza-specific CD8 T cell responses [33]. Our

results confirm previous findings that vaccination-induced CD8 T cell alterations are not

robust, regardless of pregnancy status [46,47,33,30]. We found CD38, Ki-67, and Granzyme B

expression in virus-specific CD8 T cells to be comparable among pregnant vaccine recipients,

and similarly-aged non-pregnant subjects [30]. Pregnancy is not associated with CD8 senes-

cence or functional exhaustion that associates with increased influenza infection and morbid-

ity in vulnerable populations such as the elderly [48]. More informative studies of how genetic

(e.g. PTPN22-R620W) or environmental (e.g. pregnancy) factors influence CD8 influenza vac-

cine responses would likely require sampling of tissues, such as lung and secondary lymphoid

organs, where these cells develop and exert protective effects.

Limitations of our study include a relatively small sample size, and a high rate of previous

exposure to influenza antigens among study subjects. Thus, the high rates of prior influenza

immunization (84% overall) and pre-vaccine seroprotection in our cohort may have decreased

our ability to detect R620W-associated response differences to the study vaccine. Coupled with

the fact that all subjects were adults with likely prior childhood exposure to influenza infection,

it is likely that nearly all had been primed by seasonal influenza A virus before vaccination for

this study. In addition, varying yields of our T cell data by flow cytometry limited the presenta-

tion of T cell response from all subjects, and may have influenced the statistical significance in

data analysis. Furthermore, CD8 T cells were only quantified in subjects displaying HLA-A�02

antigen, and the very low yield of CD 8 T cells is challenging to interpret.

In conclusion, we report on the humoral and cell-mediated responses to the influenza vac-

cine among healthy pregnant women carrying a genetic variant with putative altered function

in the innate host response to infection. Larger studies are needed to better elucidate interac-

tions between pregnancy, host genetic factors such as PTPN22-R620W, and humoral and cell-

mediated immunologic responses to vaccination.
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