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Abstract

One of the main challenges in applying machine learning algorithms to biological sequence data is how to numerically
represent a sequence in a numeric input vector. Feature extraction techniques capable of extracting numerical information
from biological sequences have been reported in the literature. However, many of these techniques are not available in
existing packages, such as mathematical descriptors. This paper presents a new package, MathFeature, which implements
mathematical descriptors able to extract relevant numerical information from biological sequences, i.e. DNA, RNA and
proteins (prediction of structural features along the primary sequence of amino acids). MathFeature makes available 20
numerical feature extraction descriptors based on approaches found in the literature, e.g. multiple numeric mappings,
genomic signal processing, chaos game theory, entropy and complex networks. MathFeature also allows the extraction of
alternative features, complementing the existing packages. To ensure that our descriptors are robust and to assess their
relevance, experimental results are presented in nine case studies. According to these results, the features extracted by
MathFeature showed high performance (0.6350–0.9897, accuracy), both applying only mathematical descriptors, but also
hybridization with well-known descriptors in the literature. Finally, through MathFeature, we overcame several studies in
eight benchmark datasets, exemplifying the robustness and viability of the proposed package. MathFeature has advanced in
the area by bringing descriptors not available in other packages, as well as allowing non-experts to use feature extraction
techniques.
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Background
Machine learning (ML) algorithms have been successfully
applied to genomics, transcriptomics and proteomics problems
[1, 2]. Nevertheless, their predictive performance depends on
the representation of the sequences by relevant features, able to
extract important aspects present in the original sequences. In
[3, 4], the authors address the relevance of using an appropriate
mathematical expression to extract features from biological
data, which has been adopted by several studies [5–7], e.g. non-
classical secreted proteins [8], phage virion proteins (PVP)[9],
SARS-CoV-2 [10, 11], sigma70 promoters [12] and long non-coding
RNAs [13, 14].

As a result, many techniques have been proposed and exper-
imentally investigated [15, 16], and several of them were made
available in public software packages, such as PROFEAT [17],
PseAAC [18], propy [19], PseKNC-general [16], SPiCE [20], pro-
tr/ProtrWeb [21], ProFET [22], Pse-in-One [4], repDNA [23], Rcpi
[24], repRNA [25], BioSeq-analysis [26], iFeature [27], PyBioMed
[28], Seq2Feature [29], PyFeat [30], iLearn [7], periodicDNA[31] and
iLearnPlus [32].

These software packages have been used to extract features
from sequences. However, there are some aspects present in the
sequences that the feature extraction techniques included in
these tools cannot extract. These features, which were shown to
be relevant in previous studies [33–36], describe mathematical
aspects observed in biological sequences and will be named
here mathematical descriptors [37]. These descriptors are based
on several techniques, such as multiple numerical mappings,
Fourier transform (FT), chaos game theory, entropy and complex
networks (CN). To allow the extraction of these descriptors as
features for the study of biological sequences, and also including
conventional descriptors available in other packages, we created
a novel open-source Python package, named MathFeature.

This package provides, in a single environment, many of
the mathematical descriptors previously proposed for feature
extraction from biological sequences [33–36]. MathFeature con-
tains 37 descriptors, in which, 20 of them are mathematically
organized into five groups (numerical mapping, chaos game,
FT, entropy and graphs). Additionally, MathFeature extends our
preliminary investigation [36], where we investigated nine sets
of mathematical features. MathFeature also includes descriptors
for Protein sequences, i.e. prediction of structural features along

the primary sequence of amino acids. To the best of our knowl-
edge, MathFeature is the first package to provide such a large
and comprehensive set of feature extraction techniques based
on mathematical descriptors for DNA, RNA and Proteins.

Related works
Fundamentally, we consider feature engineering a key step to
ML application success [38–40], mainly in biological sequence
preprocessing [3, 41, 42]. In terms of terminology, according to
[38], feature is synonymous of an input variable or attribute. Nev-
ertheless, studies also use the ‘feature descriptor’ terminology
(the majority in our review—15 studies), which is the reason why
we adopted this term, where a feature descriptor refers to the
feature extraction method/technique that can present several
measures/values.

In this section, we described 17 studies (cited in Background
Section) related to feature extraction packages (tools, web
servers, toolkits, etc), providing several feature descriptors
for biological sequence analyses. We organized the selected
studies into application categories (that is, DNA, RNA, or
protein—Supplementary File S1). Furthermore, we also plotted
a Venn Diagram (see Supplementary File S2), including all
studies by application. In general, most studies are focused on
the representation of proteins (eight studies), while DNA and
RNA studies had one application each. Moreover, considering
the intersection of applications, we found four studies of
applications combining DNA, RNA and protein, whereas
DNA+protein with two studies and DNA+RNA with one study,
respectively.

In our literature review, we found 173 feature descriptors. It is
not feasible to individually analyze and describe each descriptor.
For this reason, based on our review, we divided these descriptors
into 15 large groups, as shown in Table 1. The group column
classifies the feature descriptors based on the reviewed studies,
and the study column includes packages that have at least one
descriptor from the related group.

Considering the groups introduced in Table 1, we realized
that most descriptors are based on AAC, PseAAC, CTD and SO
for proteins, while NAC and PseNAC descriptors for DNA/RNA,
and autocorrelation for DNA, RNA and protein. Nevertheless,
MathFeature overcomes other packages in different types of

Table 1. Descriptor groups in reviewed studies

Group Initials Application group Study

Amino acid composition AAC Protein [7] [4] [17] [19] [20] [21] [22] [24] [26] [27] [28] [29] [30]
Pseudo-amino acid composition PseAAC Protein [7] [4] [18] [19] [20] [21] [24] [26] [27] [28]
Composition, transition, distribution CTD Protein [7] [17] [19] [20] [21] [22] [24] [27] [28]
Sequence-order SO Protein [7] [17] [19] [20] [21] [24] [27] [28]
Conjoint triad CT Protein [7] [21] [24] [27] [28]
Proteochemometric descriptors PCM Protein [7] [21] [24] [27]
Profile-based features PF Protein [7] [20] [21] [24] [26] [27]
Nucleic acid composition NAC DNA, RNA [7] [4] [16] [23] [25] [26] [28] [30]
Pseudo nucleic acid composition PseNAC DNA, RNA [7] [4] [16] [23] [25] [26] [28]
Structure composition SC DNA, RNA, Protein [7] [25] [26] [27]
Sequence similarity SS DNA, RNA, Protein [24]
Autocorrelation – DNA, RNA, Protein [7] [17] [19] [16] [20] [21] [4] [23] [24] [26] [27] [28]
Numerical mapping – DNA, RNA, Protein [7] [27]
K-nearest neighbor KNN DNA, RNA, Protein [7] [27]
Physicochemical property PP DNA, RNA, Protein [7] [22] [27] [29]

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab434#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab434#supplementary-data
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Table 2. Descriptors calculated by MathFeature compared to the
available feature extraction packages. This table shows the num-
ber of MathFeature descriptors that existing packages have imple-
mented

Package
Mathematical
descriptors

Conventional
descriptors

Number of
descriptors
calculated

MathFeature 20 17 37
PROFEAT 0 2 2
PseAAC 0 2 2
propy 0 5 5
PseKNC-general 0 5 5
SPiCE 0 4 4
ProtrWeb 0 5 5
ProFET 2 3 5
Pse-in-One 0 5 5
repDNA 0 5 5
Rcpi 0 3 3
repRNA 0 5 5
BioSeq-analysis 0 9 9
iFeature 1 4 5
PyBioMed 0 7 7
Seq2Feature 0 0 0
PyFeat 1 8 9
iLearn 2 13 15

mathematical descriptors (e.g. chaos game, FT, entropy and
graphs), except two descriptors in numerical mapping, available
in only two packages [7, 27]. In addition, to better illustrate
the advantages of MathFeature compared with other studies,
we included Table 2, which shows the number of MathFeature
descriptors that can also be found in other tools. In that case,
it can be noticed that only iLearn has 15 descriptors from a
total of 37 descriptors available in MathFeature. Moreover, we
found only a few sets (2 up to 9) of similar descriptors from
other packages compared to our study. Based on this analysis,
we realized the novelty of MathFeature for providing different
descriptors in biological sequences, which we believe to be an
important contribution. Also, most studies (13, 76.47%) were
dedicated to evaluating only one type of sequence, while 4
(23.53%) studies cover multiple types of sequences, including
MathFeature. Finally, our package is also competitive in terms of
the number of descriptors (total of 37).

Package description
MathFeature is a user friendly package that covers 20 mathemat-
ical descriptors, as illustrated by Figure 1. We also elaborate the
MathFeature execution workflow, which can be divided into four
simple steps, as shown in Figure 2. In Table 3, we organized the
20 descriptors into 5 groups (numerical mapping (7), chaos game
(2), FT (7), entropy (2) and graphs (2)), according to their structure.
MathFeature can be run on console, but we also provide a graph-
ical user interface (GUI)-based platform (see Supplementary File:
S3). We briefly describe each of the 5 groups representing the 20
descriptors:

• Numerical mapping: Several sequence analysis studies
require converting a biological sequence into a numerical
sequence. Previous studies [43–45] have proposed descrip-
tors for such, which are able to represent important aspects
of these sequences. This group contains 7 descriptors for
numerical mapping: Voss [46] (known as binary mapping),

Integer [45], real [47], Z-curve [43], electron-ion interaction
potential (EIIP) [48, 49], complex Numbers [44, 50] and
atomic number [35, 51].

• FT: This group consists of feature extraction methods,
which generate sequence features based on genomic signal
processing (GSP), using FT, a widely applied approach in
several biological sequence analysis problems [34–36, 52].
To implement GSP techniques, we used all numerical
mappings. A mathematical exploration can be seen in [36].

• Chaos game representation (CGR): This approach is also a
mapping for a sequence, but scale-independent and iter-
ative for geometric representation of DNA sequences [53].
Based on available CGR representations, the MathFeature
package considers classical CGR [34, 53], frequency CGR [54]
and CGR signal with FT [34].

• Entropy: Different studies have applied concepts from
information theory for sequence feature extraction, mainly
Shannon’s entropy (SE) [33, 55]. According to [56], Tsallis
entropy (TE) [57] has been successfully explored in several
studies. Moreover, Tsallis entropy attempted to generalize
the Boltzmann/Gibbs’s traditional entropy. This group
includes these two descriptors [36].

• Graphs: This group has descriptors based on graph theory
(CN), which has been successfully used to represent biologi-
cal sequence for classification tasks [58, 59]. The descriptors
implemented in this group include techniques proposed in
[60] and explored in [36].

MathFeature also provides well-known descriptors from other
studies with biological sequences (called conventional descrip-
tors here, see Table 4, due to the large number of implemen-
tations in the revised packages, see Table 1) such as NAC, din-
ucleotide composition (DNC), trinucleotide composition (TNC),
pseudo K-tuple nucleotide composition (PseKNC) [16], accumu-
lated nucleotide frequency (ANF—DNA, RNA and protein) [61],
basic k-mer (DNA, RNA and protein) [62], AAC, dipeptide com-
position (DPC), tripeptide composition (TPC) and Xmer k-Spaced
Ymer composition frequency (kGap - DNA, RNA and protein) [30].
In addition, we also implemented two widely known descriptors
in coding sequence studies, e.g. open reading frame (ORF) or cod-
ing features [36] and Fickett score [63]. Finally, we summarized
the set of features generated by each descriptor investigated
in this study (mathematical and conventional), as described in
Table 5. MathFeature is freely available at https://github.com/Bo
nidia/MathFeature, and its documentation is provided at https://
bonidia.github.io/MathFeature/.

Results
The main aim of this paper is to make publicly available a large
set of feature extraction techniques for biological sequences,
including mathematical descriptors not found in similar pack-
ages. These descriptors have been successfully applied to extract
relevant features from biological sequences, as can be seen in
[36], [34], [52], [33] and [60]. For this reason, to assess the relevance
of MathFeature descriptors, we provide case studies, which are
detailed and presented in the experimental scenario section.

Experimental scenario

We ran experiments for nine case studies with distinct scenarios
for the classification of DNA, RNA and protein sequences,
as shown in Table 6. These case studies compare the use of
several descriptors in distinct problem domains. Furthermore,
we did not include any feature selection or hyperparameter

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab434#supplementary-data
https://github.com/Bonidia/MathFeature
https://github.com/Bonidia/MathFeature
https://bonidia.github.io/MathFeature/
https://bonidia.github.io/MathFeature/
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Figure 1. Pipeline of descriptors calculated by MathFeature. A: Numerical mapping; B: FT; C: Chaos game representation; D: entropy; E: complex networks.

Table 3. Mathematical descriptors calculated by MathFeature for DNA, RNA and Protein sequences

Descriptor groups Descriptor Dimension Biological Sequence

Binary L · 4 DNA/RNA
Z-curve L · 3 DNA/RNA
Real L DNA/RNA

Numerical mapping Integer L DNA/RNA/Protein
EIIP L DNA/RNA/Protein
Complex Number L DNA/RNA
Atomic Number L DNA/RNA
Binary + Fourier 19 DNA/RNA

FT Z-curve + Fourier 19 DNA/RNA
Real + Fourier 19 DNA/RNA
Integer + Fourier 19 DNA/RNA/Protein
EIIP + Fourier 19 DNA/RNA/Protein
Complex Number + Fourier 19 DNA/RNA
Atomic Number + Fourier 19 DNA/RNA
CGR L · 2 DNA/RNA

Chaos game Chaos Game Signal (with Fourier) 19 DNA/RNA
entropy Shannon k DNA/RNA/Protein

Tsallis k DNA/RNA/Protein
Graphs CN (with threshold) 12 · t DNA/RNA/Protein

CN (without threshold) 26 · k DNA/RNA/Protein

L = length of the longest sequence, k = frequencies of k-mer, t = threshold - number of subgraphs.

optimization technique. Hence, for a fair comparison, we
selected descriptors using stratified random sampling (choosing
descriptors in each group defined in the article, e.g. numerical
mapping, FT, chaos game, entropy, graphs and conventional)

in all case studies to avoid any biased choices according to
the problem domain. In addition, to compare our results with
state-of-the-art studies, we used different ML algorithms,
performance measures and dataset partitions to adapt our
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Figure 2. MathFeature execution workflow. Step 1: Select input sequence (DNA/RNA/Protein - MathFeature only accepts fasta format); Step 2: Choose the descriptor

(mathematical or conventional); Step 3: It is necessary to run each descriptor separately; Step 4: The generated vectors can be used separately or they can be hybridized

in a single vector.

Table 4. Conventional descriptors calculated by MathFeature for DNA, RNA and Protein sequences

Descriptor groups Descriptor Dimension Biological sequence

Basic k-mer 4k or 20k DNA/RNA/Protein
Customized k-mer 4k or 20k DNA/RNA/Protein
NAC 4 DNA/RNA

Other descriptors DNC 16 DNA/RNA
TNC 64 DNA/RNA
ORF Features or Coding Features 10 DNA/RNA
Fickett score 2 DNA/RNA
PseKNC – DNA/RNA
ANF L DNA/RNA/Protein
kGap 4X · 4Y or 20X · 20Y DNA/RNA/Protein
AAC 20 Protein
DPC 400 Protein
TPC 8000 Protein

L = length of the longest sequence, k = frequencies of k-mer

pipeline to the benchmark dataset. Finally, we also selected
hybridized features using stratified random sampling, to assess
how these feature sets can improve the ML model prediction.

Case study I-non-classical secreted proteins

Here, we induced a classifier for the non-classical secreted pro-
teins using benchmark datasets provided by [8] (training: 141
positive and 446 negative samples; test: 34 positive and 34 nega-
tive objects). We extracted features using integer mapping, FT
+ integer mapping and AAC. Afterward, we applied the Cat-
Boost algorithm to the new datasets and assessed the predictive
performance using Accuracy (ACC), F1-score and Matthews Cor-
relation Coefficient (MCC). Our performance (ACC: 0.8382, F1-
score: 0.8070 and MCC: 0.7149) was superior to state-of-the-art
tools, such as SecretomeP [70] (ACC: 0.5880, F1-score: 0.4620 and
MCC: 0.2000) and PeNGaRoo [8] (ACC: 0.7790, F1-score: 0.7890 and
MCC: 0.5610).

Case study II-PVP

This study, considering the prediction of PVP, is reported in
[9]. For the experiments carried out, we used benchmark data
provided by [64], with 500 sequences for training (250 PVP and
250 non-PVP) and 126 for tests (63 PVP and 63 non-PVP). To
numerically represent the sequences, we built a hybrid feature

set with SE (k = 12), CN (k = 1, t = 2) and AAC. To generate
our predictive model, a classifier was induced using an ensemble
method (bagging) of Support Vector Machines (SVMs), assessing
its predictive performance with the F1-score, ACC, area under
the curve (AUC) and MCC. Experimental results showed high
performance for F1-score: 0.7934, ACC: 0.8016, AUC: 0.8661 and
MCC: 0.6051. The results using the hybrid set of features were
superior to the performance obtained using conventional fea-
tures extracted from the same dataset [64]. Using the hybrid
feature set also improved the predictive performance, when
compared with the feature set used by PVPred [71] (ACC: 0.7300,
AUC: 0.8570 and MCC: 0.5050), PVP-SVM [9] (ACC: 0.7460, AUC:
0.8440 and MCC: 0.5050) and PVPred-SCM [72] (ACC: 0.7140, AUC:
– and MCC: 0.4320) and slightly worse than Meta-iPVP [64] (ACC:
0.8170, AUC: 0.8700 and MCC: 0.6420).

Case study III-SARS-CoV-2 sequences

For this case study, we conducted experiments using a dataset to
differentiate SARS-CoV-2 from other viruses (e.g. HIV, Influenza,
hepatitis, Ebolavirus, SARS). We downloaded all available virus
sequences (29 135) from the NCBI Viral Genome database [65]
(complete genomic sequences (DNA), e.g. Nucleotide Complete-
ness = ‘complete’ AND host = ‘homo sapiens’). In a preprocessing
phase, we removed sequences smaller than 2000bp and larger
than 50 000 bp [73] to eliminate any bias in the sequence size,
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Table 5. Features generated by each mathematical and conventional descriptor calculated by MathFeature

Descriptors Features

Binary, Z-curve, Real, Integer, EIIP,
complex number, atomic number,
CGR, ANF

Convert a biological sequence into a numerical sequence, e.g. Integer representation:
GAGAGTGACCA == 3, 2, 3, 2, 3, 0, 3, 2, 1, 1, 2.

Binary + Fourier, Z-curve + Fourier,
real + Fourier, integer + Fourier, EIIP
+ Fourier, complex number +
Fourier, atomic number + Fourier,
Chaos Game Signal (with Fourier)

Peak to average power ratio (2 features), average power spectrum, median, maximum,
minimum, sample SD, population SD, percentile (15/25/50/75), range, variance,
interquartile range, semi-interquartile range, coefficient of variation (cv), skewness
and kurtosis.

Shannon, Tsallis For each k-mer (e.g. 1-mer, 2-mers,..., k-mers), we generated an entropic measure.
CN (with threshold) Betweenness, assortativity, average degree, average path length, minimum degree,

maximum degree, number of edges, degree SD, frequency of motifs (size 3 and 4),
clustering coefficient (local and global).

CN (without threshold) Betweenness, assortativity, average degree, average path length, minimum degree,
maximum degree, number of edges, degree SD, frequency of motifs (size 3 and 4),
clustering coefficient (local and global), Kleinberg’s authority centrality scores,
closeness centralities, Burt’s constraint scores, multiplicities, density, diameter,
eccentricity, edge betweenness, Kleinberg’s hub score, maximum degree of a vertex
set, neighborhood size, radius, strength (weighted degree), number of vertices.

k-mer, Customized k-mer, NAC,
DNC, TNC, AAC, DPC, TPC, kGap

Generation of nucleic acid or amino acid statistical information, e.g. NAC for DNA:
relative frequency of A, C, T, G.

ORF features or coding features Maximum ORF length, minimum ORF length, std ORF length, average ORF length, cv
ORF length, maximum GC content - ORF, minimum GC content - ORF, std GC content -
ORF, average GC content - ORF, cv GC content - ORF.

Fickett score Fickett:orf, Fickett:full:sequence
PseKNC Modes of PseKNC with physicochemical properties

Table 6. Experimental scenario in nine case studies

Problem Reference Case study Application Number of sequences Classifier

Non-classical secreted proteins [8] I Protein 655 CatBoost
PVP [64] II Protein 626 Support Vector Machines
SARS-CoV-2 sequences [65] III DNA 24 815 Random Forest
Sigma70 promoters [12] IV DNA 2141 Support Vector Machines
Anticancer Peptides [66] V Protein 344 Random Forest
Protein lysine crotonylation [67] VI Protein 40 587 Random Forest
Long non-coding RNAs [13] VII RNA 21 000 and 12 000 CatBoost
Long non-coding RNAs [68] VIII RNA 36 000 Deep Learning
Sigma70 promoters [69] IX DNA 2141 Random Forest

since SARS-CoV-2 has an average length of 29 838 bp, resulting in
a dataset with 22 442 and 2373 sequences from other viruses and
SARS-CoV-2, respectively. In this experiment, we extracted the
TE-based features (k = 12 and q = 6). We applied the Random
Forest (RF) algorithm to the dataset represented by TE-based
features, using 10-fold cross-validation (mean). It is important
to note that we continued with an unbalanced dataset, keeping
performance metrics (e.g. F1-score, balanced accuracy (BACC),
and also including Cohen’s kappa coefficient). In the experi-
mental results, the predictive performance of the RF model to
discriminate SARS-CoV-2 from several other viruses with F1-
score, BACC and kappa of 0.9873, 0.9919, 0.9860, respectively.
Moreover, we tested other conventional descriptors (e.g. k-mer,
PseKNC, ORF features, Fickett score and TNC). These descriptors
performed between (0.9800-0.9900, balanced accuracy), and
hence, we carried out the classification task between SARS-
CoV-2 and other viruses, which are linearly separable even using
different feature vectors. In addition, these results are supported
by [10, 11].

Case study IV-Sigma70 promoters

In this case study, we trained a SVM classifier to induce a
sigma70 promoter predictor based on the benchmark dataset
from [12]. This dataset contains 741 positive samples (promoter)
and 1400 negative samples (non-promoter). For the feature
extraction, we used the CGR descriptor. The experiments were
assessed partitioning the dataset with 5-fold cross-validation
(same as in [12]), when the following mean performance values
were obtained: 0.8594, 0.8346, 0.7872 and 0.6852 for ACC, BACC,
F1-score and MCC, respectively. In [12], the authors report the
performance of their tool, iPro70-PseZNC, also using SVM, for 2
of these metrics, ACC: 0.8450 and MCC: 0.6630. Thus, by using
the mathematical descriptors, the results improved by 0.0144
(1.44%), for ACC and 0.0222 (2.22%), for MCC.

Case study V-anticancer peptides

In this case study, our aim is to identify anticancer peptides
based on [66]. For such, we extracted features CN (k = 2, t = 1)
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and AAC from the benchmark dataset provided by the authors
(206 non-anticancer peptides and 138 anticancer peptides). The
RF algorithm was applied to the transformed dataset using 10-
fold cross-validation. The mean predictive performance of the
trained model was assessed using ACC, F1-score and MCC. The
performance of this model was superior to the performance
reported in [66], (ACC: 0.9300, F1-score: 0.9061 and MCC: 0.8563
against ACC: 0.9273, F1-score: 0.9270 and MCC: 0.8490).

Case study VI-protein lysine crotonylation

Based on [67], we induced and assessed the RF algorithm to
identify protein lysine crotonylation sites. The benchmark data
provided by the author contains 32 418 sequences for training
(2742 positive and 29 676 negative peptides - papaya) and 8169
sequences for tests (711 positive and 7458 negative peptides -
papaya). For feature extraction, we applied numerical mapping
with EIIP. We assessed the predictive performance with BACC
and MCC, which were 0.6450 and 0.1652, respectively. These
results were better than those obtained with the some feature
extraction techniques used in [67], e.g. RFAAC (MCC: 0.1030) and
RFCKSAAP (MCC: 0.1110).

Case study VII-long non-coding RNAs

In this case study, we trained the CatBoost algorithm to clas-
sify long non-coding RNAs (lncRNAs) sequences from protein-
coding genes (mRNAs), using two datasets made available by
[13]: Human (training set: 16 000 sequences and test set: 5000
sequences) and Wheat (training set: 8000 sequences and test set:
4000 sequences). From these datasets, we extracted the FT + real
mapping, TNC and coding descriptors. Essentially, we followed
the same pipeline of previous case studies. Once again, the
predictive model induced using our descriptors showed a high
predictive performance in the datasets, e.g. Human (ACC: 0.9652,
F1-score: 0.9646, MCC: 0.9309) and Wheat (ACC: 0.8870, F1-score:
0.8907, MCC: 0.7757). Our results were better than several tools
shown in [13], e.g. CPC [74] (Human - ACC: 0.8304; Wheat -
ACC: 0.9595), CNCI [75] (Human - ACC: 0.9450; Wheat - ACC:
0.6158), CPAT [63] (Human–ACC: 0.9642; Wheat–ACC: 0.8743),
PLEK [76] (Human–ACC: 0.9274; Wheat–ACC: 0.8773), and CPC2
[77] (Human–ACC: 0.9614; Wheat–ACC: 0.7870).

Case study VIII-using MathFeature with deep learning

According to [78], deep learning (DL) is a field of ML responsible
for several advances, due to its high predictive performance in
big data [79]. Therefore, we assess our descriptors with a DL
architecture, using the same case study problem VII [lncRNAs
versus mRNAs - feature vector (FT + real mapping and coding
descriptors)], but with a benchmark dataset from [68] (Zea mays
dataset (36 000 sequences: 18 000 lncRNA and 18 000 mRNA),
whose article is dedicated to a DL approach. Our classifier was
generated using Keras [80] (default parameters). Furthermore,
we compared our model with three DL tools used in [68]
(PlncRNA-HDeep [68], lncRNAnet [81] and LncADeep [82]), using
the same pipeline (hold-out (80% of samples for training and
20% for testing), ACC, Recall and F1-score). Our model showed
a high predictive performance in the dataset, e.g. ACC: 0.9605,
Recall: 0.9917 and F1-score: 0.9616, overcoming lncRNAnet (ACC:
0.7290, Recall: 0.7200, F1-score: 0.7260), LncADeep (ACC: 0.8000,
Recall: 0.6660, F1-score: 0.7690) and PlncRNA-HDeep (Recall:
0.9790), but with a small decimal loss in relation (ACC: 0.0045

and F1-score: 0.0034) to PlncRNA-HDeep (ACC: 0.9650 and F1-
score: 0.9650). Therefore, based on our results, MathFeature
can also generate robust and efficient feature vectors for DL
approaches.

Case study IX-MathFeature versus other packages

So far, we have evaluated MathFeature with eight experiments in
well-established problems. Nevertheless, in this last case study,
we also compared MathFeature with five packages, e.g. BioSeq-
Analysis [26], Seq2Feature [29], PyFeat [30], iLearn [7] and SubFeat
[69]. The experiments were carried out using the dataset pro-
vided by [69], which was the same dataset used in case study IV
(Sigma70 Promoters). For this study, we considered 741 positive
samples (promoter) and 1400 negative samples (non-promoter)
and three metrics (ACC, AUC, MCC), evaluating the RF classifier
using 10-fold cross-validation (as our reference). We kept our
CGR descriptor. MathFeature (ACC: 0.8576, AUC: 0.9252 and MCC:
0.6797) outperformed all packages, BioSeq-Analysis (ACC: 0.7637,
AUC: 0.8297 and MCC: 0.4726), Seq2Feature (ACC: 0.7197, AUC:
0.7637 and MCC: 0.3723), PyFeat (ACC: 0.7842, AUC: 0.8589 and
MCC: 0.5064), iLearn (ACC: 0.7597, AUC: 0.8173 and MCC: 0.5275)
and SubFeat (ACC: 0.8098, AUC: 0.9232 and MCC: 0.5664). More-
over, based on the results obtained comparing MathFeature and
Seq2Feature, we generated a hybrid vector with features from
both packages (MathFeature: CGR and Seq2Feature: Nucleotide
content, random choice), which provided the best result (ACC:
0.8627, AUC: 0.9332 and MCC: 0.6927). Therefore, we achieved
a high predictive performance, applying only MathFeature or a
hybrid combination of packages.

Discussion
We assessed the MathFeature package in nine case studies
grouped by protein and DNA/RNA sequences. We considered
four protein problems and three DNA/RNA problems in the
experiments. The classification problems in each case were
chosen based on recent articles with distinct domains. For
example, for protein molecules, we used the following datasets:
(i) non-classical secreted proteins, that according to [8], are
important for understanding pathogenesis mechanisms of
Gram-positive bacteria; (ii) The PVP identification, e.g. to develop
new antibacterial drugs [9]; (iii) anticancer peptides that present
a new direction in the treatment of cancer [66, 83] and (4) protein
lysine crotonylation, a type of post-translational modification
[67, 84]. In these studies, we noticed that the hybrid combination
of mathematical and conventional descriptors (available at
MathFeature) improves the performance of the models, mainly
applying CN, FT, numerical mapping (e.g. EIIP and integer) and
AAC, varying the ACC/BACC of 0.6450–0.9300 in all problems.
For DNA/RNA molecules, the problems used are (i) SARS-
CoV-2, hot topic in bioinformatics [10, 11]; (ii) detection of
sigma70 promoters to study the dynamics of gene expression
[12, 85]; and (iii) lncRNA sequences, that can play essential
roles in biological processes, e.g. transcriptional regulation
[68, 86]. For these problems, we obtained highly robust results
(varying the ACC/BACC of 0.8594-0.9900), both applying only
mathematical descriptors or a hybrid combination, highlighting
TE-based features, CGR, FT, TNC and coding descriptors.
Finally, our findings report the relevance of MathFeature
descriptors in several applications, e.g. humans, plants and
bacteria data.
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Conclusion
In this study, we described a new package, called MathFeature,
comprising an extensive and comprehensive set of 37 feature
descriptors for biological sequences. From these 37 descrip-
tors, 20 are based on mathematical approaches and are not
available in other feature extraction packages. Seventeen other
descriptors, called conventional descriptors, were selected from
those often used in the literature. The main motivation for this
new package was that, despite the relevance of the features
extracted by mathematical descriptors, they are not available
in current packages. Thus, MathFeature extends the existing
packages, including mathematical techniques. To experimen-
tally assess the descriptors implemented in this package, we
conducted nine case studies, using several biological scenarios,
e.g. DNA, RNA and Proteins (primary sequence of amino acids),
applied in different problem domains. Furthermore, we avoided
including any type of bias from selected features, and hence,
the quality assessment of each feature can be made by the
community with regards to the specific problem of interest. In
the experiments, we obtained high predictive performance, both
applying only mathematical descriptors (e.g. case studies II, III,
VI) and applying a hybrid combination of them with well-known
conventional descriptors found in the literature (e.g. AAC, TNC,
Coding). Finally, through MathFeature, we outperformed several
studies in benchmark datasets, indicating that all descriptors
within MathFeature can improve the performance of predictive
models induced by ML algorithms. Regarding the limitations,
we observed that some of these descriptors (e.g. Fourier, Shan-
non and Tsallis) have a low performance for short sequences.
However, when mathematical descriptors are combined with
conventional ones, in hybrid sets, there is a clear improve-
ment in the predictive performance. Finally, as future work,
we intend to investigate descriptors for short sequences, espe-
cially in prokaryotic organisms, and also include more protein
descriptors.

Key Points
• A novel open-source Python package, called MathFea-

ture.
• MathFeature provides 37 descriptors, 20 of them are

mathematical, organized into five categories.
• MathFeature can be run on the console, but also pro-

vide a GUI-based platform.
• MathFeature is an extensive and comprehensive set

of feature extraction techniques based on mathemat-
ical descriptors for encoding DNA, RNA and Proteins
(primary sequence of amino acids) sequences.

• MathFeature is the first package to provide a large set
of features based on mathematical descriptors and
also well-known descriptors from other studies with
biological sequences.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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