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Abstract: Artificial intelligence (AI) based on machine learning (ML) and deep learning (DL) techniques 
has gained tremendous global interest in this era. Recent studies have demonstrated the potential of AI 
systems to provide improved capability in various tasks, especially in image recognition field. As an image-
centric subspecialty, ophthalmology has become one of the frontiers of AI research. Trained on optical 
coherence tomography, slit-lamp images and even ordinary eye images, AI can achieve robust performance 
in the detection of glaucoma, corneal arcus and cataracts. Moreover, AI models based on other forms of data 
also performed satisfactorily. Nevertheless, several challenges with AI application in ophthalmology have also 
arisen, including standardization of data sets, validation and applicability of AI models, and ethical issues. In 
this review, we provided a summary of the state-of-the-art AI application in anterior segment ophthalmic 
diseases, potential challenges in clinical implementation and our prospects.
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Introduction

First conceptualized in 1956 by Dartmouth scholar John 
McCarthy, artificial intelligence (AI) is a general term referring 
to hardware or software that exhibits intelligent behavior (1).  
As a subset of AI, machine learning (ML) was proposed 
subsequently in 1959 and stated that “the computer should 
have the ability to learn using various statistical techniques, 
without being explicitly programmed” (2). ML has been widely 
adopted in applications such as computer vision and predictive 
analytics using complex mathematical models. Deep learning 
(DL) is a class of state-of-the-art machine learning techniques 
that has sparked tremendous global interest in recent years (3). 

With improved performance, the deployment of DL focuses 
on image recognition, speech recognition and natural language 
processing (4,5).

Healthcare has become one of the frontiers of AI 
application in recent years, particularly for those image-
centric subspecialties such as radiology, dermatology, 
pathology and ophthalmology (6). For example, AI 
algorithms have proved effective in the detection of 
pulmonary tuberculosis from chest radiographs and 
melanoma on digital skin photographs (7,8). Similarly, 
in ophthalmology, AI has been primarily applied to 
image-based diagnosis of diabetic retinopathy, glaucoma, 
age-related macular degeneration and retinopathy of 
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prematurity, most of which are retinal diseases (9).
Unlike the diagnosis of retinal diseases, which is largely 

dependent on ophthalmoscopy, multiple examinations are 
required to diagnose anterior segment diseases given the 
complexity of its structure and physiological functions. 
Anterior eye segment is defined as the front third of the eye 
that includes conjunctiva, cornea, anterior chamber, iris, 
pupil, ciliary body, and lens. These structures constitute 
the path of light through the eye and the ocular refractive 
system. To establish a definite diagnosis of anterior segment 
eye diseases, evaluation of both anatomy and function are 
necessitated, including slit-lamp biomicroscopy, optical 
coherence tomography, corneal topography, tonometry, 
perimetry, etc. Accordingly, various forms of data besides 
images, such as videos, formatted parameters and texts, have 
been used in the AI-assisted detection of these diseases. 
This review summarizes the application of AI systems in 
anterior segment ophthalmic diseases, potential challenges 

in clinical adoption and possible paths forward. 

Constructing models

Multiple ophthalmic imaging modalities, such as slit-lamp 
images (10-17), AS-OCT images (18-23) and tear film lipid 
layer interference images (24-27), have been widely used in 
AI for the diagnosis of anterior segment ocular diseases. In 
addition, structured data, such as corneal parameters (28-33), 
have been used as well. The ophthalmic imaging modalities 
used in diagnosis are illustrated in Figure 1. 

The steps for building an AI model include the following 
phases: data preparation, data partition, model optimization 
and evaluation of the system, as showed in Figure 2.

Data preparation

In order to improve the performance of models or meet 
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Figure 1 The ophthalmic imaging modalities in AI applications in anterior segment ocular diseases. 
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Figure 2 The workflow of constructing models.
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the condition of algorithms, it’s crucial to prepare data well. 
Traditional ML algorithms only work on structured data, 
which require data preparation according to data types and 
AI algorithms. This is shown in Figure 2. The preprocessing 
and segmentation or location of region of interest (ROI) for 
images used in ML or DL for anterior segment ocular disease 
diagnosis have been the same. Image preprocessing involves 
reducing noise, for example specular reflection removal (34), 
eliminating uneven illumination (16), and transforming the 
images from different sources to same size and format, etc. 
Segmentation or location of ROI is essential for ML, but it is 
used only in some cases for DL because CNN has the ability 
to localize the discriminative regions used by it to identify the 
category (heatmap). Images for ML need to be converted to 
structured data, then the relevant features are usually selected 
and extracted to make learning more efficient and increase 
accuracy by avoiding overfitting. Structured data need data 
cleaning, feature engineering and selection. Data cleaning 
consists of outlier detection and removal, missing values 
imputation, examples out of target population removal, 
etc. Feature engineering is the process of using domain 
knowledge to create new features that make ML successful or 
outstanding. It is fundamental to the application of ML.

Data partition is the same for all data types and 
algorithms. Typically, data are randomly divided into two 
independent datasets: one is test dataset, the other will be 
divided again into training and validation dataset. This is 
called holdout method. Another method is cross-validation, 
of which 5-fold cross-validation has been commonly used 
in AI applications (14,18,29,31,35,36) to avoid overfitting 
and underfitting when sample size is small. Training dataset 
is used to build models, validation dataset is for tuning the 
hyperparameters and selecting the optimal model as final 
model and making other decisions regarding the model, and 
test dataset is for evaluating the performance of the final 
model. 

Training and validating the model

Training models are conducting experiments. Different 
classification algorithms (13,15,16,18,23,24,27,28,31,35,37),  
hyperparameters, and data preparation methods have been 
adopted to train algorithms and generate several or even 
hundreds of models, then these models are evaluated on 
validation dataset so that the best model can be determined 
as the final model to use on future or unseen data. Other 
decisions, such as the optimal classification or operating 
threshold determined with the analysis of ROC curve (31), 

are also made based on the performance on validation 
dataset.

Evaluating the model performance

Model evaluation aims to estimate the performance of 
the final model on future data. The most commonly used 
metrics in AI for disease diagnosis are AUC [the area 
under the receiver’s operator characteristics (ROC curve)], 
sensitivity, and specificity. AUC is more commonly used 
than accuracy because it isn’t affected by the classification 
threshold or the proportion of positive examples as accuracy 
is. AUC ranges from 0.5 (for a model with no predictive 
value) to 1 (for a perfect model), and a value greater than 
0.9 indicates the model is outstanding, 0.8–0.9 indicates 
the model is good or excellent (38). ROC curve is graphical 
display of sensitivity (true positive rate, TPR) on y-axis 
and (1 – specificity) (false positive rate, FPR) on x-axis for 
varying cut-off points of probabilities predicted by the 
model. Except for examining the metrics on the testing 
dataset, comparing the performance of the model with 
human experts or other systems are also common, and ROC 
curve has been usually used to visually demonstrate the 
comparison of several test results simultaneously. 

AI algorithms

Machine Learning is a paradigm that allows computers 
to learn patterns from a large corpus of data, and use the 
learned knowledge to make prediction. It can be roughly 
divided into traditional machine learning algorithms and 
deep learning algorithms. Traditional machine learning 
algorithms use variables selected by experts as input, and 
usually does not involve large neural networks. They 
include algorithms such as Linear Regression, Logistic 
Regression, Support Vector Machine, Decision Tree, 
Random Forest and etc. Deep learning algorithms make use 
of multimedia datasets, such as images, videos and sound, 
and usually involves the use of large-scale neural networks 
such as Artificial Neural Networks (ANNs), Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs). While conventional machine learning methods are 
still employed, most recent researches focus on using deep 
neural networks.

Deep learning tasks mainly include three use cases: 
classification, object detection and semantic segmentation. 
In classification tasks, an algorithm learns to classify an 
image into a set of predefined categories. VGG, ResNet, 
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Inception and InceptionResNet are some of the popular 
CNNs used for classification.

The task of object detection focuses not only on what 
is in the image, but also on the position of the object(s) of 
interest. Popular object detection algorithms include Faster-
RCNN, You Only Look Once (YOLO) and Single Shot 
Multibox Detector (SSD). 

In semantic segmentation, an algorithm tries to classify 
each pixel in an image into a set of predefined categories. 
Popular semantic segmentation algorithms include Fully 
Convolutional Network (FCN), U-Net and Google’s 
DeepLab.

AI application in anterior segment ophthalmic 
diseases

A total of forty-five representative articles of AI application 
in anterior segment ophthalmic diseases are included in this 
review. Among them, the most intensively researched are 
conjunctiva and tear film, cornea, glaucoma and cataract. 
The distribution of the papers concerning these four 
topics in year of publication is shown in Figure 3. Details 

about aforementioned articles are summarized in http://
fp.amegroups.cn/cms/8e23864133337a312edb32e11e7655
dd/atm-20-976-1.pdf (39-53).

Conjunctiva and tear film

AI application in conjunctiva and tear film mainly focus 
on the diagnosis of dry eye. Dry eye is a multi-factorial 
disease characterized by unstable tear film causing a 
variety of symptoms and/or visual impairment, potentially 
accompanied by ocular surface damage (54). The diagnosis 
of dry eye is complicated and there is not a single 
perfect reference standard of it (55). Instead, a variety of 
examinations can provide supportive information, including 
fluorescein break up time test, tear film interferometry, tear 
film protein analysis and meibography. 

Most investigations about dry eye were designed for the 
automatic analysis of relevant examinations (24-27,40,42,56). 
Among these studies, more emphasis is on tear film 
interferometry. The interference patterns of tear film lipid 
layer can be analyzed by MLP, SVM and other algorithms 
to achieve automatic classification (24-27). Meibography, 
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another imaging technology, has been investigated in another 
research (40). A combination of SIFT and SVM algorithms 
was applied to calculate the length and width of Meibomian 
glands in meibography images and then differentiate between 
healthy and unhealthy ones. Besides, fluorescein break up 
time test, a basic dry eye test, was also studied in (42,56). By 
analyzing the recorded videos during fluorescein break up 
time test, break-up time (BUT) can be calculated (42) and 
dry areas detected (56) using MRF and RANSAC algorithms 
respectively.

Other than direct observation, AI algorithm was also 
applied to screen for the diagnostic candidate molecules. 
Grus et al. proved that analysis of tear film protein patterns 
by ANN can serve as a diagnostic tool for detection of dry 
eyes (43,57). This artificial neural network showed an AUC 
of 0.93 and a specificity and sensitivity of approximately 
90% for each (43), which provided a clue to accurate 
diagnosis of dry eyes.

Another research field lies in automatic conjunctival 
hyperemia grading, which is usually a subjective and time-
consuming procedure for humans. Using slit-lamp images 
or even ordinary eye images as input, ML methods are able 
to perform an objective assessment of hyperemia grading, 
removing both intra- and inter-expert subjectivity while 
providing a reduction in computation time (37,39,41).

Cornea

Corneal ectasia, a group of eye disorders characterized by 
localized corneal thinning which leads to protrusion of the 
thinned cornea (58), seems to be the focus of AI research in 
cornea. Early detection of corneal ectasia is important since 
it is a contraindication for laser refractive surgery (59). A 
variety of AI models have been developed for the detection 
of corneal ectasia as a whole (28,31) or one or more specific 
forms of it (29,30,32,33,44), all of which were trained based 
on corneal parameters.

The most common form of corneal ectasia is keratoconus (60).  
Typically, keratoconus starts at puberty and may progress 
until the fourth decade or later (61). It’s essential that 
keratoconus is detected at an early stage, so corneal collagen 
crosslinking can be applied in time, preventing a major 
deformation of cornea and potentially the need for a corneal 
transplant. Souza et al. found that SVM, MLP and RBFNN 
classifiers, when trained on Orbscan II data, could represent 
useful techniques for keratoconus detection from other 
non-keratoconus patterns with no differences between their 
performances (44).

Forme fruste keratoconus, or preclinical keratoconus, is 
an early and subclinical form of keratoconus. Although it 
is relatively stable with subtle topographic characteristics, 
it can decompensate after laser refractive surgery. Kovács 
et al. developed ML classifiers to discriminate eyes with 
preclinical keratoconus from normal eyes with an AUC 
of 0.96 (30), which is better than using unilateral single 
parameter.

More impressive works are from the multi-group 
classification of corneal conditions (29,32,33). Ruiz Hidalgo 
et al. developed a SVM algorithm to identify five different 
corneal patterns: keratoconus, forme fruste keratoconus, 
astigmatism, after refractive surgery and normal. For this 
5-group classification, the accuracy was 88.8%, with a 
weighted average sensitivity of 89.0% and specificity of 
95.2%, suggesting the potential of this model to screen 
patients before refractive surgery.

Except for corneal ectasia, automatic diagnosis of corneal 
arcus is also studied. S et al. used a SVM algorithm to detect 
corneal arcus and cataracts, both of which are common 
among elderly people, in visible-wavelength images and 
obtained satisfactory results (34).

Few studies paid attention to keratitis and other 
inflammatory or degenerative corneal diseases on the basis 
of images classification. The interpretable and expandable 
deep learning system developed by Zhang et al. can identify 
keratitis and other ocular surface disorders, distinguish 
different anatomical parts and foci, discern the diagnostic 
information relevant to the diagnosis, and provide treatment 
suggestions (45).

Glaucoma

Glaucoma is a group of ocular disorders with multi-
factorial etiology united by characteristic intraocular 
pressure-associated optic neuropathy and is a leading cause 
of irreversible blindness worldwide (62,63). Automatic 
detection of glaucoma-related features can contribute to 
timely diagnosis and thus improve patients’ prognosis (62).

The two main types of glaucoma are open-angle 
glaucoma and angle-closure glaucoma. They can be 
differentiated by the structure of anterior chamber angle. 
Patients of both types usually experience elevations 
of intraocular pressure (IOP) and visual field defect 
throughout the disease. Aloudat et al. used decision tree and 
SVM to identify the presence of high IOP from frontal eye 
images (35). This framework achieved an overall accuracy of 
95.5%. As for analysis of visual defect, Wang et al. proposed 
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an archetype method to detect visual field progression based 
on spatial pattern analysis and this method outperformed 
clinician-based evaluation in terms of accuracy and 
agreement (46). These studies provided helpful techniques 
for diagnosing glaucoma and monitoring its progression.

AS-OCT scans can detect the presence of angle closure 
and thus contribute to the diagnosis of angle-closure 
glaucoma. ML as well as DL algorithms have been applied 
for the detection of angle-closure in OCT images or 
parameters (18-20,23,48). Fu et al. was the first to report 
the application of DL for this purpose (18). This DL system 
showed an AUC of 0.96 and proved a promising technology 
for the interpretation of OCT images. However, the 
usefulness of this system needs to be further validated in 
diverse population settings with the use of different devices. 
Additionally, two ML models trained on OCT images were 
also developed to classify the different mechanisms of angle-
closure glaucoma (21,22).

Compared with angle-closure glaucoma, the diagnosis 
of open-angle glaucoma is more difficult to be established 
since patients rarely experience symptoms until central 
visual field defect occurs. Previous studies found that 
certain parameters extracted from the 24-hour contact 
lens sensor(CLS) have been associated with the visual field 
progression rate recorded in treated glaucoma patients (64).  
Martin et al. deployed a RF algorithm to discriminate 
between primary open-angle glaucoma and healthy 
eyes using CLS parameters and IOP (47). The results 
demonstrated that the combined feature set achieved a 
significantly better performance than the IOP feature set. 
Accordingly, CLS parameters may contain information 
complementary to IOP for the differentiation of primary 
open-angle glaucoma from healthy eyes.

Cataract

A cataract is the loss of lens transparency due to opacification 
of the lens. Cataracts are the leading cause of visual impairment 
worldwide, accounting for more than 50% of blindness in low-
income and middle-income countries (65). Early detection 
and timely treatment of cataracts can improve patients’ quality 
of life and reduce healthcare costs (66). The current standard 
of management of a visually significant cataract is surgical 
removal of the cataractous lens and its replacement with an 
intraocular lens (67). Among the complications of cataract 
surgery, posterior capsule opacification is the most common 
one, which can cause secondary visual loss (68).

Multiple ML and DL algorithms, including SVM, 

DCNN and CRNN, have been applied for automatic 
diagnosis and grading of cataracts using different kinds 
of images such as slit-lamp images (10-15,36,45,49,50), 
visible wavelength images (34), and fundus images (16). 
The majority of aforementioned studies focused on a 
single specific cataract subtype, which can severely limit its 
application in real-world health-care settings. To address 
this problem, Wu et al. established a DL model to achieve 
the collaborative management of cataracts using a three-
step strategy: capture mode recognition, cataract diagnosis 
and detection of referable cataracts with respect to etiology 
and severity (49). This AI agent showed satisfactory 
performance in the comprehensive diagnosis of age-
related cataracts, pediatric cataracts and posterior capsule 
opacification. Such a universal AI platform can be utilized 
in multilevel clinical scenarios and thus greatly facilitate the 
collaborative management of cataracts.

Apart from the usage of images, several ML prediction 
models using clinical and biometric variables have also been 
built (51-53). These models can be deployed to optimize the 
postoperative refractive outcome (53) and estimate the risk of 
pediatric cataracts (51) or posterior capsule opacification (52).

Challenges and future prospects

Despite the reported successes of AI application in anterior 
segment ocular diseases, several limitations and hurdles 
must be appropriately addressed before widespread clinical 
implementation. Although vast amounts of data are generated 
in daily ophthalmology care, they need to be properly 
prepared before being included in usable data sets. Trained 
professionals are required in this process to accomplish 
labeling, annotations, segmentations and quality assurance, 
making this process expensive in both time and cost. This 
issue is aggravated by data-hungry algorithms such as CNN. 
Thus, the development of algorithms that can learn with 
less data is in urgent need. Actually, many self-supervised, 
weakly-supervised and unsupervised methods have achieved 
satisfactory performance with a small dataset (69,70), which 
can be a future trend in this field.

Besides the amount of data, the quality of data is also 
important and can greatly influence the performance of AI 
models (71,72). Unfortunately, availability of high-quality 
data still presents a key challenge in the implementation of 
AI technologies in medicine (73,74). Here, we propose a 
quality assessment system for images.

Before being included in data sets, images need to be 
scored in terms of the following items: being original or 
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not, resolution, features, anatomic structures, positions or 
projections for imaging, image capture devices, annotations, 
formats in naming and storage, description, and source 
information. In each item, there are different levels of 
quality, with 10 referring the best and 0 referring the worst. 
Details of assessment items are shown in Table 1.

Furthermore, data sets in most AI studies are collected 
from a homogenous population, which can be a barrier to 
broader application. Ideally, AI models should be validated 
in larger data sets from various patient cohorts under 
different conditions. For this purpose, established data sets 
should be made more accessible to promote intellectual 

Table 1 Suggested assessment standards for images included in datasets

Assessment items Descriptions
Levels

Scores Definition

Origin Whether examination images are original or 
non-original (including reproduced, scanned, 
compressed, and cropped images)

10 Original images

5 Non-original images with identifiable features

0 Non-original images with unidentifiable features

Resolution Whether resolution of this image reaches the 
average of images captured in this kind of 
examination and typical features are detectable

10 Resolution above average with detectable features

5 Resolution below average with detectable features

0 Resolution below average and unusable

Features Whether disease-specific features are identifiable 
and not blocked

10 >90% of features identifiable

5 50–90% of features identifiable

0 <50% of features identifiable

Anatomic structures Whether significant anatomic structures in this 
examination are complete and with disease-
specific features

10 Complete structures

5 Incomplete structures with features retained

0 Incomplete structures and unusable

Positions or 
projections for 
imaging

Whether images are taken in orthodox anatomic 
positions or projections and with disease-specific 
features

10 Orthodox positions or projections

5 Unorthodox positions or projections with features 
retained

0 Unorthodox positions or projections and unusable

Image capture 
devices

Whether devices meet the concurrent quality 
standards in clinical use

10 Standards met

0 Standards unmet

Annotations Whether annotations are made by board-certified 
and trained ophthalmologists

10 By more than 3 qualified annotators

5 By 1 or 2 qualified annotators

0 By unqualified annotators

Formats in naming 
and storing images

Whether formats of images are consistent with 
those of data sets

10 Consistent

0 Inconsistent

Description Whether description of images is complete and 
accurate, including standard diagnosis name, 
anatomic structures, etc.

10 Complete and accurate

5 Complete but inaccurate

0 Incomplete

Source information Whether information of image source is complete, 
including corresponding patients and capture 
devices

10 Complete

5 Incomplete patient information

0 Incomplete device information
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collaboration.
In addition to data issues, the characteristics of anterior 

segment ocular diseases also deserve more attention. For 
many anterior segment ocular diseases such as dry eye and 
glaucoma, it takes multiple examinations to add up to a 
definite diagnosis. However, current studies principally 
focus on automatic analysis of a single examination (like 
angle-closure detection in OCT images) rather than 
direct detection. For this reason, the integrative analysis of 
multimodal data (videos, images, formatting parameters, 
texts, etc.) to diagnose a complicated disease is an unsolved 
challenge in this field.

While it may take multiple examinations to diagnose 
one disease, different diseases can also be detected in a 
single examination and this is already partially realized 
in AI. For instance, a previous investigation showed that 
cataract and corneal arcus can both be detected in one slit-
lamp image by a SVM algorithm (34). The efficiency and 
applicability of such a multitasking AI system is much better 
than traditional binary classification models. What’s more, 
slit-lamp images have also been used in other studies to 
accomplish conjunctiva hyperemia grading (37,39,41) and 
high IOP detection (35), indicating the potential of this 
system to complete even more tasks. Accordingly, more 
efforts should be made to establish this kind of multitasking 
systems.

In contrast to the diagnosis of posterior segment 
ocular diseases, which usually requires ophthalmoscopy, 
detection of anterior segment ocular diseases is much more 
convenient. Several AI models already used ordinary eye 
images rather than slit-lamp images to achieve conjunctival 
hyperemia grading (41), detection of high IOP (35), corneal 
arcus and cataract (34). Based on these studies, it’s possible 
that smartphone photography can serve as a diagnostic tool 
for anterior segment ocular diseases in the near future.

In conclusion, the applicability of AI in clinical settings 
can be improved by building systemic AI models trained 
on multimodal and heterogeneous data with a less data-
hungry algorithm. Furthermore, home-based diagnosis 
and management of diseases may also be realized someday. 
Although ethical, legal and regulatory issues remain to 
be settled, AI will undoubtedly play a crucial role in the 
revolution of current health care patterns.
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