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Abstract

The study of the microbial communities has gained traction in recent years with the advent

of next-generation sequencing with, or without, PCR-based amplification of the 16S ribo-

somal RNA region. Such studies have been applied to topics as diverse as human health

and environmental ecology. Fewer studies have investigated taxa outside of bacteria, how-

ever. We present here data demonstrating the utility of studying taxa outside of bacteria

including algae, diatoms, archaea and fungi. Here, we show how location along the Cuya-

hoga River as well as a transient rainfall event heavily influence the microbial composition.

Our data reveal how individual OTUs vary between samples and how the patterns of OTU

abundance can accurately predict sampling location. The clustering of samples reveals that

these taxa are all sensitive to water conditions in unique ways and demonstrate that, for our

dataset, algae was most distinctive between sample groups, surpassing bacteria. Diversity

between sampling sites could allow studies investigating pollution or water quality to identify

marker OTUs or patterns of OTU abundance as indicators to assess environmental condi-

tions or the impact of human activity. We also directly compare data derived from primers

amplifying distinct taxa and show that taxa besides bacteria are excellent indicators of water

condition.

Introduction

Human activities can dramatically affect the environment. For instance, water quality and

aquatic ecosystem health are influenced by pollutants and other environmental disturbances.

Given how frequently waterways are exposed to industrial waste or runoff from agricultural or

residential areas, the monitoring and preservation of the health of our waterways is a critical
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undertaking [1–3]. There are many ways in which aquatic ecosystems and water quality are

assessed, including both abiotic and biotic indicators such as the detection of specific chemical

compounds or species in a monitored area [4,5]. The quantification of sensitive species is a

commonly used method to assess the health of a waterway. These species can be either macro-

or micro-organisms and their absence, presence or abundance provides important informa-

tion regarding ecosystem condition. The composition of microorganism communities within

a water sample in particular could provide excellent means of assessing water quality and

increasingly, the study of microbial composition has become a very active field of research

[5,6]. Most of the research done has focused on the bacterial composition within samples, pri-

marily through sequencing portions of the 16S ribosomal RNA to identify species [7–12].

However, the analysis of bacteria investigates only a portion of the microbial community

within an aquatic ecosystem. Other taxa are understudied with relatively few publications,

though previous reports have investigated the biodiversity of individual taxa in marine and

freshwater environments including algae and diatoms [13–16], archaea [17–19] and fungi

[20].

To highlight and evaluate the utility of data derived from primers amplifying bacteria,

archaea, algae, diatoms or fungi we analyzed data provided with a previous publication [21]

describing environmental DNA (eDNA) samples from the Cuyahoga River (Ohio, USA). We

analyzed these datasets to determine two things. First, we wanted to examine how different the

sample groups were with regards to the microbial composition and determine if these differ-

ences were adequate to group the samples. This would reaffirm the utility of non-bacterial

datasets for the evaluation of water conditions. Secondly, we wanted to compare these datasets

generated from identical samples together to determine which taxon appears to be most sensi-

tive to water conditions. This information could inform future studies evaluating the microbial

composition of aquatic environments.

Using the data from our previous publication [21], we here show how algae, diatoms, fungi,

archaea and bacteria are all sensitive indicators of water conditions based on their microbial

composition. Organisms identified using DNA barcoding can discriminate samples taken

from three portions of the Cuyahoga River at two time points. Additionally, we show that prin-

cipal component analysis can easily detect the dramatic effect of rainfall on the microbial con-

tent of a river. These analyses also identify species that vary the most between water samples.

Overall, this information could help identify marker species or investigate the biological role

of these species in responding to water condition or quality.

Methods

Data for these analyses are taken from the publicly available SRA database (accession

#SRP058316) and details on data generation were previously published [21]. Briefly, we col-

lected surface water by hand in a 50ml conical tube one meter from the bank along three sec-

tions of the Cuyahoga River on two separate days. No specific permissions to collect the

samples was required as no live animals were collected or affected. No endangered or protected

species were directly involved with the collection of the samples. We took the samples back to

the laboratory and centrifuged 40ml of water for 30 minutes at 8,000 x g at 4˚C to pellet all par-

ticulate matter (which could include silt, organic matter, small organisms, etc.) and then froze

the samples until DNA isolation. We isolated DNA using the DNeasy blood and tissue kit

(Qiagen) and used a two-step PCR protocol to amplify and barcode all samples using taxa spe-

cific primers (available as S2 Table at https://images.nature.com/original/nature-assets/srep/

2016/160311/srep22908/extref/srep22908-s1.pdf). For these analyses, we excluded any sample

from the original study from external sources entering the river. We generated bacterial 16S
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sequences from the same samples at the same time, using primers modified from previous

publications (CTTTCCCTACACGACGCTCTTCCGATCTAGYGGCGIACGGGTGAGTAA [22]

and GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGCTGCCTCCCGTAGGAGT [23])

using the PCR protocol described [21]. We previously defined four groups of samples based

on location along the river and if the sampling was performed before or after the major rain

event described in the original publication [21]: upper river before the rain (upper before,

n = 23), upper river after the rain (upper after, n = 15), middle river before the rain (middle

before, n = 10) and lower river after the rain (lower after, n = 22). We detail sampling groups

and locations in S1 Table.

QIIME analysis

To analyze DNA sequences (bacteria, archaea, algae, diatoms and fungi) we used the algo-

rithms implemented in QIIME (version 1.8.0) [24]. We analyzed all datasets identically aside

from the database used for OTU picking. For bacteria and archaea, we used the Greengenes

16S rRNA database (gg_13_8_otus, May, 2013) [25] and used a 97% sequence identity cutoff

to define operational taxonomic units (OTUs). To analyze DNA sequences amplified by the

algal, diatom and fungal primers, we used the uclust algorithm implemented in QIIME to

define OTUs by grouping together reads with more than 95% nucleotide identity. We then

blasted the representative sequence from each OTU against the nt database, retrieved the taxo-

nomic information of the best hit(s) and used custom bash and perl scripts (all code available

at https://github.com/MVesuviusC/Cuy2Analysis) to eliminate sequences with off-target hits

(i.e., sequences not within the targeted taxon and unknown sequences with less than 80% iden-

tical to any known sequence). The primers used amplified species outside of the desired taxa.

By clustering OTUs from our reads and keeping only on-target OTUs we maintain all on-tar-

get reads during OTU picking while excluding all off-target OTUs from the analysis within

each dataset.

We then assigned the reads to OTUs using QIIME’s pick_closed_reference_otus.py script.

We used biom summarize-table to determine read subsampling levels for each dataset. We

subsampled each dataset within the beta_diversity_through_plots.py script and converted the

output biom table to tab delimited with biom convert using the—biom-to-classic-table option.

For further analyses, we separately subsampled each dataset within QIIME to both the same

level across all datasets (350 reads / sample) and to a higher level as appropriate (16S rRNA

bacteria: 20,000, 16S rRNA archaea: 2,000, 23S rRNA algae: 600, 18S rRNA diatom: 1,400, ITS

fungus: 350).

Principal component analysis

We used the subsampled OTU tables produced by QIIME as input for principal component

analysis in R. We removed any OTU representing less than 1% of the total reads in all samples

to remove OTUs with very few reads. We scaled the read count values within the prcomp()

function and calculated the principal components. We omitted obvious outliers from each

dataset and recalculated principal components. We tested for differences between groups for

PC1-3 using pairwise Students t-tests with a Bonferroni correction for multiple testing. We

plotted principal components as both scatterplots and boxplots using the ggplot2 [26], and

gridExtra [27] R packages. We extracted the loadings values from the principal component

analysis and matched taxonomic information to each OTU.

To quantify how well PC1-3 separated our groups of samples we used the principal compo-

nent values to perform k-means clustering, assigning the samples to one of four groups with

no a-priori information about the sample groups. We then calculated the accuracy with which
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the k-means clusters recapitulated the actual groups. We did this by beginning with the largest

k-means cluster and assigning that cluster to the sample group with the largest representation.

Any samples within the cluster from other groups were counted as mis-assigned. We repeated

this process for each cluster in turn, from largest to smallest. If the most numerous sample

group within a cluster had already been assigned to a larger cluster, the next most frequent

group was assigned instead. We divided the total number of mis-assigned samples by the total

number of samples to calculate the accuracy of the clustering. For instance, if all groups were

assigned to exclusive clusters such that no samples were mis-assigned, the accuracy was 100%.

If half of the samples were mis-assigned, the accuracy was 50%. To calculate the likelihood of

groupings happening by chance, we randomly redistributed the cluster assignments 1,000

times and calculated the accuracy of assignment for each permutation. We calculated the pro-

portion of random permutations more accurately recapitulating the known groups as a p-

value. The results were plotted using ggplot2 in R [26].

We also merged all data from each dataset and performed PCA. We estimated the accuracy

of the recapitulation of groupings using k-means cluster analysis.

Testing for differences in OTU abundance between sample groups

We tested for differences in abundance of individual OTUs between sample groups using pair-

wise Student’s t-tests with a Bonferroni multiple testing correction.

Results

We reanalyzed here DNA sequences we had previously generated (accession # SRP058316)

from water samples collected along the Cuyahoga River [21]. We generated a total of

10,808,663 paired-end reads of 250 bp for the bacterial 16S rRNA amplification products (S1

Table). All other datasets combined had 8,584,793 reads. Archaea had 1,249,457 reads, fungi

had 788,420 reads, algae had 370,625 reads and diatoms had the fewest with 302,824 reads (S1

Table).

To account for the complexity of microorganisms present in the Cuyahoga River and the

limited number of annotated sequences available for many taxa, we used QIIME [24] to define

operational taxonomic units (OTUs) rather than try to identify species. After OTU assign-

ment, we discarded reads amplified from organisms outside of the targeted taxa and analyzed

38.5%-92.6% of the reads for each dataset (S1 Table). Off target amplification for 23S primers

included plants, cyanobacteria and Euglenida. The diatom primers had off target amplification

of non-diatom algae, molds and fungi. Fungal primers mis-amplified a wide variety of organ-

isms including plants, insects, arachnids and fish. To account for variations in numbers of

reads generated for each sample, we randomly subsampled the same number of reads from

each dataset for each sample. We defined 7,450 OTUs of bacteria (16S rRNA primers), 486

OTUs of archaea (16S rRNA primers), 2,069 OTUs of algae (23SrRNA primers), 3,275 OTUs

of diatoms (18S rRNA primers) and 1,065 OTUs of fungi (ITS primers). To remove lowly

informative OTUs, we discarded all OTUs representing less than 1% of the reads across all

samples. We analyzed 106 OTUs for algae (5% of OTUs representing 74% of the reads), 88 for

bacteria (1% of OTUs representing 62% of the reads), 147 for archaea (31% of OTUs repre-

senting 96% of the reads), 82 for diatoms (3% of OTUs representing 77% of the reads) and 267

for fungi (25% of OTUs representing 92% of the reads).

For the bacteria, the top ten OTUs (by total number of reads, Table 1) were all from the

Betaproteobacteria class, and primarily of the Burkholderiales order, though the most numer-

ous OTU was of the order Rhodocyclales. The families represented included Rhodocyclaceae,
Comamonadaceae and Oxalobacteraceae. Comparing the 88 OTUs in the dataset (by t-test
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with a Bonferroni correction), 84 (95%) had different relative abundance between at least two

sample groups (p< 0.05, S2 Table).

For archaea, the top ten OTUs (Table 1) included the classesMethanomicrobia, MCG,

Thaumarchaeota and Thermoplasmata within which are the ordersMethanobacteriales ,
Methanomicrobiales, pGrfC26, E2,Methanosarcinales, Nitrososphaerales and Cenarchaeales.
The families in the dataset includedMethanobacteriaceae, Methanospirillaceae, DHVEG-1,

ANME-2D,Nitrososphaeraceae and Cenarchaeaceae. Out of the top ten OTUs, eight had differ-

ent abundance between at least two sample groups, and 41 of a total of 147 OTUs (27.9%)

were different between at least two sample groups (p < 0.05, S3 Table).

For algae, diatoms and fungi datasets, that are less completely represented in the database,

each OTU was named according to the taxon of the most similar sequence (> = 80% identity),

providing an estimation of what the OTU may be. For the algae dataset, the classes Crypto-
phyta, Coscinodiscophyceae and Bacillariophyceae made up the top ten OTUs (Table 1). These

included the orders Cryptomonadales, Pyrenomonadales, Naviculales andMelosirales and the

families Thalassiosiraceae, Chroomonadaceae, Naviculaceae andMelosiraceae. For algae, nine

of the top ten OTUs differed in relative abundance between at least two sample groups, and 89

of the 106 OTUs (84.0%) tested were different between at least two sample groups (p< 0.05,

S4 Table).

For the diatom dataset, the classes Chrysophyceae and Fragilariophyceae made up the top

ten OTUs (Table 1). The orders Chromulinales and Fragilariales as well as the families Para-
physomonadaceae, Chromulinaceae and Fragilariaceae. Of the top ten OTUs, six differed in rel-

ative abundance between at least two sample groups and when considering all 82 OTUs, 42

(51.2%) were different between at least two sample groups (p< 0.05, S5 Table).

For the fungal dataset, the classes Tremellomycetes, Dothideomycetes and Sordariomycetes
made up the top ten OTUs (Table 1). These OTUs included the orders Calosphaeriales, Capno-
diales, Pleosporales and Tremellales as well as the familiesMycosphaerellaceae, Didymellaceae
and Calosphaeriaceae. For the fungal dataset, eight of the top ten OTUs differed in relative

abundance between at least two sample groups and 24 of 267 total OTUs (9.0%) differed

(p< 0.05, S6 Table).

We used principal component analysis (PCA) to determine the relationships among the

microflora of the samples from four groups (upper Cuyahoga before the rain, upper Cuyahoga

after the rain, middle Cuyahoga before the rain and lower Cuyahoga after the rain) and test if

some taxa effectively differentiated the groups. Our k-means clustering based analysis outlined

in the methods helped estimate how well each PCA analysis discriminated between the por-

tions of the river using the first three principal components. Each dataset had samples assigned

to exclusive groups with varying accuracy, with the bacterial and algae datasets demonstrating

100% accuracy (p< 0.001) (Fig 1). The other three datasets were 32.4% (fungus, p = 0.27),

50.7% (archaea, p< 0.001) and 85.9% (diatom p< 0.001) accurate in clustering the actual

groups.

The principal component analysis revealed that for each dataset the principal components

explain different factors describing the samples. For instance, in the algal dataset, PC1, which

explains the most variance within a dataset, separated the sample groups collected before the

rain from the two groups collected after the rain (p = 4.5x10-7–4.2x10-14). In this dataset, the

second and third PCs further separated the samples according to their group (Fig 1) resulting

in discrete clusters. Indeed, k-means clustering of these samples using the first three principal

components yielded a 100% assignment accuracy. For the other datasets, PC1 did not divide

the sample groups from before and after the rain. This shows how the sample groups cluster in

unique ways for each dataset, indicating that each taxon responds differently to the environ-

ments along the river. Another example is the fungal dataset, where none of the three first
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principal components divide the sample groups from before and after the rainfall (p> = 0.12).

This contrasts with the other datasets where the upper sample groups from before or after the

rain were separated by at least one principal component. PC2 from the fungal dataset sepa-

rated the two sample groups from the upper Cuyahoga from the lower and middle portions

(p = 2.3x10-3–5.5x10-5) showing that the fungal composition of the samples did change along

the river (S1 Fig). Note that despite differences from the algal dataset, the three first PCs of the

bacterial dataset are sufficient to correctly assign all samples to their groups (100% accuracy).

On the other hand, for the fungus, archaea, and diatom the OTUs abundance information is

not entirely sufficient as they only allow assignment with 32.4%, 50.7% and 85.9% accuracy,

respectively.

Since different numbers of reads were used for each dataset, we tested whether the differ-

ences in assignment accuracy between datasets was caused by the amount of information

Fig 1. Algae and bacterial PCA analyses. PCA analysis of algal and bacterial datasets reveal that the four sample groups produce distinct sample

groups. PC1 vs PC2 and PC2 vs PC3 are presented for both datasets.

https://doi.org/10.1371/journal.pone.0186290.g001
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generated or genuine differences in discriminating power of different taxa. We therefore ran-

domly subsampled 350 reads from each dataset per sample within the analysis with QIIME

and recalculated the principal components. We then estimated how well each dataset differen-

tiated between sample groups using the k-means clustering analysis described in the methods.

We confirmed our primary analyses and found that algae dataset separated the groups the

most effectively (accuracy of 100%) (Fig 2). The other taxa separate the groups less efficiently

(bacteria: 75% (p< 0.001), diatom: 54.4% (p< 0.001), archaea: 33.3% (p = 0.13) and fungus:

37.3% (p = 0.15)) (Fig 2).

We then analyzed OTUs from the different datasets together by combining all OTUs and

performing PCA. The PCA separated the groups very well, with 100% accuracy (p< 0.001)

(Fig 3).

In this PCA including all taxa, PC1 primarily separated samples collected after the precipi-

tation event in the upper Cuyahoga from other sample groups (Fig 3, p = 2.4x10-3–6.8x10-07).

Consistent with the results of the individuals PCAs, the taxa that influenced PC1 were primar-

ily bacteria, algae and diatoms, while fungi and archaea had less influence (S7 Table). Taxa

enriched after the precipitation event include bacteria from the family Comamonadaceae and

chrysophytes from Chromulinaceae such as Uroglena sp. In contrast, chrysophytes from the

order Chromulinales most closely related to Spumella species and other bacterial OTUs of the

Comamonadaceae family were enriched before the rain.

Fig 2. PCA analysis on evenly subsampled datasets. To compare how well each dataset distinguished sample groups, we subsampled each to the same

number of reads per sample and performed PCA. The algae dataset was best able to separate the sample groups as shown by the k-means clustering

analysis accuracy of 100% compared to the other datasets which had lower accuracies.

https://doi.org/10.1371/journal.pone.0186290.g002
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In the all-taxa PCA, PC2 primarily separated samples based on their geographic location

(Fig 3, p< 2x10-16). Taxa that were more abundant in upper part of the river independent of

the precipitation event included a mixture of chrysophytes, fungi, archaea, bacteria, and algae

(S7 Table). Taxa that best represented upper portion includedMicrobacteriaceae such as Clavi-
bacter and Candidatus, and eukaryotes such as Cryptomonas, Spumella, and Chroomonas. Taxa

representative of lower reaches primarily included bacteria from Burkholderiales and Rhodocy-
clales, but also diatoms with sequences similar to Thalassiosira pseudonana.

PC3 primarily separated sites collected before the rain vs. those collected after the rain. Bac-

terial taxa from Comamonadaceae and the chrysophyte Paraphysomonas butcheri were repre-

sentative of sites before the precipitation event. Other bacterial taxa from Rhodocyclaceae and

Comamonadaceae as well as eukaryotes such as Uroglena and Cryptomonas were the primary

taxa associated with sites collected after the rain.

We also used this combined analysis to identify correlated OTUs from different taxa. For

instance, we found that for PC2, one bacterial OTU of the Rhodocyclaceae family correlated

Fig 3. Combined OTU PCA analysis. PCA analysis of OTUs from each dataset combined. OTUs from each

dataset were combined into a single dataset to allow comparison of taxa between datasets. PC1 vs PC2 and

PC2 vs PC3 are presented.

https://doi.org/10.1371/journal.pone.0186290.g003
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with an OTU most similar (95.5% sequence identity) to Cryptomonas ovata amplified by the

23S rRNA algae primers, suggesting that similar factors may influence these taxa (S7 Table).

However, both OTUs were anticorrelated with a fungal OTU most similar (80.4% sequence

identity) to Pseudoteratosphaeria ohnowa, indicating that different samples contain these spe-

cies (S7 Table).

We also wanted to see if the principal components from distinct datasets tended to organize

samples similarly. To do this, we combined the principal component values of the first three

principal components from each sample in each dataset. We then performed principal compo-

nent analysis on these values. We found that PC1 separated the samples similarly for the bacte-

rial, algal, archaeal and diatom datasets (Fig 4). PC1 from the fungal dataset separated the

samples in a distinct pattern as demonstrated by its separation from the other PC1 dataset values.

PC2-3 did not form clusters like PC1 indicating that each dataset responded uniquely (Fig 4).

Discussion

Using data from the SRA database, we evaluated how well amplicon sequencing of diverse tax-

onomic groups can differentiate between portions of the Cuyahoga River. The sequences rep-

resent one full MiSeq run (bacterial dataset) and a portion of a second MiSeq run (all other

datasets). This led to considerable differences in the number of reads included in each dataset

and the number of OTUs represented. Despite each dataset being subsampled to a low number

of reads (aside from bacteria) during the analysis, we were still able to describe considerable

diversity between samples taken along the Cuyahoga River.

We wanted to examine two primary questions using these data. We wanted to see if each

sample group had distinct microbial communities. We also wanted to compare the datasets

using equal read counts to see which taxa was most sensitive to varying river conditions.

Our principal component analysis showed the microbial diversity between portions of the

river very well. For most datasets, the four groups of samples formed distinct groupings.

Fig 4. PCA on PC1-3 from each dataset. Principal component analysis on PC1-3 from each dataset. This

analysis determined which principal components organize samples from different datasets similarly. The plot

shows that PC1 from the algae, bacteria, archaea and diatom datasets are similar and distinct from PC1 in the

fungal dataset. PC2 and 3 are similar across all datasets as demonstrated by similar values for PC1, which in

this analysis explains 63.8% of the total variance.

https://doi.org/10.1371/journal.pone.0186290.g004
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Differences in patterns between datasets, however, highlight the utility of using multiple taxa

to evaluate environmental water samples. Each assayed taxonomic group responded to the

conditions along the river in distinct ways as evidenced by the different PCA clustering pat-

terns. For instance, algae seemed to be very heavily influenced by rainfall as the before samples

and after samples clustered together along PC1 (Fig 1). Factors unquantified in this study such

as water temperature or weather patterns may have influenced microbial diversity between the

two sampling time points. Further study is required to confirm the effect of rain on microbial

composition of a river though our data suggest that any study investigating aquatic microbial

diversity should consider rainfall as a potential influencing factor. Bacteria seemed less affected

as the sample groups collected before the rain did not separate from the samples taken after

the rain for the first principal component. This suggests that the river algal community

changes more after rainfall than the bacterial community does. This could be due to factors

such as sensitivity to pH or salinity or even a change in the rate of influx of taxa from nearby

terrestrial sources. Our data highlight how investigation of multiple taxonomic groups can

reveal differences in response to environmental factors and that taxa outside of bacteria can

provide important insight into the interplay between water conditions and microbial commu-

nities. For instance, our PCA analysis performed on the PC values for each dataset shows that

all datasets except the fungal are most influenced by similar factors as demonstrated by the

clustering of the individual PC1 values (Fig 4). For a study collecting data on specific abiotic or

chemical concentrations across sampling locations, the differences in microbial diversity along

the river could inform studies on the biological impact of these factors.

The datasets analyzed initially had very different quantities of data. If we wish to determine

which taxonomic groups were most influenced by the conditions along the Cuyahoga River,

we need to equalize the data to avoid bias introduced by differences in the total amount of

data. By subsampling each dataset to the same number of reads per sample, we therefore can

make direct comparisons between them. This analysis highlights how well the algal dataset per-

forms compared to bacteria. Bacteria segregated the sample groups with only a 75% accuracy

(Fig 2) compared to 100% accurate group assignments for algae. It is very important, however,

to point out that the comparisons between datasets are comparing the primer sets used to

amplify the samples (which likely only amplify a portion of all species within the target taxa) as

much as the individual taxonomic groups. Based on these data using only a single primer pair

per taxonomic group we cannot conclusively state that, for instance, fungal communities are

less dynamic in response to environmental conditions than algae. We can only state that the

taxa amplifiable by our primers change less between sample groups. Primers capturing infor-

mation on a different and/or broader group of fungal species may have produced a very differ-

ent result.

Our analysis of the all OTUs from each dataset together provides an interesting perspective

on the overall dataset. This analysis allows us to easily observe which taxa between datasets are

either correlated or anticorrelated. These correlations could indicate that the species interact

in some way, that they thrive best in similar environments, or that they are entering the envi-

ronment from the same external source. Therefore, these data point towards interesting ave-

nues for future research. For instance, the bacterial OTU of the Rhodocyclaceae family and C39
genus and the algal OTU most closely matching Cryptomonas ovata were both highly abun-

dant in the upper Cuyahoga River after the rain and essentially absent before, suggesting that

these OTUs may have washed into the river and may not normally inhabit those sampling

sites. The OTU most closely matching Pseudoteratosphaeria ohnowa is present at high abun-

dance in the lower Cuyahoga after the rain, but essentially absent everywhere else, suggesting

that it is either introduced in the lower Cuyahoga, or, the other portions of the river are not

suitable habitat for this species.
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The identification of specific OTUs that differ between portions of the river can inform

environmental studies. For instance, a study using multiple taxa to evaluate water samples

could investigate the correlation between biotic and abiotic factors (temperature, nitrates, pH,

dissolved O2, etc) to find what contributes most to microbial differences. Alternatively, such

data could reveal how changes in concentration of abiotic factors in an ecosystem are likely to

influence the base of the food chain. This could also help identify which conditions influence

biodiversity across different types of environments.

A microbial signature based on DNA from organisms found in the water for locations known

to harbor an endangered species could aid in evaluation of the suitability of other habitats for

relocation. This could also help locate sites harboring previously undescribed populations.

Overall, this study supports the investigation of water condition and environmental differ-

ences using amplicon sequencing targeting many different taxa that respond uniquely to envi-

ronmental factors. Comparing head to head, the data generated with our 23S rRNA algae

primers were the most distinct between sample groups, but the data from the bacterial 16S

rRNA primers separated the groups with reasonable accuracy. The other primer sets amplify-

ing diatoms, fungi and archaea also produced quality data, but those taxa did not seem to

change compositions as dramatically between sample groups. Future studies will be necessary

to determine if this is a consistent result or if it is specific to the taxa amplifiable by our prim-

ers. Data such as these combined with measures of abiotic conditions or specific chemicals

would provide insight into which taxa are most sensitive to specific aquatic conditions and

demonstrate which conditions or chemicals most dramatically alter the environment.
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