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Abstract: A key challenge in melanoma diagnosis is the large number of unnecessary biopsies
on benign nevi, which requires significant amounts of time and money. To reduce unnecessary
biopsies while still accurately detecting melanoma lesions, we propose using Raman spectroscopy as
a non-invasive, fast, and inexpensive method for generating a “second opinion” for lesions being
considered for biopsy. We collected in vivo Raman spectral data in the clinical skin screening setting
from 52 patients, including 53 pigmented lesions and 7 melanomas. All lesions underwent biopsies
based on clinical evaluation. Principal component analysis and logistic regression models with leave
one lesion out cross validation were applied to classify melanoma and pigmented lesions for biopsy
recommendations. Our model achieved an area under the receiver operating characteristic (ROC)
curve (AUROC) of 0.903 and a specificity of 58.5% at perfect sensitivity. The number needed to treat
for melanoma could have been decreased from 8.6 (60/7) to 4.1 (29/7). This study in a clinical skin
screening setting shows the potential of Raman spectroscopy for reducing unnecessary skin biopsies
with in vivo Raman data and is a significant step toward the application of Raman spectroscopy for
melanoma screening in the clinic.
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1. Introduction

Skin cancer is the most commonly diagnosed cancer in the United States [1]. For melanoma,
which accounts for the vast majority of skin cancer deaths, there are an estimated 100,350 new cases
and 6850 deaths in the US for 2020 [1]. Early detection is a key strategy to saving these lives.

The current gold standard for melanoma detection is as follows [2]. During skin screening,
experienced dermatologists assess a concerning skin lesion visually and determine whether to conduct
a skin biopsy, which involves surgical excision of the skin lesion. Then, the excised lesion is sent to a
histopathology lab for analysis, and it may take up to two weeks to get the final diagnosis result for the
biopsied lesion [3]. This process is invasive, time-consuming, and costly.

Most biopsied lesions turn out to be benign pigmented lesions that did not need to be removed.
The number needed to treat (NNT), or the number needed to biopsy (NNB), a metric for evaluating
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the number of unnecessary biopsies, is calculated by dividing the total number of biopsied lesions by
the number of histologically proven melanomas. Prior studies report a NNT of 6.0–30 for melanoma
in different skin screening settings [4–9], which means 83.3–96.7% of biopsies are unnecessary.
These unnecessary skin biopsies create significant time burden and financial burden for both patients
and the healthcare system. Therefore, a method is urgently needed to reduce the number of unnecessary
biopsies while not missing any additional melanomas. Especially, novel tools are needed to help
dermatologists distinguish pigmented lesions from melanoma because melanomas are uncommonly
diagnosed from nonpigmented lesions [5].

Raman spectroscopy (Raman) is a non-invasive, fast, and inexpensive technology that has
promise for skin cancer detection [4,10–28]. Three prior studies are particularly relevant to the current
investigation. First, Lui et al. reported that they could separate malignant melanoma (n = 44) from
biopsied nonmelanoma pigmented skin lesions (n = 81) with an area under the receiver operating
characteristic curve (AUROC) of 0.833 (95% CI, 0.761–0.906) based on leave one out cross validation of
in vivo Raman spectra collected in a high risk screening clinic [22]. Similarly, our group’s prior trial
conducted in a high risk screening clinic showed that in vivo Raman spectra enabled classification
of melanoma versus pigmented lesions with sensitivity and specificity of both 100% for a data set
of 12 melanoma versus 17 pigmented lesions [23,25–27]. Thus, both Lui et al. and our prior trial
demonstrated that in vivo Raman could reduce unnecessary biopsies for melanoma diagnosis in
high risk screening clinics. However, a limitation of these prior studies is that the NNT in a typical
skin screening setting (6.0–30 [4–9]) is usually much larger than the NNT in a high risk screening
clinic (2.4–2.8 [22,23]). Third, Santos et al. conducted an ex vivo study of 174 freshly excised
melanocytic lesions in a typical skin screening setting and showed that Raman could have improved
clinical diagnosis of early-stage cutaneous melanoma from NNT of 6.0–2.7 while maintaining 100%
sensitivity [4]. A constraint of the work of Santos et al. is that it relied on Raman of ex vivo samples
rather than in vivo samples.

To assess the potential of Raman to decrease the NNT for in vivo melanoma diagnosis in a skin
screening setting, we collected Raman spectral data from 52 patients with lesions that the physician
was concerned may be melanoma [2]. During clinical skin screening, we acquired measurements
on all lesions that were about to be biopsied. Conducting this work in vivo in a skin screening
setting is important because we aim to use Raman spectroscopy and our data analysis models to
provide a “second opinion” for lesions that dermatologists are considering for biopsy during skin
screening. Our goal is to reduce the number of unnecessary biopsies (improve specificity and true
negative rate) while identifying melanoma lesions accurately (high sensitivity, true positive rate)
during melanoma screening.

2. Results

Figure 1a shows that the AUROC for classifying melanoma vs. pigmented lesions is 0.903. If our
recommendations based on Raman spectroscopy had been enacted, approximately 58.5% of the biopsies
on pigmented lesions could have been avoided while accurately detecting all melanoma lesions in the
data set (sensitivity of 100%). The blue shaded area shows the 95% confidence interval for the ROC,
which is wide because there are only seven melanoma lesions in our dataset.

To address the concern that the promising ROC curve could be due to chance given the limited
sample size, randomization tests were conducted by assigning seven lesions randomly out of 60 total
lesions to the “melanoma” category. Figure 1b shows that the random chance for the AUROC to be
greater than 0.9 is very small (1%), which suggests that the observed high AUROC for our data set is
mostly likely due to real differences between melanoma and pigmented lesions.

Principal Component (PC) 2, 7, 8, 9, 10, and 11 were used to create the logistic regression classifier
to generate the AUROC of 0.903. The first PC, which captures the most variance of original dataset,
was not valuable for our classification task. The combination of PCs that generated the highest AUROC
is reported here to demonstrate the promise of using Raman data for this classification task of melanoma
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versus pigmented lesions. Likewise, for the randomization tests, the highest AUROC was reported
among all possible combination of PCs to ensure fair comparison.Molecules 2020, 25, x FOR PEER REVIEW 3 of 9 
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Figure 1. (a) Receiver operating characteristic (ROC) curve for classifying melanoma vs. pigmented
lesions. The area under the ROC curve (AUROC) of 0.903 means high accuracy in distinguishing
melanoma from pigmented lesions. The blue shade shows the 95% confidence interval for the ROC.
(b) The histogram of AUROC from 99 randomization tests, where 7 out of 60 lesions were randomly
assigned to the “melanoma” group. There is only a small chance (1%) that the observed AUROC is
greater than 0.9 for the randomization tests, which suggests that the high AUROC is mostly likely due
to real differences between melanoma and pigmented lesions.

Table 1 shows the prediction accuracy summary. In principle, our model could have eliminated the
need for 58.5% of biopsies while still detecting all of the melanomas that the dermatologists detected.
The NNT for melanoma could have been decreased from 8.6 (60/7) to 4.1 (29/7) if dermatologists
followed the “second opinion” biopsy recommendation from Raman spectroscopy based model.
Our results demonstrate the promise of using in vivo Raman for classifying melanoma and pigmented
lesions to reduce unnecessary biopsies in a typical skin cancer screening setting.

Table 1. Prediction accuracy summary.

Lesion Type Lesions Correct Predictions (%) False Predictions Potential Biopsies

Pigmented Lesions 53 31 (58.5%) 22 22
Melanoma 7 7 (100%) 0 7

Total 60 38 22 29

3. Discussion

Understanding the biological alterations that lead to different Raman spectra is important, and we
have recently published a detailed report of the underlying biophysical basis of Raman spectra in skin
tumors [26]. We found that at least eight primary tissue constituents can independently contribute
to the measured Raman spectrum and include a combination of lipids (triolein and ceramide),
proteins (collagen, keratin, elastin, and melanin), nucleic acids (DNA), and water [25]. The primary
discriminating biophysical differences between pigmented lesions and melanoma result from proteins
(collagen) and lipids (triolein). While it is difficult to interpret the contributions of these various
constituents in a single spectrum, one can appreciate the reduction in the CH2/CH3 bands associated
with lipids and the shift in the Amide III bands associated with proteins, as shown in Figure S1. Due to
the complexity in determining the biophysical contributions to the overall spectrum, statistical methods
are widely used for spectral diagnosis and we have chosen to use PCA in this case.
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In our study, PCA was used because it is adept at the dimensional reduction of spectral data and
can be used to calculate uncorrelated PCs to represent the original spectral data. A limited number
of highest varying PCs could be used to create classifiers. Alternative methods could be potentially
applicable for classification using high dimensional data, such as the network-based regularization
method for the logistic model [29]. We did not report the one-step regularized logistic regression
method because different large ranges of wavenumbers were helpful for our classification problem
and it was challenging to select a limited number of wavenumbers to overcome the overfitting concern
while achieving adequate classification results.

Even if multiple measurements were taken on each lesion, those measurements should be
considered independently because of the biological variation in each lesion. Measuring a single point
on a lesion runs a high risk of missing cancer. Therefore, we used all measurements of each lesion when
applying PCA on the dataset. In other words, one-point measurement on a cancerous lesion might
turn out to be normal and multiple measurements are helpful to capture all the cancers. The number
of measurements should depend on the size of the lesion since the measurements should cover the
majority of the lesion area. It is possible that lesions with more measurements might contribute more
than the lesions with less measurements to our PCA results, but this is not a concerning issue because
our cross-validation classification results provided high accuracy, which is significantly higher than
randomization tests with the same model training process.

Our study was limited by the small size of our dataset. It is unlikely that a sample of 60 lesions,
including only seven melanoma lesions, fully encompassed the true biological diversity of human skin.
Moreover, due to the small sample size, “leave-one-lesion-out” cross-validation was used for model
development and assessment, which is less conclusive than a design employing independent training,
validation, and testing sets. Additionally, we reported the single combination of PCs that yielded the
numerically highest AUROC, but several alternate models would provide statistically indistinguishable
classification performance given the sample size. However, additional analyses were undertaken to
mitigate these limitations arising from the sample size. Especially, we conducted randomization tests
in which the same analysis pipeline was performed but with seven lesions randomly assigned to the
“melanoma” category. This randomization analysis achieved mostly low AUROCs, demonstrating that
the observed high AUROC for our data set is most likely due to real differences between melanoma and
pigmented lesions. Of course, a future study with large independent training, validation, and testing
datasets of in vivo Raman obtained in a typical skin cancer screening setting would be important to
further validate the use of Raman for reducing unnecessary biopsies for melanoma diagnosis.

Although our results demonstrate the feasibility of reducing unnecessary biopsies using our
in vivo Raman-based tool in a typical skin cancer screening setting, we have not asked dermatologists
to hypothesize about whether they would have changed their decision to biopsy if our results suggested
that a biopsy was not needed. Research in other areas of medical imaging demonstrates that computer
aided detection or diagnosis recommendations do not necessarily change a physician’s actions [30].
Therefore, future studies are needed on the acceptability of our tool in dermatological practice.

4. Materials and Methods

4.1. Optical Instrument System and Dataset

The clinical optical spectroscopy system has been previously described [2,31,32]. Briefly, light is
emitted to and collected from the skin via a custom-designed handheld fiber probe that performs Raman
measurements. The light source for Raman excitation is an 830 nm diode laser (Ondax, Monrovia,
CA, USA). The collected light travels to a custom configured Raman spectrometer with a full width at
half maximum (FWHM) of 19 cm−1 (Stroker model from Wasatch Photonics, Morrisville, NC, USA),
and LabVIEW (NI, Austin, TX, USA, 2015) is used for all components control and data acquisition.
Figure 2 shows the optical instrument system and the probe.



Molecules 2020, 25, 2852 5 of 9

Molecules 2020, 25, x FOR PEER REVIEW 5 of 9 

 

Morrisville, NC, USA), and LabVIEW (NI, Austin, TX, USA, 2015) is used for all components control 
and data acquisition. Figure 2 shows the optical instrument system and the probe. 

 
Figure 2. (a) Optical instrument system for clinical data acquisition in the clinic examination room. 
(b) The handheld fiber probe enables acquisition of Raman spectral data. 

Clinical spectra were collected at the Seton Healthcare Family dermatology clinic in accordance 
with a human subjects research protocol approved by the Institutional Review Board at The 
University of Texas at Austin. All participants received informed consent prior to participation in 
this study. Before each data acquisition, the handheld fiber probe was disinfected and cleaned with 
sterile alcohol pads to ensure patient safety. Raman integration time was 2 seconds, and the 
detection depth of measurement was less than 1 mm and depends on the tissue optical properties. 

Table 2 provides a summary of the clinical data used in this manuscript. Between 23 March 2016 
and 29 July 2017, spectra were acquired from 52 volunteer participants on 60 lesions that a 
dermatologist was concerned may be melanoma. A minimum of two spectral measurements was 
collected on each lesion, and larger lesions had additional measurements depending on the size of 
the lesion to ensure adequate sampling of the lesion surface area. In total, 158 measurements were 
acquired on 53 pigmented lesions and 27 measurements were acquired on 7 melanoma lesions. 
Hence, there were 53 unneeded biopsies of pigmented lesions in this clinical dataset, and the NNT 
for melanoma was 8.6 (60/7). A more detailed clinical data summary is provided in Table S1. Note 
that even pathologists debate the differences in different types of nevi and there are no accurate 
“gold standard” as ground truth other than pathology examination, so we focused on the difference 
between pigmented lesions and melanoma here. A summary of lesion information evaluated by 
Raman is also provided in Table S2. 

Table 2. Clinical data summary. 

Lesion Type Patients Lesions Measurements 

Pigmented lesions 51 53 158 
Melanoma 6 7 27 

4.2. Data Analysis Pipeline 

Raw Raman spectra pre-processing was described in previous studies [2,23,27]. Briefly, the raw 
Raman spectra underwent wavenumber calibration, dark noise background removal, cosmic ray 
removal, smoothing, and a fifth-order polynomial fitting [33] to remove tissue fluorescence 
background. Spectral intensity response was calibrated using a LS-1-CAL calibrated tungsten 
halogen lamp (Ocean Optics, Dunedin, FL, USA). The effective spectral range was 800–1790 cm−1. 
Data were normalized by scaling the area under the curve to equal one [22]. Figure S1 shows 
representative Raman spectra of melanoma and pigmented lesions. 

Figure 3 shows the data analysis pipeline, which was conducted in MATLAB (R2019b, 
MathWorks, Natick, MA, USA). We used principal component analysis (PCA) and built logistic 
regression classifiers with leave one lesion out cross validation, and receiver operating characteristic 

Figure 2. (a) Optical instrument system for clinical data acquisition in the clinic examination room.
(b) The handheld fiber probe enables acquisition of Raman spectral data.

Clinical spectra were collected at the Seton Healthcare Family dermatology clinic in accordance
with a human subjects research protocol approved by the Institutional Review Board at The University
of Texas at Austin. All participants received informed consent prior to participation in this study.
Before each data acquisition, the handheld fiber probe was disinfected and cleaned with sterile alcohol
pads to ensure patient safety. Raman integration time was 2 seconds, and the detection depth of
measurement was less than 1 mm and depends on the tissue optical properties.

Table 2 provides a summary of the clinical data used in this manuscript. Between 23 March
2016 and 29 July 2017, spectra were acquired from 52 volunteer participants on 60 lesions that a
dermatologist was concerned may be melanoma. A minimum of two spectral measurements was
collected on each lesion, and larger lesions had additional measurements depending on the size
of the lesion to ensure adequate sampling of the lesion surface area. In total, 158 measurements
were acquired on 53 pigmented lesions and 27 measurements were acquired on 7 melanoma lesions.
Hence, there were 53 unneeded biopsies of pigmented lesions in this clinical dataset, and the NNT for
melanoma was 8.6 (60/7). A more detailed clinical data summary is provided in Table S1. Note that
even pathologists debate the differences in different types of nevi and there are no accurate “gold
standard” as ground truth other than pathology examination, so we focused on the difference between
pigmented lesions and melanoma here. A summary of lesion information evaluated by Raman is also
provided in Table S2.

Table 2. Clinical data summary.

Lesion Type Patients Lesions Measurements

Pigmented lesions 51 53 158
Melanoma 6 7 27

4.2. Data Analysis Pipeline

Raw Raman spectra pre-processing was described in previous studies [2,23,27]. Briefly, the raw
Raman spectra underwent wavenumber calibration, dark noise background removal, cosmic ray
removal, smoothing, and a fifth-order polynomial fitting [33] to remove tissue fluorescence background.
Spectral intensity response was calibrated using a LS-1-CAL calibrated tungsten halogen lamp (Ocean
Optics, Dunedin, FL, USA). The effective spectral range was 800–1790 cm−1. Data were normalized by
scaling the area under the curve to equal one [22]. Figure S1 shows representative Raman spectra of
melanoma and pigmented lesions.

Figure 3 shows the data analysis pipeline, which was conducted in MATLAB (R2019b, MathWorks,
Natick, MA, USA). We used principal component analysis (PCA) and built logistic regression classifiers
with leave one lesion out cross validation, and receiver operating characteristic (ROC) curves were
used for accuracy evaluation. Normalized Raman data were used as inputs for PCA. PCA was used
because there were 1980 wavenumbers between 800 and 1790 cm−1 for our Raman data and adjacent
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wavenumbers were correlated. PCA is able to reduce the dimensionality dramatically by providing the
principal components (PCs), which capture the most variance of the original data. Logistic regression
models are appropriate for binary classification tasks. Leave one lesion out cross validation was used
to validate the performance of the PCA and logistic regression models by leaving one lesion out each
time to train the models. PCA was applied to the training dataset, and the same transformation
using the calculated coefficients (PCA rotation object) from the training dataset was applied to the test
dataset. A subset of PCs was used as input features for logistic regression models and the probability
for each left out biopsy was calculated in the whole cross validation process. ROC curves were then
calculated based on the posterior probabilities of all lesions and used to evaluate the performance of
classification. The ROC curve with confidence intervals was plotted in R (Version 1.2.5033, RStudio,
Boston, MA, USA).
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Figure 3. Data analysis pipeline. Principal component analysis (PCA) and logistic regression model
with leave one lesion out cross validation are applied to classify melanoma and pigmented lesions
based on normalized Raman spectral data. AUROC shows the classification accuracy.

To produce the subsets of PCs compared in this study, all possible combinations of PCs were
generated from the first 15 PCs while limiting the number of PCs to 6. The scree plot was referred to in
order to determine the number of potentially selected PCs. The most significant 15 PCs accounted for
the majority (90.22%) of the variance in original data while the PC 15 explains 0.4361% of the variance.
The “one in ten” rule informed our choice of the number of features to consider [34]. Briefly, in order
to have at least 10 data points for each model parameter, we limited the number of PCs in the model to
10% of the total number of lesions (60), i.e., 6 PCs. The subset of PCs that yielded the highest AUROC
was reported here. We acknowledge that several subsets of PCs yielded similar AUROCs that are not
statistically significantly different from the highest AUROC.
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The ROC curves were calculated by treating each lesion as an experimental observation,
described as per lesion analysis in Lim et al. [23]: only if all spectra measurements from one site are
classified as normal is this site classified as normal; otherwise, this site is classified as cancerous if at
least one spectral measurement is classified as cancerous. The higher area under the ROC curve is,
the more predictable the model is. An AUROC of 1 means perfect classification.

Our classification task is melanoma versus pigmented lesions because melanoma should be
biopsied while pigmented lesions should not be biopsied.

5. Conclusions

To conclude, in vivo Raman spectra collected in a typical skin cancer screening setting were
used for classifying melanoma versus pigmented lesions. Principal component analysis and logistic
regression models with leave one lesion out cross-validation showed the promise of using Raman
measurements for skin cancer screening to reduce unnecessary biopsies on pigmented lesions while
correctly identifying all melanoma lesions. Our model achieved an area under the ROC curve (AUROC)
of 0.903, and 58.5% of biopsies of pigmented lesions could have been avoided while still accurately
recommending biopsy of all the melanomas identified by the dermatologist. The number needed to
treat (NNT) for melanoma could be decreased from 8.6 to 4.1 if dermatologists followed the “second
opinion” from our Raman-based during skin screening. Our work serves an important step of
promoting the application of Raman for melanoma screening in the clinic.

Supplementary Materials: The following are available online. Figure S1: Representative Raman spectra of
melanoma and pigmented lesions, Figure S2: Receiver Operating Characteristic (ROC) curve for classifying
melanoma vs. pigmented lesions with k-fold cross-validation (k = 4, stratified), Table S1: Detailed clinical data
summary, Table S2: Summary of lesion information.
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