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Executive Functions in Aging: An Experimental and 
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ABSTRACT
In order to explore the effect of normal aging on executive function, 
we tested 25 younger adults and 25 neurologically healthy older 
adults on the Wisconsin Card Sorting Test (WCST) and the Brixton 
Spatial Anticipation Test (BRXT), two classic tests of executive function. 
We found that older participants were more likely than younger 
participants to err on both tasks, but the additional errors of older 
participants tended to be related to task set maintenance and rule 
inference rather than perseveration. We further found that the ten-
dency to perseverate (across all participants) on the WCST was related 
to the tendency to produce stimulus or response perseverations on 
the BRXT, rather than any tendency to perseverate on BRXT rule 
application. Finally, on both tasks, older participants were also slower, 
particularly on trials following an error, than younger participants. To 
explore the neurocomputational basis for the observed behaviours we 
then extended an existing model of schema-modulated action selec-
tion on the WCST to the BRXT. We argue on the basis of the model that 
the performance of older participants on both tasks reflects a slower 
update of schema thresholds within the basal ganglia, coupled with a 
decrease in sensitivity to feedback.
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The efficiency of executive functioning – the ability to modulate over-learned behaviors in 
the service of complex tasks and higher-order goals – is known to decline with age. For 
example, Pettigrew & Martin (2014) found that older adults (aged 64 to 87) were more 
susceptible to interference in a range of tasks (such as the Stroop task and a flanker task) 
than young adults (aged 18 to 32), while when comparing participants aged 64–87 with 
younger participants, Treitz, Heyder, & Daum (2007) found specific deficits in the inhibi-
tion of prepotent responses and the ability to divide attention between tasks in the older 
group. Many other studies, including some reviewed below, have found broadly similar 
effects, and some authors have even argued that cognitive performance of executive tasks in 
older populations can be compared to the neuropsychological profile of patients with mild 
frontal damage (Greenwood, 2000).

However, although there is consensus on their specific cognitive vulnerability in aging, it 
is unclear how the pattern of declining efficiency of these function unfolds during normal 
aging (Jurado & Rosselli, 2007). Moreover, while there is clear evidence of neurobiological 
changes with increasing age (decreased prefrontal gray matter volume: Raz et al. 1997); 
decreased concentration of dopamine, acetylcholine, and norepinephrine: Jacques, Ebinger, 
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& Vauquelin 1990), the link between neurobiological changes and declining efficiency of the 
cognitive-level constructs involved in executive functioning is less well developed (but see 
Chao & Knight, 1997; Persson et al., 2006). This paper uses experimental and neurocom-
putational methods to investigate how potential neurobiological changes with age result in 
changes in executive function.

We focus on executive functions underlying performance in two related rule-induction 
tasks – the Wisconsin Card Sorting Test (WCST; Milner, 1963) and the Brixton Spatial 
Anticipation Test (BRXT; Burgess & Shallice, 1996). Both tests involve presenting partici-
pants with multiple stimuli in sequence, and require participants to induce a rule or 
regularity that: a) holds over the stimuli of the sequence; but b) periodically changes. 
Participants must do this using feedback provided after each stimulus. The tests are 
described in more detail below, but for current purposes it is sufficient to note that the 
former is widely used in the clinical assessment of executive function deficits, while the 
latter was designed to mimic certain aspects of the WCST while reducing the susceptibility 
of behavior to perceptually salient stimulus features (specifically, the color, number, and 
shape of a stimulus – the distinguishing features of WCST stimuli).

It is generally accepted that both the WCST and the BRXT tap a variety of executive 
functions, including set switching, and response inhibition, as well as processes involved in 
task-set maintenance and rule induction (e.g., Esther et al., 2009; Miyake et al., 2000; Reverberi, 
Lavaroni, Gigli, Skrap, & Shallice, 2005; Stuss et al., 2000). Moreover, at a broad level, both tasks 
are also known to be sensitive to age (e.g., Bielak, Mansueti, Strauss, & Dixon, 2006; Haaland, 
Vranes, Goodwin, & Garry, 1987), in that in both tasks older participants generally make fewer 
correct responses than younger participants. However, given the similarities and differences 
between the tests, fine grained analysis of participant performance on them offers the prospect 
of shedding light on whether (or how) age affects those processes required in performance of 
both tasks or those involved in performance of one or the other task.

Analyses of behavior on tasks such as the WCST and BRXT can also help to formulate or 
validate cognitive/information processing level theories of task performance, but as argued 
by Marr (1982), implementational level theories (or neurocomputational models, as con-
sidered here) further allow such cognitive-level theories to be linked with the neurobiolo-
gical level. For example, theories that propose that behavior is the product of selection 
between competing schemas (as adopted here) may be further constrained with neurobio-
logical data by supplementing such theories with computational accounts that associate the 
cognitive constructs of schemas and competition resolution with, for example, corticos-
triatal circuits, together with computational accounts of corticostriatal/basal ganglia func-
tion and dysfunction.

In the light of this, the current paper reports a study in which younger and older participants 
completed both the WCST and the BRXT. We find both similarities and differences in the 
behavior of the two participant groups on the tests. We then demonstrate how an existing 
neurobiological model of the modulation of schema-driven behavior can be applied to model 
each task, and consider how effects of aging may be incorporated into the model. More 
specifically, we demonstrate first that the behavior of older participants on each task may be 
simulated by reducing the values of two learning parameters (which we associate with cortical 
and subcortical learning) from the values associated with younger participant behavior, 
and second that within the model different values of the learning parameters can, to 
a certain extent, be compensated for by different levels of executive control.
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Experiment

Introduction

As noted, our interest here is in two specific executive function tasks: the Wisconsin Card 
Sorting Test (WCST) and the Brixton Spatial Anticipation Test (BRXT).

The WCST requires that a participant sort a series of cards according to criteria that a) 
must be inferred from feedback after each trial by the participant, and that b) change 
without warning after a series of correct responses. The test is generally held to measure 
some level of executive functioning and is frequently used to assess executive (dys)function 
in clinical populations such as frontal patients as well as in healthy elderly participants 
(Heaton, 1981). Participants can commit several distinct kinds of error on the task, two of 
which are of particular interest with respect to executive functioning: perseverative errors 
(PE) and set loss errors (SL). These two forms of error are mutually exclusive, in that 
perseverative errors are scored when a participant continues to apply a rule that is defunct, 
while set loss errors are scored when the participant switches rules (despite positive feed-
back suggesting that the rule applied on the previous trial is correct). Consistent with some 
previous research (e.g., the electrophysiological study of Lange et al., 2016), we argue that 
these two error types depend on partially separable cognitive processes, the first of which is 
primarily a function of subcortical processing while the second is primarily cortical in 
nature. This position is also consistent with neuropsychological studies that have found 
different patient groups (as defined by lesion location) to be susceptible to different error 
types (most notably Stuss et al., 2000).

A first necessary (but not sufficient) step to argue in support of this dissociation is to 
show that the error types are independent, at least in some populations. An aging popula-
tion is ideal, because functional decline of cognitive control in the elderly covaries with the 
degree of overlap in task representation (Mayr, 2001), which presumably is high across the 
possible rules involved in the WCST. In this regard, prior research has also found that in 
older populations there is an overall decline of proactive control (Paxton, Barch, Racine, & 
Braver, 2007; Pettigrew & Martin, 2014), defined as the ability to sustain goal-relevant 
information. Within the WCST, proactive control is required to maintain task set (i.e., to 
avoid set loss errors).

Reactive control, that is the ability to mobilize resources once interference or error is 
detected, is instead thought to be spared by aging. In the WCST, reactive control is required 
to avoid perseverative errors. Yet the findings concerning the relation between persevera-
tion and aging are mixed. Heaton (1981) reported that individuals over 60 produce more 
perseverative errors than younger controls. However, Boone, Ghaffarian, Lesser, Hill- 
Gutierrez, & Berman (1993) failed to replicate this effect, reporting that individual older 
than 70 did not, and Haaland et al. (1987) found that increased perseveration appears only 
after the age of 80. A potential reconciliation of these findings has been offered by Rhodes 
(2004), who argued that age-related perseveration is moderated by the number of years of 
education, with more educated participants tending to commit fewer perseverative errors. 
Consistent with this, and with the potential dissociation of perseverative and set loss errors, 
Plumet, Gil, & Gaonac’h (2005) found that women over 70 with fewer than 12 years of 
education committed more perseverative errors than similarly aged participants with more 
education, but set loss errors were higher in older participants irrespective of educational 
level.
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For current purposes, a critical element of the BRXT is that, like the WCST, it affords two 
distinct error types – perseverative errors and non-perseverative errors. In the standard 
version of the BRXT, participants are presented with a series of cards showing 10 disks, with 
the disks arranged in two rows of five columns, and numbered 1 to 10. One disk on each 
card is shaded black. The position of the shaded disk changes from one card to the next, and 
the participant’s task is to predict where s/he suspects the shaded disk will appear on the 
next card, given its location on the previous card(s). The shaded locations follow various 
simple temporal rules (e.g., alternating within a column, or moving left-to-right along the 
upper row and then right-to-left along the lower row, etc.). Burgess & Shallice (1996) 
classify errors on the test (i.e., incorrect predictions) into three types: perseverative errors, 
application of an incorrect rule, and participant responses that “are unconstrained by their 
previous history of performance on the task” (p. 247). Within the category of perseverative 
errors, Burgess & Shallice (1996) further distinguish between perseveration of the previous 
response, perseveration of the previous stimulus, and perseveration of the previously 
applied rule.

As noted, previous studies have shown that age is a predictor of errors on the BRXT. 
Thus, in a large norming study with participants aged 53 to 90, Bielak et al. (2006) found 
a strong positive correlation between total errors on the BRXT and age (r ¼ :34, p< :01), 
but they did not decompose error score into the various error types. The authors also found 
correlations between total error score on the BRXT and performance on other tests of 
executive function. In particular, in addition to the BRXT, their participants completed the 
Hayling sentence completion test (a timed test requiring participants to generate both likely 
and unlikely completions to sentence frames; Burgess & Shallice, 1997) and tests of crystal-
lized and fluid intelligence. BRXT total error score was found to correlate positively with age 
and negatively with education (with both effects being independently significant), but also 
positively with time to complete each part of the Hayling test, and negatively with the 
measure of fluid intelligence. For present purposes, however, and despite its suggestive 
nature, the theoretical import of the Bielak et al. (2006) study is unclear as it does not 
establish whether the increasing tendencies with age and education to err on the BRXT 
reflects an increase in perseverative or non-perseverative errors.

While the BRXT evidence relating to age and specific error types is unclear, the WCST 
evidence suggests that while set loss errors (and attentional failure errors more generally) 
may be a hallmark of aging, perseveration appears to be dependent on other factors that are 
potentially less clearly connected with the underlying neurobiology of the frontal cortex 
alone (such as level of education). This position is also consistent with the possibility that 
perseverative errors arise from an inability or reluctance to use feedback to update task 
representations – an inability that might be dependent on the failure to generate or apply an 
efficient strategy (which might in turn be dependent upon education) rather than one that is 
solely dependent on unspecified frontal dysfunction.

In order to examine whether, and if so how, performance on the WCST and BRXT 
changes with age, we therefore asked 25 younger and 25 older participants to complete 
a computerized version of each task (as described below). We hypothesized that in WCST 
we would observe significantly more set loss errors in the behavior of the older group 
compared to the younger group, but that there would be no significant difference in the 
number of perseverative errors produced by the two groups. With regard to the BRXT, we 
hypothesized an increase in non-perseverative errors in the older group compared to the 
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younger group (meaning that only the total error score would be significantly greater for 
older participants). Furthermore, we hypothesized a positive correlation between perse-
verative errors in the WCST and the BRXT (and specifically perseverative rule application 
errors in the BRXT), on the assumption that both types of error result from suboptimal 
functioning of the same underlying mechanisms.

Method

Participants
Participants consisted of 25 younger adults (9 men and 16 women) and 25 older adults (8 
men and 17 women). The age of younger participants ranged from 19 to 53 years 
(M ¼ 27:1, SD ¼ 9:1). The age of older participants ranged from 62 to 84 years 
(M ¼ 70:8, SD ¼ 6:4). A chi-square test found no relationship between gender and age 
group (χ2 1ð Þ ¼ 0:089, p ¼ :765). Younger participants were recruited mainly through the 
university participant database while older participants were recruited via charities for the 
elderly such as Age UK and the University of the Third Age, in London (UK). All 
participants were required to be free of any neurological or psychiatric diagnosis, although 
these conditions were not formally assessed.

Materials and measures
The Wisconsin Card Sorting Test (WCST). We used a version of the Wisconsin Card 
Sorting Test in which participants were presented with a touch screen tablet computer 
showing four “target” cards arranged from left to right across the upper half of the screen, 
and a “test” card centered in the lower half of the screen. The images on the target cards 
showed, from left to right, one red triangle, two green stars, three yellow crosses, and four 
blue circles. The image on the test card varied in number, color, and shape across trials. 
Participants were instructed that the test card could be matched to one or more target cards 
according to the number, color, or shape of figures on the cards (i.e., they were informed of 
the potential sorting rules), and that their task was to determine the rule being followed by 
the computer by dragging the test card to beneath one of the four target cards, whereupon 
feedback (“Correct” or “Incorrect”) would be given both on screen and auditorily. Once the 
test card was released it remained visible on screen for one second before it disappeared. 
The complete task required participants to sort 64 cards (i.e., all combinations of the four 
numbers, colors, and shapes), with the computer’s sorting rule changing after every run of 
six correct responses.

The version of the WCST administered here thus differed from the standard clinical one 
in two ways. First, explicit instruction on the possible rules was given (as, e.g., in the 64A 
condition of Stuss et al., 2000). Second, each test card was removed from view once it had 
been sorted. The latter was included both to prevent participants from using the position of 
last test card as a mnemonic for the current rule, and to prevent participants who might do 
this from confusing the last test card with one of the earlier test cards and thereby inferring 
the wrong rule from cues present on the screen.

Responses were registered by the tablet in order to compute several performance 
measures, including: the number of categories achieved (CA), the number of total errors 
(TE), the number of perseverative errors (PE), and the number of set loss errors (SL).
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The number of categories achieved (CA) was the number of rules correctly inferred by 
the participant (i.e., the number of times the participant was correct six times in succession). 
With 64 cards, CA could in principal range from 0 to 10. The number of total errors (TE) 
was the total number of times negative feedback was given. The maximum score was 64.

Perseverative errors were calculated as indicated in the manual of Heaton (1981). Thus, 
each response that would have been correct according to the previous sorting rule (or 
“set”) was counted as a PE. Moreover, if a participant selected an incorrect rule consis-
tently and unambiguously on more than three successive trials, then immediate subse-
quent errors were considered to be perseverative. Set loss errors were calculated as in Stuss 
et al. (2000): as errors following three correct and unambiguous responses (hence we refer 
to this as SL3, in contrast to Heaton, 1981, where five correct and unambiguous responses 
are required to establish a set). All errors after a set loss error were not counted as such. 
Perseverative errors and set loss errors are mutually exclusive, as the former occur 
following a change in the target sorting rule, while the latter occur in the absence of 
a change in the target sorting rule, but other errors are also possible, so TE may be more 
than the sum of PE and SL3.

The Brixton Spatial Anticipation Test (BRXT). We also used a touch-screen-based var-
iant of the Brixton Spatial Anticipation Test devised by Burgess & Shallice (1996). In our 
version of the task, participants were presented with a set of nine small disks arranged in 
a circular fashion around a central point. One of the disks was always filled (i.e., it was 
a black). Participants were asked to touch the location on the screen where they believed 
the next filled disk would appear. The filled disk moved after each touch following a series 
of five sequential rules (e.g., move counter-clockwise), with each rule comprising ten 
successive disk locations. We did not disallow selection of locations outside of the nine 
disks, but we carefully instructed participants that targets could only occur in the nine 
disk locations and whenever they tapped outside of those locations text was shown on 
screen reminding participants to tap on one of the nine disks. Responses were registered 
by the device in order to compute correct and incorrect predictions, as well as response 
times.

Our version of the BRXT differed from that of Burgess & Shallice (1996) in the spatial 
arrangement of the small disks – in Burgess & Shallice (1996) 10 disks were arranged in 
a two-by-five rectangle – and in that we recorded response times.

Beyond response times, four measures were calculated from the series of responses. The 
number of Total Errors (TE) was the number of incorrect predictions (including responses 
where the selected location was not one of the nine disks). This could range from 0 to 50. 
Stimulus perseverative errors (PSTIM) were counted whenever a participant selected the 
current disk (which was also the previous target). Response perseverative errors (PRESP) 
were scored whenever a participant selected the disk corresponding to their previous 
response. Note that in some circumstances, a PRESP error could also count as PSTIM error. 
Finally, perseverative rule errors (PRULE) were counted whenever a participant selected the 
response that would have been correct under the previously active rule. Since the participant 
was unaware of when the rule would change, some PRULE errors were inevitable whenever 
the rule changed.
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Procedure
The study took place in an acoustically isolated booth, with each participant tested sepa-
rately. All 50 participants completed both the WCST and the BRXT, with task order 
randomized by participant. In order to minimize distractions, participants were asked to 
switch off their phone, and to try to focus on the task as much as they could. If participants 
normally wore glasses for close vision they were asked to wear them. Participants also were 
asked to avoid overthinking or rushing, and to complete the tasks at their normal pace. 
Participants were further advised that they could withdraw from the study without penalty 
at any point if they so wished.

The procedure was approved by the local ethics committee, and all aspects of the study 
conformed to the Helsinki declaration.

Results

WCST
Table 1 shows descriptive statistics for the two groupsof participants on the WCST. We first 
ran non-parametric tests on each of the performance measures (Total Errors, Perseverative 
Errors, Set Loss Errors) to observe whether and how they were affected by age. We also 
performed correlational analyses between the error types to explore potential associations 
between them. We then analyzed mean response times for trials following positive and 
negative feedback, by performing a log-transformed 2 � 2 ANOVA, with age group as 
a between-subjects factor and feedback as a within-subjects factor. This was primarily to 
examine the interaction between age group and feedback type for response time.

Performance measures. All dependent measures were non-normally distribution, and 
significantly so (Shapiro–Walk test: p< :001 in all cases). Given the relatively small 
sample, the non-normality, and the poor response to data transformation, we proceeded 
with non-parametric tests for the performance variables. In addition to the traditional 
statistics, we calculated the Bayes Factor (BF10) using a Cauchy distribution centered on 
zero and with scale γ ¼ 1ffiffi

2
p as a prior. The value indicates how many times the alternative 

hypothesis is more likely than the point null hypothesis (Wagenmakers et al., 2018). 
Independent two-tailed Mann–Whitney tests were conducted between groups for each 
dependent variable.

Comparing Total Errors in Younger (M ¼ 17, SD ¼ 5:59) and Older (M ¼ 20:9, 
SD ¼ 8:97) participants revealed that the difference was not significant (W ¼ 250:5, 
p ¼ :231, BF10 ¼ 0:51). Comparing Perseverative Errors in Younger (M ¼ 11:3, SD ¼ 4:29) 
and Older (M ¼ 13:3, SD ¼ 6:40) participants also revealed that this difference was not 
significant (W ¼ 291:5, p ¼ :688, BF10 ¼ 0:33). However, Set Loss errors were found to be 

Table 1. Means (and standard deviations) for key dependent measures on the WCST for the two groups of 
participants.

CA PE SL3 TE

Younger 6.2 (SD = 1.9) 11.3 (SD = 4.29) 0.64 (SD = 1.00) 17.0 (SD = 5.59)
Older 4.5 (SD = 2.8) 13.3 (SD = 6.40) 1.48 (SD = 1.56) 20.9 (SD = 8.97)
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significantly less frequent in Younger (M ¼ 0:64; SD ¼ 1:00) participants than in Older 
(M ¼ 1:48, SD ¼ 1:56) participants (W ¼ 202:0, p ¼ :023), albeit with a BF10 only marginally 
higher than 1, BF10 ¼ 1:34 (robust). Similarly (and perhaps as a consequence), the number of 
Categories Achieved by Younger (M ¼ 6:2, SD ¼ 1:9) participants was significantly greater 
than that of Older (M ¼ 4:5, SD ¼ 2:8) participants (W ¼ 411:5, p ¼ :049, BF10 ¼ 1:34).

Consistent with the results of these between-subjects comparisons, the correlation 
between age in years and PE was not significant (r ¼ :167, p ¼ :247, two-tailed), but the 
correlation between Age and SL3 was (r ¼ :349, p ¼ :013, two-tailed). There was also 
a significant correlation between PE and SL3 (r ¼ :462, p< :001, two-tailed), and this 
correlation remained significant when the effects of Age were partialled out (r ¼ :406, 
p ¼ :004, two-tailed).

Response times. Figure 1 shows mean response time as a function of age and feedback on 
the previous trial. A two-way ANOVA on the log-transformed data showed that Older 
participants took significantly longer than Younger participants (F 1; 48ð Þ ¼ 31:43, 
p< :001, η2

p ¼ :396), and that response time was significantly longer on the trial after an 
incorrect response than on the trial after a correct response (F 1; 48ð Þ ¼ 65:13, p< :001, 
η2

p ¼ :150). The interaction between age group and feedback approached significance 
(F 1; 48ð Þ ¼ 3:34, p ¼ :074, η2

p ¼ :008), but Bayesian analysis showed that including the 
interaction term did not bring any substantive improvement to the model 
(ΔBF10 ¼ 0:076).

Figure 1. Response time violin plot as a function of age group in the WCST, on trials following “correct” 
versus “incorrect” feedback. Older participants were in general slower than younger participants, and 
both groups were slower following negative than positive feedback.
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BRXT
Possibly due to a misunderstanding of the instructions, one older participant did not give any 
correct answer in the BRXT, and was therefore excluded from the analysis of the BRXT data. 
The data reported here is therefore from 25 younger participants and 24 older participants. 
Table 2 shows descriptive statistics for the two groups of participants on the BRXT. We ran 
non-parametric tests on each of the performance measures (total errors, perseverative 
response errors, perseverative stimulus errors, perseverative rule errors) to observe whether 
and how age affected them. We also performed correlational analyses between the error types 
to explore potential associations between them. Like the WCST, we then analyzed response 
times by performing a log-transformed 2� 2 ANOVA, with age group as a between-subjects 
factor and feedback type as a within-subjects factor, again primarily to examine the interaction 
between age group and feedback type on response times.

Performance measures. All performance variables analyzed (total errors, perseverative 
response errors, perseverative stimulus errors, perseverative rules errors) were not normally 
distributed, as shown by a Shapiro–Wilk test ðp< :001Þ. Again, given the relatively small 
sample, the non-normality, and the poor response to data transformation, we used non-para-
metric tests to analyze these performance variables. In addition to the traditional statistics, we 

Figure 2. Response time violin plot as a function of age group in the BRXT, on trials following “correct” 
versus “incorrect” feedback. Older participants were in general slower than younger participants, and 
both groups were slower following negative than positive feedback.

Table 2. Means (and standard deviations) for key dependent measures on the BRXT for each group of 
participants.

PRESP PSTIM PRULE TE

Younger 1.36 (SD = 1.04) 0.44 (SD = 0.91) 4.16 (SD = 1.48) 10.44 (SD = 4.74)
Older 1.63 (SD = 1.74) 0.17 (SD = 0.64) 3.79 (SD = 0.78) 13.83 (SD = 7.03)
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Figure 3. Schematic of the basal ganglia. STR D1: Striatum D1 receptors, STN: Subthalamic Nucleus, STR 
D2: Striatum D2 receptors, GPi: Globus pallidus internal segment, GPe: Globus Pallidus external segment, 
THAL: Thalamus, CTX: Cortex, SNpc: Substantia Nigra pars compacta. Standard arrow heads indicate 
excitatory connections. Circular arrow heads indicate inhibitory connections.

Figure 4. Model fit for younger participants, comparing the experimental (Exp) values and the simulated 
(Sim) values for the WCST.
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Figure 5. Model fit for older participants, comparing the experimental (Exp) values and the simulated 
(Sim) values for the WCST.

Figure 6. Schematic of the BRXT model without the basal ganglia arbitration device. For instance, given 
that specific filled-in circle as an input, the þ 1 schema (clockwise) excites the following circle, whereas 
the � 1 schema (counter-clockwise) excites the preceding one.
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again calculated the Bayes Factor (BF10) using a Cauchy distribution centered on 0 and with 
scale γ ¼ 1ffiffi

2
p as a prior.

Independent two-tailed Mann–Whitney tests were conducted. The difference in total 
errors produced by Younger participants (M ¼ 10:44, SD ¼ 4:74) and Older participants 

Figure 7. Model fit for younger participants, comparing the experimental (Exp) values in blue/black and 
the simulated (Sim) values in orange/white, for the BRXT.

Figure 8. Model fit for older participants, comparing the experimental (Exp) values in blue/black and the 
simulated (Sim) values in orange/white, for the BRXT.
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(M ¼ 13:83, SD ¼ 7:03) was significant (W ¼ 202:1, p ¼ :024, BF10 ¼ 1:53 (robust)). 
However, the difference in perseverative response errors in Younger (M ¼ 1:36, 
SD ¼ 1:04) and Older (M ¼ 1:63, SD = 1.74) participants was not significant 
(W ¼ 298:0, p ¼ :487, BF10 ¼ 0:31). Similarly, the number of perseverative stimulus errors 
produced by Younger (M ¼ 0:44, SD ¼ 0:9) and Older (M ¼ 0:17, SD ¼ 0:64) participants 
did not differ (W ¼ 357:5, p ¼ :957, BF01 ¼ 0:49), and neither did the number of perse-
verative rule errors (Younger: M ¼ 4:16, SD ¼ 1:48; Older: M ¼ 3:79, SD ¼ 0:78; 
W ¼ 355:0, p ¼ :895, BF10 ¼ 0:45).

Correlational analysis revealed that while total errors correlated significantly with Age in 
years (r ¼ :297, p ¼ :038), this was not reflected in any of the more specific perseverative 
error measures (Age against PRESP: r ¼ :091, p ¼ :535; Age against PSTIM: r ¼ � :119, 
p ¼ :415; Age against PRULE: r ¼ � :157, p ¼ :283). However, across all participants the 
correlation between PRESP and PSTIM was significant (r ¼ :345, p ¼ :015), while the correla-
tions between PRULE and PRESP (r ¼ � :007, p ¼ :964) and PRULE and PSTIM (r ¼ � :109, 
p ¼ :456) were not.

Figure 9. Model fit for younger (left) and older (right) participants, across the 3-dimensional parameter 
space defined by wneg, ϵstr and ϵsma with mr = 0.0 for the WCST, based on 25 simulated participants at 
each of 113 points in parameter space. The greyscale shows the z-score fit as described in simulation 1, 
with red/white representing fits with a z-score of less than 0.5 and bluer/darker values representingpro-
gressively poorer fits (i.e., z ≥ 0.5).
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Response times. Figure 2 shows the mean response time across trials as a function of age 
group and feedback on the previous trial. A two-way ANOVA on the log-transformed data 
showed that Older participants took significantly longer than Younger participants 
(F 1; 47ð Þ ¼ 22:64, p< :001, η2

p ¼ :325), and that response time was significantly longer 
after an incorrect response than after a correct response (F 1; 47ð Þ ¼ 216:89, p< :001, 
η2

p ¼ :822). The interaction between the effects of age and feedback was not significant 
(F 1; 48ð Þ ¼ 1:12, p ¼ :294), and Bayesian analysis showed that including the interaction 
term did not bring any substantive improvement to the model (ΔBF10 ¼ � 0:055).

Cross-task correlations
The correlation (across all participants) between the total number of errors on the WCST 
and on the BRXT was significant and positive (r ¼ :359, p ¼ :011, two � tailed). This 
correlation remained significant when the effect of age was partialled out (r ¼ :308, 
p ¼ :033, two � tailed).

Figure 10. Model fit for younger (left) and older (right) participants, across the 3-dimensional parameter 
space defined by wneg, ϵstr and ϵsma for the BRXT, based on 25 simulated participants at each of 113 

points in parameter space and with mr = 0.0 for the younger / left panel and mr = 0.1 for the older / right 
panel. The greyscale shows the z-score fit as described in simulation 2, with white representing fits with 
a z-score of less than 0.5 and darker values representing progressively poorer fits (i.e., z ≥ 0.5).
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Table 3 shows the correlations between the numbers of each type of error (across all 
participants) for each task. While none of the correlations between SL3 on the WCST and 
any of the BRXT perseverative error types are significant, PE on the WCST correlates 
significantly with PRESP and PSTIM on the BRXT, but not with PRULE Given the small 
sample size and the relevance to the discussion, we computed the Bayes Factor for three of 
these correlations. Bayesian analysis using the aforementioned priors yielded a BF10 of 
5.94, 3.32, and a BF01 of 1.53 for PE correlations with PRESP, PSTIM, and PRULE, 
respectively.

Discussion

In the WCST, we found that older participants produced more set loss errors, but not more 
perseverative errors, than younger participants. The significant increase in set loss errors 
with age is consistent with the detrimental effect of aging in proactive control, conceptua-
lized as the process by which information in working memory biases attention toward goal- 
relevant schemas (Braver, 2012). Thus, we attribute the tendency toward increased set loss 
errors in older participants to a reduction with age in the ability to maintain or sustain 
attention to an ongoing task. This interpretation for the origin of set loss errors is consistent 
with, for example, that of Stuss et al. (2000) and deriving from the neuropsychological 
literature, who found that patients with inferior medial frontal lesions (as opposed to those 
with superior medial frontal lesions or with lateral lesions) were particularly prone to 
producing such errors. They attributed this to a deficit in sustained attention to an ongoing 
task (see also Shallice, Stuss, Picton, Alexander, & Gillingham, 2008; Stuss et al., 2005).

The absence of a significant effect of age on perserverative errors within the WCST was 
also predicted, though only on the assumption that our older participants were unrepre-
sentative of the general population. Older participants recruited through age charities, and 
in particular the University of the Third Age (which characterizes itself as “an international 
movement whose aims are the education and stimulation of mainly retired members of the 
community”), are unlikely to constitute a representative sample of the elderly population in 
that such participants are likely to be more active and better educated than average. This 
interpretation is consistent with prior research cited above, but is of particular interest when 
considered in conjunction with the age effect on set loss errors, for together the results show 
that, at least in this population, the two error types dissociate.

Results from the BRXT were also consistent both with prior literature (e.g., Bielak et al., 
2006; Esther et al., 2009) and the above interpretation of the WCST results, in that there was 
no statistical difference between the number of perseverative errors made by older 

Table 3. Pearson correlations between types of WCST error (rows) and BRXT error (columns). All 
probabilities are two-tailed.

PRESP PSTIM PRULE TE

PE r = .367 r = .322 r = −.088 r = .384
p = .009* p = .024* p = .547 p = .006*

SL3 r = .104 r = −.006 r = −.110 r = .535
p = .477 p = .968 p = .454 p = .001*

Note. Values of p < .05 are marked with *
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participants and younger participants, while the total number of errors made by older 
participants was significantly greater than that made by younger participants. Recall that 
prior literature concerned with this task and aging has focussed only on total errors. Thus, 
Bielak et al. (2006) reported that while their 50–59 year olds (N ¼ 55) produced 16.5 errors 
on average (SD ¼ 6:7), their 70–79 year olds (N = 97) produced 20.5 errors on average 
(SD ¼ 7:0). Similarly, Esther et al. (2009), who also assessed years of education, derived the 
following regression equation relating age to total errors: 

cTE ¼ 6:12þ 0:23� Ageð Þ � 0:24� Years of Educationð Þ

This was based on a group of 283 healthy controls with mean age 67.4. On this equation, 
a 65 year old adult with 14 years education would be predicted to produce 17.71 errors, 
while an education-matched 85 year old would be predicted to produce 22.31 errors. While 
the absolute total error scores in these two studies are higher than observed in the current 
study, their relative values are consistent with the pattern observed here. Absolute differ-
ences may be explained by procedural differences in the current study (e.g., our use of 
a circular arrangement of disks in place of the 5� 2 rectangular array, and the use of 9, 
rather than 10, disks). The absence of any significant effect of age on perseverative errors in 
the current study suggests that it is processes related to the production of non-perseverative 
errors, such as those involved in sustaining attention to the current goal, maintaining 
representations of recent trials, and inducing rules via the identification of temporospatial 
patterns across those representations, that are affected by aging.

With regard to response times, as expected, in both tasks latency to response was greater 
on trials following incorrect responses (and hence negative feedback) than on trials follow-
ing correct responses (and hence positive feedback), and for older participants than for 
younger participants. However, while the difference between response time after correct 
and incorrect responses was numerically larger in both tasks for older participants than 
younger participants, the interaction effect was not significant. The slowed response times 
following negative feedback presumably reflect processes related to response inhibition and 
subsequent rule induction. These processes would seem to be shared by the two tasks.

Turning to the relation between performance on the WCST and the BRXT, the main 
outcomes of our correlational analyses were that (across participants of all ages): a) PE in 
WCST is predicted by PRESP (and to a lesser extent PSTIM) in BRXT (or vice versa), but not 
by PRULE; and b) SL3 in WCST is predicted by TE in BRXT (or vice versa), but not by any of 
the three measures of BRXT perseverative errors. The former suggests that the processes 
underlying production of perseverative errors in the WCST are related to those underlying 
production of stimulus or response perseveration in the BRXT (which were also found to 
correlate), but not perseveration of rule application, while the latter further supports the 
claim that set loss errors and perseverative errors have different origins, or more precisely, 
that set loss errors in the WCST are the result of (failure of) processes that are separable 
from those involved in the production (or avoidance) of perseverative errors.

Computational modeling

In the second part of this paper, we consider how a recently developed neurocomputational 
model of schema-driven behavior, that of Caso & Cooper (2020), which has previously been 
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used to help understand the deficit of Parkinson’s patients on the WCST, can be applied to 
our data to elucidate how putative neurobiological effects of aging might impact upon the 
learning and performance of rule-based tasks. The model has been described in full else-
where. Therefore, rather than repeat that description here, we instead focus only on the 
aspects of the model critical to understanding its application to the two tasks considered 
here.1

Model description

The model is based on the work of Norman & Shallice (1986), who developed a schema- 
theoretic account of sequential action selection. Their theory proposes that hierarchically 
organized action schemas – abstractions over instances of action sequences – compete with 
each other through activation-based processes for control of action. This functional 
description is not committed to a specific neural implementation or a specific task, but 
application of the model to a specific task (e.g., the WCST or the BRXT) may be achieved by 
providing the model with appropriate task-specific schemas.

Model structure and operation
Our general model (see Caso & Cooper, 2020, for full details) features two sets of schemas: 
cognitive schemas and motor schemas (conceptualized as localized in prefrontal and 
premotor areas, respectively). The former encode higher level regularities of a task (e.g., 
sort by color, or alternate between positions) while the latter correspond to specific 
sensorimotor or response schemas (e.g., select pile 1 in the WCST, or select the disk at 
the “4 o’clock” location in the BRXT). Each schema has an associated activation value that 
varies between zero and one and that is maintained by a simulated cortico-thalamic loop. 
Each such loop comprises a schema node and a set of nodes corresponding to the nuclei of 
the basal ganglia, following the functional organization of the neuroanatomically detailed 
model of Gurney, Prescott, & Redgrave (2001), as shown in Figure 3. The basal ganglia units 
implement the multiple sequential probability ratio test (Bogacz & Gurney, 2007), an 
optimal method of simultaneously testing multiple hypotheses by estimating the probability 
of each on the basis of their support as judged by the input data.
All units function according to standard activation-based processing principles, with the 
activation of each unit at any point in time being a function of the weighted sum of its 
inputs, and with the saturation function by which a node’s activation is calculated being the 
standard logistic function: 

σβ;α xð Þ ¼ 1
1þe� α� x� βð Þ (1) 

where x is the unit’s summed weighted input, and α and β are parameters that control the 
unit’s gain and threshold, respectively.

Each cortico-thalamic loop operates in parallel, with the organization of Figure 3 ensur-
ing tonic inhibition of all schema nodes through the inhibitory connection from each 
schema’s globus pallidus internal segment (GPi) unit to its thalamus (THAL) unit. In 
addition, however, each schema’s GPi unit also receives excitation from the output of the 
subthalamic nuclei (STN) units of all schemas within each competing set. Because unit 
activation is thresholded (as per Equation 1), this acts to release tonic inhibition from the 
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more active schema nodes, allowing the activation of those nodes to increase. With appro-
priate parameter settings the dynamics of the system ensures that at any point in time only 
one schema node from each set is highly active. If this activation is sustained, the schema is 
then selected, and begins to control behavior. If, subsequently, the threshold of that node is 
increased or its gain is decreased (e.g., as a result of negative feedback), the node’s activation 
will reduce, allowing some other node within the set to become active.

As described thus far, schemas within each set compete with each other. Thus, cognitive- 
level schemas compete with each other and sensorimotor schemas compete with each other. 
Schemas across sets, however, cooperate. Thus, cognitive-level schema nodes may also 
excite corresponding sensorimotor schema nodes, with that excitation dependent on 
schema selection at the cognitive level and the input stimulus (e.g., if in the WCST “sort 
by color” is selected and the color of stimulus card is red, then excitation will be passed from 
the “sort by color” node to the sensorimotor schema node corresponding to the red target 
location).

Cortical learning
We assume that the slope or gain of the saturation functions of cortical units dynamically 
adapts to the level of conflict between those units. In particular, when the activation of 
several cortical representations is very similar, and the basal ganglia alone cannot arbitrate 
between different representations (e.g., because feedback/reward has not yet been received 
and computed), a mechanism is required to resolve this conflict so as to allow the simulated 
basal ganglia to make a decision. At the same time, the stability of cognitive representations 
must be sensitive to the need to trade off exploration and exploitation at different levels of 
the schema hierarchy (Goschke & Bolte, 2014). Allowing the gain of the saturation func-
tions at each level of the schema hierarchy to vary in response to conflict provides 
a mechanism for this.

Here, we implement a mechanism that allows the cortical sensorimotor/response units to 
change the gain/slope of their saturation function, αsma, via the free parameter εsms accord-
ing to Equation 2: 

αsma  1þ ζsmað Þ
YN

i
1þ εsma þ osma;i
� �

(2) 

where ζsma is sensorimotor unit noise, the product is over all sensorimotor units, and osma;i 

is the output signal of the ith sensorimotor unit. For simplicity, we do not include the 
analogous dynamic slope adjustment for cognitive schemas.

Increasing the αsma parameter is comparable to being more confident at responding, 
provided that the subject has accrued the same level of evidence and has the properties 
desired of a conflict construct, as shown by Berlyne (1957; see also Botvinick, Braver, Barch, 
Carter, & Cohen, 2001). Conflict should increase when the number and the activation of 
competing representations increase, and it should have its maximum value once all units 
reach theirs. Many functions satisfy these criteria, but the product of activation values is the 
simplest analytical form, and it is therefore the one we use here. The presence of conflict 
stabilizes or destabilizes schema activation as a function of their input, driving a change to 
schema activation values in a dynamic fashion. The change of slope of the saturation function 
in the sensorimotor units provides this implementation. Cognitive control can be construed 
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as a detection mechanism of suboptimal performance (or anticipation of such performance 
in the case of proactive control), followed by a change in attentional focus. At the level of 
evidence accumulation, conflict resolution can be achieved by slowing the accumulation of 
activation in specific units. The value of αsma is updated each time feedback is received.

Basal ganglia learning
The basal ganglia units are regulated in a different fashion from the cortical units. While 
cortical units are solely regulated by their online state, regardless of history of activation and 
external stimuli, basal ganglia units change their characteristics with a history-based and 
reward-driven time course. Within the model this is reflected by adjusting βstr, the threshold 
of the saturation function in striatal units, which is assumed to be related to the level of 
striatal dopamine. On each processing cycle and within each cortico-thalamic loop, i, βstr;i is 
adjusted according to Equation 3: 

βstr;i  βstr;i � εstr � δi

� �
� 1þ ζstr;i
� �

(3) 

where the calculated value of βstr;i is clipped to within the range [0, 1] if it falls below 0 or 
above 1.

The δi in Equation 3 is the reward prediction error, expressed as the difference between 
the actual reward fi and the median activation value in the last trial ai, as per Equation 4: 

δi  r � fi � aið Þ (4) 

where r is either þ 1 or � 1, according to whether feedback following the previous action/ 
response was positive (e.g., a correct answer) or negative (e.g., an incorrect answer).

In Equation 4, fi is calculated as follows: 

fi  
þ1 matching schemas
2wneg � 1
� �

� mr � f t� 1
i � rt� 1

� �
mismatching schemas

�

(5) 

The t � 1 index indicates the values of the variables on the previous iteration, while the 
parameters wneg and mr determine the reward for mismatching schemas. If wneg (mismatch 
reward sensitivity) is zero then the baseline reward is � 1, meaning that prediction error (δi 
in Equation 3) will be zero when the median activation of schema i on the previous trial is 
� 1. As wneg increases, this baseline increases. The mr parameter (memory for negative 
feedback) determines the extent to which feedback from previous trials modulates the 
baseline given by wneg . If it is zero, feedback from previous trials is ignored, but if it is 
greater than zero then feedback from previous trials persists across trials.

Together, Equation 3, Equation 4 and Equation 5 allow the model to bias βstr in the 
correct direction following feedback.

Key model parameters
The model has a relatively large number of parameters (see Caso & Cooper, 2020, for 
a complete list), but in the simulations reported here we consider four of them as free 
parameters: mismatch reward sensitivity (wneg), memory for negative feedback (mr), striatal 
learning rate (εstr) and sensorimotor schema learning rate (εsma). As noted above, the first 
two parameters affect the sensitivity of mismatching schemas to feedback. When wneg and 
mr are zero, fi in is � 1 for mis-matching schemas, meaning that if the correct schema was 
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selected (so r is þ 1), the thresholds of mismatching schemas will be increased (making 
them even less likely to be selected), while if the incorrect schema is selected (so r is � 1), 
the thresholds of mis-matching schemas will be decreased, making them more likely to be 
selected. As mismatch reward sensitivity (wneg) increases, the magnitude of the threshold 
adjustment for mismatching schemas will decrease. Moreover, as memory for negative 
feedback (mr) increases, the threshold adjustment for mismatching schemas is increasingly 
modulated by reward on the previous trial. The third and fourth parameters affect the 
efficacy of learning in the model’s striatal and the cortical components. The striatal learning 
rate (εstr) controls the rate of learning of biases/thresholds in the activation functions of the 
basal ganglia units for the cognitive schemas, while the sensorimotor schema learning rate 
(εsma) modulates the extent to which the information entropy of sensorimotor schemas 
drives the change of slope in their activation functions.

Relation to other neurobiological models

Rule induction tasks such as the WCST, and frontal functioning more generally, have been 
the target of a number of computational models, both at the cognitive level and the 
neurobiological level. Our model bears similarities to some of these existing models, but 
also incorporates notable differences. Bishara et al. (2010)’s cognitive-level of the WCST, for 
example, effectively maintains a representation of the probability of each rule (or more 
specifically each stimulus dimension) controlling the response, with this representation 
being updated following feedback such that the probabilities of rules consistent with the 
response/feedback are increased and the probabilities of rules inconsistent with the 
response/feedback are decreased following each trial. Model parameters determine sensi-
tivity to reward, punishment, and decision consistency. The model has subsequently been 
applied to clinical data from a range of neurological conditions (e.g., Parkinsonism: Steinke, 
Lange, Seer, & Kopp, 2018), with moderate success. Response/feedback pairs in our model 
can similarly be understood as providing evidence for or against rules, but unlike the 
Bishara et al. (2010) model, our model operates at a more mechanistic level (by incorporat-
ing a neurobiologically plausible model of the basal ganglia) and incorporates lower-level 
sensorimotor schemas. Such low-level schemas effectively provide our model with a direct 
route whereby a stimulus can drive a response in the absence of top-down input.

An alternative cognitive-level account of rule induction is provided by Steinke, Lange, 
& Kopp (2020), who provide a reinforcement learning model of the WCST which 
combines model-free (habitual) and model-based (deliberative) subsystems. Like the 
model of Bishara et al. (2010), Steinke et al. (2020)’s model produces a probability 
distribution over responses on each trial, and like the model of Bishara et al. (2010) it 
produces perseverative errors because negative feedback does not reduce the probability 
of applying the previously most likely rule to zero, while it produces set loss errors because 
even with positive feedback there is a non-zero probability of failing to apply the most 
probable rule. The innovation of the Steinke et al. (2020) model lies in its combination of 
model-based and model-free “routes” to action. This is based on the authors’ demonstra-
tion of learning at the response level, whereby detailed analysis of behavioral data suggests 
that negative feedback results in an increased likelihood of participants avoiding the 
specific (punished) response on the next trial. Steinke et al. (2020) argue that their 
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model provides a superior account, compared with the model of Bishara et al. (2010). The 
reinforcement learning model does not directly refer to the operation of cortico- 
subcortical loops, but nevertheless obtains a neurobiological interpretation through the 
identification of model-based processing with frontal functions and model-free proces-
sing with habitual action selection primarily associated with the basal ganglia (e.g., Daw, 
Niv, & Dayan, 2006). The model therefore bears a more abstract relation to neural 
processes than our model presented here, though both models include elements of 
learning from reinforcement (in our model, through Equation 4.) More crucially both 
models include two levels of processing – model-based processing is equivalent to 
application of rule schemas while model-free processing is equivalent to application of 
sensorimotor schemas. It is, however, beyond the scope of the current work to determine 
whether or how our model might capture the specific effects of perseverative response 
avoidance (what they term “the modulation of perseveration propensity by response 
demands”) seen by Steinke et al. (2020) to be a critical aspect of behavior.

Several other authors have also developed neurobiologically-grounded models of rule 
induction tasks which incorporate cortico-subcortical loops (e.g., Frank & Badre, 2012; 
Monchi, Taylor, & Dagher, 2000), and the operation of striatal learning (Equation 3, 
Equation 4, and Equation 5) in our model bears a resemblance to those present in that 
proposed by Frank & Badre (2012). However, our model differs from that of Frank & Badre 
(2012) in several substantial details. First, our model assumes that participants come to tasks 
such as the WCST with schemas for the classification of objects based on visually distinct 
dimensions (such as number, color, and form). This is similar to the assumption of Monchi 
et al. (2000), but connectionist network models such as that of Rougier & O’Reilly (2002) 
(and subsequently that of Frank & Badre, 2012) achieve this by pretraining the model with 
color, form, and number classification subtasks (see also Rougier, Noelle, Braver, Cohen, & 
O’Reilly, 2005). Perhaps more critically, in our model, the basal ganglia do not gate 
information through a series of weights adjusted by experience (in order words, it is not 
a connectionist network in the PDP tradition). Rather, the basal ganglia implement 
a control system that operates on time-continuous variables. Furthermore, while motor 
and premotor areas are separated and hierarchically related (i.e., information is passed 
downward) in both our model and that of Frank & Badre (2012), our model does not 
distinguish between a maintenance layer, deep lamina layer, and even a visual input layer, 
but instead incorporates all of them in sensorimotor schemas.

Most recently, Barceló (2020) has argued for a reframing of the WCST in terms of the 
predictive coding framework of Friston (2009). This approach argues that the function of 
the brain is to “infer the causes of its sensory inputs.” When applied to the WCST and rule 
induction more generally, the predictive processing approach attempts to infer the under-
lying rule by minimizing unanticipated feedback. Barceló (2020) argues that this results in 
two phases of operation. Early in the induction process, when there is greatest uncertainty 
in the rule, the system must explore the various options, while later in the induction 
process, when the rule is known, the system must exploit its knowledge (and predictions). 
These two phases are held by Barceló (2020) to be reflected in electrophysiological studies 
which have found different ERP profiles associated with the early and late trials within 
each run of a rule, with early processing being associated with prefrontal negativity and 
later processing associated with more posterior (and possibly parietal or subcortical) 
negativity (e.g., Lange, Seer, & Kopp, 2017; Stuss & Picton, 1978). The explore/exploit 
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dimension has echoes of reinforcement learning, but within the predictive processing 
account exploration is not unguided or random, but aimed at reducing the uncertainty in 
the current rule, thereby improving the generative model guiding behavior, and decreas-
ing the likelihood of negative feedback. An assumption that is common to our approach 
and the predictive processing approach is that both effectively rely on predicting feedback 
and attempting to minimize prediction error – note that on the assumption that activation 
in our model encodes an expectation, the central term in Equation 4, fi � ai, represents the 
error between actual reward feedback and anticipated feedback. Hence, when prediction 
error is zero, changes in striatal gain occur only as a result of noise. Indeed, ongoing 
changes in striatal gain during the latter stages of a run of trials with the same rule, 
through Equation 4, work to reduce prediction error.

Simulation 1: modeling the WCST

Introduction: application of the model to the WCST
To model performance on the WCST, the model was configured with three cognitive 
schemas, corresponding to the three WCST rules (sort by color, sort by number, sort by 
form), and four sensorimotor/response schemas, corresponding to the four target loca-
tions where stimulus cards might be placed. When a cognitive schema is selected, 
activation is passed (via the corresponding response-level STN unit) into the cortico- 
thalamic loop for the appropriate target location (which is determined with reference to 
the stimulus card and the selected cognitive schema). If the selection is correct (i.e., 
experimenter feedback is positive, and so r in Equation 4 is þ 1), feedback to cognitive- 
level schemas (as per Equation 5) is positive if at least one feature of the stimulus card 
matches the selected target card and negative otherwise. Alternatively, if the selection is 
incorrect (i.e., experimenter feedback is negative, and so r in Equation 4 is � 1), feedback 
to cognitive-level schemas (as per Equation 5) is negative when at least one feature of the 
stimulus card matches the selected target card and positive otherwise.

Method
In order to fit the model to the data from the WCST and to explore the effects of the model 
parameters, we conducted a series of data-fitting studies, where TE, PE, and SL3 were the 
target variables. More specifically, we sought to minimize the norm of the z scores for the 
three variables (i.e., the square root of the sum of squared errors for the three variables) by 
using simulated annealing (Peter JM & Aarts, 1987). Additionally, we calculated the Bayes 
Factor, BF01, for each dependent measure,2 given a standard Cauchy prior with x0 ¼ 0 and 
γ ¼ 1ffiffi

2
p . While there is a negative correlation between z values and BF01, the simulated 

annealing algorithm does not minimize BF01 efficiently, but operates better on a function of 
the z values, perhaps owing to the fact that the BF space is less smooth than the z space, and 
it is therefore easier when minimizing BF01 to get stuck in local minima. Therefore, if two 
parameter sets yielded a similarly low z value, the one with higher BF was chosen. This 
additional criterion improves model selection by taking into account distributions as well as 
providing a more intuitive fitting index.

We found the best-fitting values for each age group separately. In each case, 
simulated annealing was initialized with a parameter set obtained through qualitative 
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analysis to ensure faster convergence. Moreover, we observed that for both groups very 
good fits were obtained with mr at its default value of zero, and so this parameter was 
fixed at this value while the other three parameters were varied in order to fit the 
group data.

Results
Table 4 shows the minimized absolute z scores for the three dependent measures, across 
the two groups. A value closer to 0 indicates a better fit. Also shown in the table are 
Bayes Factors for each dependent measure. A value greater than 1 indicates support for 
the null hypothesis, and therefore a better fit (Wagenmakers et al., 2018). The resultant 
values of the parameters of interest for the two groups are shown in Table 5, while 
Figure 4 and Figure 5 show bar charts for the dependent measures for the experimental 
and simulated younger and older participants, respectively.
Importantly, swapping the parameter values determined for each age group results in 
substantially poorer overall fits for both groups, with larger z values, and BF01 values 
generally smaller than 1 (see Table 6). This suggests that the model adequately simulates 
the responses of the two participant groups as being distinct.

Z (and Bayes Factor BF01 as a subscript) for model fits obtained by swapping young and 
old simulated data. The overall increase in Z values and the presence of four BFs below one 
suggest that the two models are not interchangeable and they capture the differences 
between the two groups.

Table 4. Z statistics for the model fit for the two age groups in the WCST. A value closer to 0 indicates that 
experimental and simulated values have closer means, and therefore a better model fit. The subscripts 
near the z value are the Bayes Factor (BF01). A value higher than 1 indicates greater support for the null 
hypothesis, which suggests a good model fit.

TE PE SL3

Younger 0:0192:99 0:0951:57 0:0153:22

Older 0:0422:35 0:0212:91 0:0113:27

Table 5. Values of the parameters wneg, mr , εstr, and εsma for the simulations of the two age groups in the 
WCST.

wneg mr εstr εsma

Younger :457 :000 :139 :833

Older :106 :000 :097 :000

Table 6. Z and Bayes Factor BF01 as a subscript for model fits obtained by swapping young and old 
simulated data. The overall increase in Z values and the presence of three BFs below zeros suggest that 
the two models are not interchangeable and they capture the differences between the two groups

TE PE SL3

Yexp , Osim :1281:12 :3910:15 4670:34

Oexp, Ysim .2630.30 :0053:38 :3800:18
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Recall that in the experimental study we found that response time was affected by both age 
and feedback on the previous trial, with older participants slower than younger ones, and 
responses after negative feedback slower than responses after positive feedback. Table 7 shows 
the number of cycles to selection of a sorting action for the model given the parameter settings 
determined for younger and older groups, and as a function of feedback on the previous trial. 
The simulations reproduce the effect of age (F 1; 48ð Þ ¼ 144:062, p< 0:001), with the simu-
lated older participant group taking more cycles to respond than the simulated younger 
participant group, but not the effect of feedback type (F 1; 48ð Þ ¼ 1:435, p ¼ 0:237). 
Moreover, the factors do not interact (F 1; 48ð Þ ¼ 1:257, p ¼ 0:268). 

Discussion
The model is able to fit, near perfectly, the error data of both participant groups. 
Despite a similar number of perseverative errors in both groups, older participants are 
simulated with a reduction of 0.042 in the value of the striatal learning rate (εstr, down 
from 0.139 to 0.097), which suggests a slower update of basal ganglia thresholds in 
older participants than in younger participants. The corresponding reduction from 
0.833 to 0.000 in the sensorimotor learning rate (εsma) reflects instead a reduction in 
cognitive control. With regard to mismatch reward sensitivity, the value of wneg for 
younger participants (of 0:457) suggests substantial insensitivity to negative feedback. 
The value for older participants (of 0:106) suggests that older individuals are more 
sensitive to negative feedback than their younger counterparts. Since the fit was 
obtained with mr fixed at zero for both groups, these results assume that both groups 
are insensitive to reward from previous trials – an assumption that appears reasonable 
given the fits obtained.

With respect to the response time data, the model accounts well for the difference in 
response time due to age, but not for the difference due to feedback type. This contrasts with 
our earlier application of the model to data from Parkinson’s patients on a slightly modified 
version of the WCST (Caso & Cooper, 2020), where the number of model cycles to 
a response was greater following negative feedback than following positive feedback. The 
lack of effect in the model behavior here is in part due to a difference in the version of the 
WCST and differences in parameter values. More specifically, the version considered in the 
earlier work followed that of Barceló (2003) and included only stimulus cards that matched 
target cards on a single feature. The version considered here includes all possible cards, 
including ones which match target cards on two and even three features. The difference in 
RT on trials following positive and negative feedback is less when ambiguous cards are 
present, possibly because negative feedback after a card that matches on two dimensions 
(i.e., ambiguous cards) allows the model to effectively and efficiently rule out both 

Table 7. Mean (standard deviation) simulated response time (i.e., number of cycles to generate a 
response) for each simulated group for trials following positive feedback and trials following negative 
feedback. Data are based on 25 simulated runs with parameters set as in Table 5.

Positive Negative

Younger 132.3 (1.4) 132.2 (2.9)

Older 146.9 (5.5) 144.5 (8.8)
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dimensions on which the card matches. The difference in RT also depends in 
a nontransparent way on the values of the parameters (and in the simulations reported 
here is positive in some regions of the parameter space and negative in others). We return to 
this issue below in the discussion of simulation 3.

Simulation 2: modeling the BRXT

Introduction: application of the model to the BRXT
To model performance on the BRXT, the model was configured with five high-level 
schemas and nine lower-level sensorimotor schemas (see Figure 6). Four of the high- 
level schemas represented the four possible rules from the empirical study (clockwise, 
counter clockwise, alternate between positions 1–5, counter clockwise skipping one 
circle). One additional schema was included to represent all the other potential rules. 
All high-level schemas were fed with a constant input and uniformly distributed noise. 
The nine lower-level sensorimotor schemas represented the nine possible response 
options. These low-level schemas were also activated by environmental cues (stimuli) in 
much the same way as low-level schemas in the WCST model were activated by environ-
mental cues. In this way, in absence of top-down control, environmental cues have the 
potential to drive the choice of pattern.

The present simulation is not concerned with rule inference per se, since this is 
assumed to happen higher up in the mental processing hierarchy, but is focused 
instead on the cognitive control of these rules. Thus, we assume that individuals 
have acquired similar pattern schemas, such as progressing clockwise around 
a circle, throughout their life. Nevertheless, some additional comment is required 
on the rule represented by the fifth cognitive schema. This was randomized to 
a different rule for each simulated participant, and contributes to inter-subject 
variability in the simulation. Different participants may have different concepts 
that are not necessarily triggered by the stimuli presented. For example, some 
individuals might overcomplicate rules and infer that clockwise motion of the circles 
is mirrored anticlockwise after a semi-circle is completed or infer bizarre responses 
that do not reflect any of the most common rules that neurologically healthy 
individuals seem to employ. Adding this schema also produces meaningful varia-
tions in responses.
For the BRXT, schema matching (as required for Equation 5) is determined by comparing 
the two most recent responses (in order) with the patterns corresponding to each of the 
known rules. If, for example, two consecutive filled disks appear in counter-clockwise 
fashion, then the schema corresponding to this pattern will be considered to match (and 
will receive bottom-up activation). If this arrangement also has features in common with 
the random schema, then the latter will also be considered to match (and be activated). If 
feedback is positive then the saturation functions of matching schemas are biased to 
increase the likelihood of them being selected, as per the first clause in Equation 5. The 
saturation function of non-matching schemas is biased in the opposite way – to decrease 
that likelihood (as per the second clause in Equation 5). The reverse applies if feedback is 
negative, ensuring that on the following trial matching rules are less likely to be selected 
but mis-matching rules are more likely to be selected.
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Method
The model fitting studies for the BRXT were conducted in the same way as for the WCST, 
with one exception, namely that when fitting the data from older participants the value of 
the memory for negative feedback parameter (mr) was also allowed to vary (for reasons 
given below). This time TE, PSTIM, PRESP, and PRULE were the target variables. Again, fitting 
was performed using simulated annealing (Peter JM & Aarts, 1987), by minimizing the 
norm of the z values of the four target variables.

Results
Table 8 shows the minimized absolute z values for the two groups. As before, a value closer 
to 0 indicates a better fit. Table 9 shows the resultant values of the parameters of interest for 
the two groups, while Figure 7 and Figure 8 show bar charts for the dependent measures for 
the experimental and simulated younger and older participants, respectively. As in the 
WCST, swapping the age groups worsened the overall fits producing BF01 much smaller 
than 1 for Total Errors (see Table 10). For this task (unlike in the case of WCST) z and BF01 
values were almost unchanged for the other variables. This is expected, given that TE is the 
only error whose value differed significantly across the two groups.
Paralleling the results reported for the WCST model Table 11 shows the number of cycles to 
selection of a sorting action for the model of the BRXT given the parameter settings 
determined for younger and older groups, and as a function of feedback on the previous 
trial. In contrast to the WCST simulations, the BRXT simulations reproduce both the effect 

Table 8. Z statistics for the model fit for the two age groups in the BRXT. A value closer to 0 indicates that 
experimental and simulated value have closer means, and therefore a better fit. The subscripts near the z 
value represent the Bayes Factor BF01. A value higher than 1 indicates greater support for the null 
hypothesis, which suggests a good model fit.

TE PSTIM PRESP PRULE

Younger 0:0731:75 0:0692:06 0:0243:08 0:1021:48

Older 0:0163:06 0:0013:54 0:0841:87 0:0472:76

Table 9. Value of the parameters wneg, mr , εstr, and εsma for the two age groups in the BRXT. Note that for 
the simulation of the Younger data, mr was fixed at zero and not a free parameter

wneg mr εstr εsma

Younger 0.162 0.000 0.621 0.512

Older 0.048 0.165 0.377 0.089

Table 10. Z and Bayes Factor BF01 as a subscript for model fits obtained by swapping young and old 
simulated data. The presence of one BFs below zeros suggest that the two models are not intercheang-
able and they capture the differences between the two groups

TE PSTIM PRESP PRULE

Yexp;Osim 0:8140:008 0:0931:85 0:0542:67 0:0213:00

Ysim;Oexp 0:0901:45 0:0033:48 0:0602:20 0:0093:36
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of age (F 1; 48ð Þ ¼ 15:402, p< 0:001), with simulated older participant group taking more 
cycles to respond than the simulated younger participant group, and the effect of feedback 
type (F 1; 48ð Þ ¼ 22:403, p< 0:001), with responses following negative feedback taking 
longer than those following positive feedback. However, and in contrast to the empirical 
study, the interaction between the factors is significant (F 1; 48ð Þ ¼ 11:966, p ¼ 0:001). 

Discussion
Whilst the younger group yields an excellent fit when memory for negative feedback (mr) 
is held at 0 and the other three parameters are allowed to vary freely, this is not true for the 
older group, which in addition requires that memory for negative feedback (mrÞ be greater 
than 0. Recall that this parameter regulates the extent to which feedback from the previous 
trial persists to the next trail. Allowing its value to increase when simulating older 
participants yields an overall model fit that is commensurate with the one observed in 
the WCST (i.e., with small z ! 0 and BF01 > 1), and again, inverting the age groups in 
experimental and simulated data worsens the overall fit, albeit to a lesser extent than in the 
WCST.3 Older participants are simulated with a reduction in the striatal learning rate (εstr, 
from 0.621 to 0.337), which corresponds to a slower update of basal ganglia threshold, and 
a reduction in the sensorimotor schema learning rate (εsma, from 0.512 to 0.089), which 
corresponds to a sizable decrease in cognitive control. The mismatch reward sensitivity 
(wneg) is also lower for older individuals than younger ones, indicating that, as in the 
WCST, older participants appear to be more sensitive to negative feedback than their 
younger counterparts. Fitting the model to older adults also requires a higher value of the 
memory for negative feedback parameter (mr) than the default of 0 for younger partici-
pants, suggesting that older participants weigh negative feedback from previous trials 
more than younger ones.

The simulated RT data may be understood as a prediction of the model based on the best 
fitting parameter values for the two groups. In this sense, the model fits correctly predict 
that older participants will take longer than younger participants across all trials, and that 
responses following negative feedback will be slower than responses following positive 
feedback for both groups. This is all consistent with the empirical effects, though the 
magnitude of the RT differences (in model processing cycles) is generally small (of the 
order of 1 to 2 cycles). It is unclear whether this apparent difference in effect size should be 
of concern, particularly when, as shown in subsequent simulations, a sizable volume of 
parameter space yields a good fit (within 1 standard error) to the error data, and when 
response time following both positive and negative feedback varies substantially in that 
volume.

Table 11. Mean (standard deviation) simulated response time (i.e., number of cycles to generate a 
response) for each simulated group for trials following positive feedback and trials following negative 
feedback. Data are based on 25 simulated runs with parameters set as in Table 9.

Positive Negative

Younger 110.1 (1.3) 112.8 (2.7)

Older 111.2 (1.4) 128.8 (21.4)
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Simulations 3 and 4: model sensitivity and compensatory mechanisms in WCST and 
BRXT

Introduction
Inspection of results during simulated annealing revealed that for both tasks there was often 
more than one set of parameter values yielding similar z scores. In order to explore the 
sensitivity of the model’s behavior to the values of the key parameters we ran two additional 
series of simulations (one for each task) in which the key parameter values were system-
atically varied across their entire range. Firstly, we expected to find extended regions in 
parameter space resulting in good fits of the model to the data from each participant group, 
but a key question of interest was how large such regions might be. Clearly, the answer to 
this question depends on what is considered a “good fit” to the data. For simplicity, we 
assume here that a good fit is one where the z score difference between the model and the 
target participant group is less than 1.00.

A second question addressed by the parameter sensitivity studies concerns the generality 
of the broad statements relating to the effects of aging and derived from simulations 1 and 2, 
namely that older participants are better simulated with decreased levels of the three key 
parameters – mismatch reward sensitivity (wneg), striatal learning rate (εstr) and sensor-
imotor schema learning rate (εsma) – relative to younger participants.

Thirdly, we hypothesized the existence of compensatory processes within the model, 
whereby variation in one parameter might be approximately countered by 
a compensatory adjustment in another parameter. More specifically, we hypothesized 
that an increase in mismatch reward sensitivity (wneg) should be compensated by an 
increase in cognitive control, reflected in an increased striatal learning rate (εstr) and/or 
increased sensorimotor schema learning rate (εsma) in both tasks, and with comparable 
model fits.

Method
The model was run 25 times (to simulate 25 virtual participants) for each tasks at every 
point in the multi-dimensional parameter space defined by varying wneg , εstr, and εsma from 
0.0 to 1.0 in increments of 0.1. For the WCST simulations, this three-dimensional scan was 
performed twice, once with mr (memory for negative feedback) fixed at 0.0 and once with 
mr fixed at 0.1. For the BRXT simulations, the three-dimensional parameter space scan was 
performed four times, once each with mr at 0.0, 0.1, 0.2, and 0.3. For each point in 
parameter space, the norm of the z-score of the dependent variables (the three error 
measures for WCST and the four error measures for BRXT) was calculated (i.e., the square 
root of the sum of squared standard error scores, as in the simulations 1 and 2) with respect 
to each participant group (i.e., for the data from the younger group and the older group) in 
order to determine the goodness of fit for each group.

Results: WCST
Figure 9 shows a heatmap representation of the z-score fits of the model configured for the 
WCST task to the younger (left panel) and older (right panel) data when mr was 0.0. Each 
panel of the figure shows 11 planes/slices (one for each value of wneg from 0.0 to 1.0 in 
increments of 0.1), with each plane/slice showing the fit (using logarithmic coding) at each 
value of εstr and εsma.
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The figure shows that good model fits, corresponding to the lighter regions (light gray and 
white, for z< 1), occur over a region of parameter space that extends beyond the fits 
obtained by simulated annealing in simulation 1. For the younger group, this region extends 
approximately from values of mismatch reward sensitivity (wneg) of 0:0 to 0:4, striatal 
learning rate (εstr) of 0:2 to 0:3, and sensorimotor schema learning rate (εsma) of 0:4 to 
0:9. For the older group, the region of best fit is less easily defined, but extends to higher 
values of mismatch reward sensitivity (wneg up to 0:9), lower values of striatal learning rate 
(εstr down to 0:1), and includes points with zero sensorimotor schema learning (εsma= 0.0). 
Inspection of the corresponding plots when memory for negative feedback (mr) was 0:1 
revealed a) that there were fewer points of good fit of the model to the younger data, but b) 
that the fit to the older data was similar for without and with memory for negative feedback 
(mr ¼ 0:0 and 0:1, respectively).

Results: BRXT
Figure 10 shows a heatmap representation of the z-score fits of the model configured for the 
BRXT task to the younger (left panel) and older (right panel) data. As in Figure 9, each panel 
of the figure shows 11 planes/slices (one for each value of wneg from 0.0 to 1.0 in increments 
of 0.1), with each plane/slice showing the fit (again using logarithmic coding) at each value 
of εstr and εsma. Note that the figure only shows data for a subset of the BRXT simulations, 
namely those with mr yielding the best fits. For the younger panel, mr ¼ 0:0. For the older 
panel, mr ¼ 0:1.

The figure shows that for younger participants good fits (z< 1:0) are obtained with 
memory for negative feedback (mr) at 0.0, mismatch reward sensitivity (wneg) less than 0:3, 
and the striatal learning rate (εstr) greater than 0:3. As mismatch reward sensitivity (wneg) 
increases, the lower limit of the striatal learning rate for this region increases, such that even 
with moderate mismatch reward sensitivity (wneg ¼ 0:5) there is a region of good fit when 
the striatal learning rate is high (εstr> 0.8). For older participants, good fits are obtained with 
memory for negative feedback (mr) at 0.1, similar values of mismatch reward sensitivity 
(wneg < 0:6), and lower values of striatal learning (εstr> 0.4). In both cases, the model’s fit is 
relatively unaffected by the sensorimotor schema learning rate (εsma).

Inspection of the heatmaps for different values of memory for negative feedback (i.e., 
mr > 0:0 for the younger groups and mr�0:1 for the older group) reveals in both cases 
smaller volumes where the fit is good. Thus, the largest volume for the fit to the younger 
data is obtained with mr ¼ 0:0 and the largest volume for the fit to the older data is obtained 
with mr ¼ 0:1.

Discussion
The results of both simulation 3 (for WCST) and simulation 4 (for BRXT) are largely though 
not entirely consistent with the parameter values determined in simulations 1 and 2, respec-
tively, for each participant group, in that the best fit found through simulated annealing 
generally falls within a larger region of good fit (informally characterized as z< 1) for both 
participant groups on both tasks. More precisely, on the WCST, for the younger group the 
point estimate obtained from simulated annealing yielded wneg ¼ 0:457. The grid-search 
indicates this produces a fit of z< 1:0, but lower values of wneg (e.g., 0.3) yield even better 
fits (with z< 0:5). For the older group, the point estimate determined by simulated annealing 
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is within a region within z ¼ 0:5, but this region extends from wneg ¼ 0:0 to wneg ¼ 0:6 (with 
εstr= 0.1 and εsma= 0.0). Interestingly, there is also a region of very good fit with wneg ¼ 0:6, εstr 

= 0.1 and εsma ranging from 0.5 to 0.9, indicating that for performance similar to older 
participants there is a value of mismatch reward sensitivity that makes the model insensitive 
to the rate of sensorimotor learning when the striatal learning rate is very low. This region also 
produces a slight RT advantage for trials following positive feedback compared to those 
following negative feedback, as observed in the empirical data. This local ‘sloppiness’ in the 
parameter space (Gutenkunst et al., 2007) may be difficult to interpret in this particular 
region.

For the BRXT, the point estimate for the younger group lies within a region with z< 1, 
but the region extends across the full range of εsma, and from wneg ¼ 0:0, εstr= 0.3 to 
wneg ¼ 0:5, εstr= 0.9. Similarly, the point estimate for the older group lies within an extended 
region with z< 1:0 (and in fact on the edge of a region with z< 0:5). Again, the region is 
largely independent of εsma, and extends from wneg ¼ 0:0 to wneg ¼ 0:5. In summary, the 
grid searches demonstrate that there are extended regions of good fit, more so than might be 
inferred from the simulated annealing results.

Our second question concerned the generality of the conclusions derived from simula-
tions 1 and 2. Here the results call into question some of our initial findings. The most 
robust finding is that across both tasks older participants are better characterized by lower 
values of εstr than younger participants, which represents a slower update of the basal 
ganglia threshold, consistent with the previous experiments. There is also some evidence 
that older participants are better characterized by slightly higher values of memory for 
negative feedback (mr). This is clearest for the BRXT but also apparent from the fit to older 
participants on the WCST when mr ¼ 0:1. However, population-level inferences relating to 
mismatch reward sensitivity (wneg) and sensorimotor schema learning (εsma) are less robust. 
Indeed, for both tasks the grid search is suggestive of higher values of mismatch reward 
sensitivity for older participants than younger ones, while in many cases behavior is not 
strongly influenced by the sensorimotor schema learning rate.

Our third question concerned the possibility of compensatory interactions between 
parameter values. The grid searches suggest that in both tasks, decreasing sensitivity of 
mismatching schemas to feedback (i.e., increasing wneg) can be offset by a corresponding 
increase in the striatal learning rate (εstr). Effectively, a decrease in mismatch reward 
sensitivity can be compensated for by an increase in cognitive control. One intriguing 
possibility is that such compensatory processes may occur in human participants, with 
aging affecting some variables (e.g., resulting in increased values of mismatch reward 
sensitivity: wneg) but with the effects of that change on performance being ameliorated by 
a concomitant change in some other variable (e.g., a, possibly deliberate, increase in either 
striatal εstr or sensorimotor schema εsma learning rates). In theory, such differences might be 
detectable through neurophysiological measures (e.g., increased εstr might be mapped onto 
greater striatal activity, while increased εsma might be mapped onto greater Anterior 
Cingulate Cortex activity). The model therefore predicts that the same behavioral profile 
on the tasks might be observed with markedly different neurophysiological profiles.

One final issue that requires comment is the difference in parameter values across the two 
tasks. A naïve application of the model might suggest that, for example, wneg or εstr should vary 
with age but not task. However, the optimal values of many if not all of these parameters are 
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likely to be dependent on specific aspects of a task, such as the number of schemas (assumed 
to be three cognitive and four sensorimotor in WCST, and five cognitive and nine sensor-
imotor in BRXT) and the form of feedback (which is explicit in WCST, but implicit in BRXT). 
Differences across tasks in the values of these parameters should therefore not be surprising.

General discussion

In the present paper, we have reported the results of a study in which we tested 25 young 
adults and 25 adults over the age of 60 who completed a variation of the Wisconsin Card 
Sorting Test and a variation of the Brixton Spatial Anticipation Test. We predicted that in 
the WCST we would observe an increase in set loss errors in older adults, without 
a significant change in perseverative errors. In BRXT we predicted that we would observe 
more total errors in older participants than younger participants, but not more persevera-
tive errors. We furthermore predicted that, across all participants, the number of total errors 
on the two tasks would correlate, and that the number of perseverative errors made on each 
task would correlate. Each of these predictions was born out, with one notable caveat: the 
number of perseverative errors made in the WCST was found to correlate with the number 
of response perseverations and the number of stimulus perseverations made in the BRXT, 
but not the number of BRXT rule perseverations.

That older participants were more susceptible than their younger counterparts to set loss 
errors, but not perseverative errors, on the WCST supports the view that these errors have 
different origins. The former reflect failure to maintain set in the face of interference, while 
the latter reflect failure to switch set in the face of negative feedback. Both tendencies are 
frequently reported in frontal patients (see, e.g., Shallice, 1988 ch.14). Within the model, the 
dissociation occurs because set loss errors primarily occur with reduced mismatch reward 
sensitivity (when wneg is high) or slowed sensorimotor schema learning (εsma is low), while 
perseveration errors primarily occur when striatal learning is slow (εstr is low) but sensor-
imotor learning is fast (εsma is high).

With regard to the BRXT, while both groups of participants produced a similar number 
of perseverative errors, older participants produced more total errors than younger parti-
cipants. Total errors include ones which might be conceptualized as equivalent to set loss 
errors on the WCST (i.e., switching away from an established rule despite positive feed-
back), as well as errors related to rule induction (i.e., deriving a new rule on the basis of 
patterns in the temporal input). Indeed, within a neuropsychological context, Reverberi 
et al. (2005) argue that the BRXT is primarily a task of rule induction rather than of rule 
switching. While our results do not differentiate the possible causes of non-perseverative 
errors, they are consistent with the view that the BRXT does not specifically assess 
tendencies toward perseveration. Within our model, rule induction consists in attempting 
all known rules that are consistent with recent feedback. The model produces more total 
errors (but not more perseverative errors) when memory for negative feedback (mr) is 
relatively high, the striatal learning rate (εstr) is above 0.3, and mismatch reward sensitivity 
(wneg) is not more than 0:5. It appears that when feedback persists over multiple trials (as 
when mr is greater than zero) the model is less effective at inducing rules.

While the BRXT was originally developed as a test of frontal dysfunction (Burgess & 
Shallice, 1996), more recent neuropsychological evidence has called into question the test’s 
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structural specificity. In particular, Mole, Foddai, Chan, Tianbo, & Cipolotti (2020) found 
that the original BRXT was no more sensitive to frontal lesions than posterior ones, while 
Vordenberg, Barrett, Doninger, Contardo, & Ozoude (2014) found that stroke patients with 
subcortical lesions performed more poorly on the task than those with frontal lesions. Our 
results provide a way of making sense of these more recent findings, in that while perfor-
mance of the model on the BRXT is relatively insensitive to εsma, a parameter related to 
cortical learning, it is not insensitive to εstr, which determines subcortical learning. In other 
words, the model’s behavior is consistent both with the findings of Vordenberg et al. (2014) 
and Mole et al. (2020).

A further important empirical result was the observed correlation between PE on the 
WCST and both PRESP and PSTIM, but not PRULE, on the BRXT. It is widely accepted in the 
neuropsychological literature that there are different forms of perseveration, and that 
these are associated with distinct neural sites (e.g., Sandson & Albert, 1984). One strength 
of the BRXT, even if conceptualized as a test of rule induction rather than perseveration, 
is that it allows one to discriminate between different forms of perseveration. The 
observed cross-task correlations suggest that, even in a non-clinical sample, there are 
individual differences in the tendency to produce stimulus-driven or response-driven 
perseverations, and that these forms of perseveration are in large part responsible for the 
perseverative errors observed in non-clinical populations on the WCST. The separate 
levels of schemas within our model – sensorimotor schemas and cognitive schemas – 
provide an obvious locus for explaining the observed correlation. Suboptimal regulation 
of sensorimotor schemas, and in particular failure of top-down regulation of such 
schemas, should lead to both increased levels of PE on the WCST and increased levels 
of PRESP and PSTIM, but not PRULE, on the BRXT. However, the limited evidence for the 
null hypothesis in the PE=PRULE correlation, as evinced by a low Bayes factor 
(BF01 ¼ 1:53), does not allow us to draw a strong conclusion regarding the relationships 
between perseverations. Nevertheless, there is suggestive evidence supporting a non- 
unitary and hierarchical view of perseveration.

In addition to the above, for both tasks we found that older participants were slower to 
respond than younger participants. This is not surprising and is consistent with 
a substantial body of previous literature (see Cerella & Hale, 1994 for a review). In both 
groups, there was also an increase in response time on those trials that followed negative 
feedback as compared to those that followed positive feedback. Again, this should not be 
surprising as the former case requires additional cognitive processes – inferring a new 
potential rule and reconfiguring cognitive processing to follow that rule – beyond those 
required in the latter case. It is not clear whether the two factors interact. Across both tasks, 
the increase in response time following negative as opposed to positive feedback was 
slightly, although non-significantly, greater in the response times of older participants 
than younger participants. An additive effect would suggest that the time taken for the 
additional processing required following negative feedback was independent of age, while 
a super-additive effect would be consistent with generalized slowing of cognitive and motor 
processing with age. Our results (particularly with the WCST) are suggestive of the second 
of these possibilities, though consistent with both possibilities.

At the same time, the least satisfactory element of our model is the apparent insensitivity 
of response times on trial n to feedback on trial n � 1, at least as reported in the results of 
simulations 1 and 2 above. This might be attributed to the lack of complex reasoning 
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processes that might be recruited for rule induction within our model (such as those 
discussed with respect to the WCST by Dehaene & Changeux, 1991). Alternatively, from 
the predictive processing perspective of (Barceló, 2020) described above, it may be attrib-
uted to differences arising from successful versus unsuccessful prediction. However, it 
should also be noted that for some regions in the parameter space the model does produce 
reliable (and statistically significant) differences in response times as a function of prior 
feedback. Moreover, as reported in our previous work (Caso & Cooper, 2020), the model 
captures the different cortical responses elicited during early (rule induction) and late (rule 
application) trials along each card sorting series, as observed in electrophysiological studies 
(e.g., Barceló, 2003). This suggests that RT effects might be used as an additional constraint 
on parameter selection.

Neurobiologically, aging has been associated with a decreased concentration of neuro-
transmitters such as dopamine and noradrenaline in both frontal and striatal circuits (see, 
e.g., Kaasinen & Rinne, 2002). Our modeling results are consistent with this. More speci-
fically, the modeling provides evidence for the decline of two domain-general mechanisms 
in the older group, characterized in the model as εsma and εstr, and at a more mechanistic 
level as cognitive control and basal ganglia update. Findings from the modeling with respect 
to the mr parameter further suggest that aging might also affect the extent to which feedback 
from the previous trial affects the processing of the current one. This may represent 
a measure of feedback perseverance or inertia.

One intriguing possibility in the context of the aging brain is that the reparameterization 
necessary to simulate the behavior of the older group with respect to the younger group can 
be understood as a product of compensatory mechanisms. In particular, older participants 
might compensate for reduced mismatch reward sensitivity (higher wneg), but also greater 
feedback persistence (greater mr), by increasing cognitive control (cortically or subcorti-
cally, via greater εsma or εstr respectively). This possibility is consistent with the idea that the 
engagement of neural circuits in cortical structures is higher for older adults when the task 
load is lower, either because resources are not efficiently deployed, or alternatively because 
input in the prefrontal cortex is degraded (perhaps because of insufficient neurotransmitter 
concentration), as suggested by Reuter-Lorenz & Cappell (2008).

Conclusion

We have presented data which demonstrates that older participants tend to err more on the 
WCST and BRXT than their younger counterparts, but that the increased rates of errors of 
older participants are not due to perseverative rule application. Moreover, our data demon-
strate that, across the age spectrum, the tendency to perseverate on the WCST is positively 
associated with the tendency to produce stimulus and response (but not rule) perseverations 
on the BRXT. At a cognitive level, the increased rates of errors of older participants appear 
to be the product of reduced effectiveness of proactive control, rather than of decreased 
effectiveness of reactive control. Our neurobiological model demonstrates that both tasks 
can be conceptualized as modulated schema-driven behavior, and allows us to relate the 
cognitive-level effects to the neural level. Specifically, the model suggests that the decreased 
effectiveness of proactive control is in part or whole due to weaker adaptation during the 
tasks within the striatum, particularly when integrating the consequences of negative feed-
back for mismatching response schemas.
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Notes

1. For complete details, see (Caso and Cooper, 2020), and for complete source code for the 
simulations reported there, see https://github.com/AndreaCaso/wcst-pd.

2. In the experimental section of the paper, we reported BF10 as a measure of the likelihood of the 
alternate hypothesis relative to the likelihood of the null hypothesis. Here we report its 
reciprocal (BF01), as it is more appropriate as an index of model fit.

3. This is consistent with the differences between groups across the two tasks, i.e., that the 
difference between younger and older participants is less on the BRXT than on the WCST.
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