
Reconstructing Viral Genomes from the Environment
Using Fosmid Clones: The Case of Haloviruses
Inmaculada Garcia-Heredia1, Ana-Belen Martin-Cuadrado1, Francisco J. M. Mojica2, Fernando Santos2,

Alex Mira1¤, Josefa Antón2, Francisco Rodriguez-Valera1*

1 Evolutionary Genomics Group, División de Microbiologı́a, Universidad Miguel Hernández, Alicante, Spain, 2 Departamento de Fisiologı́a, Genética y Microbiologı́a,
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Abstract

Background: Metaviriomes, the viral genomes present in an environment, have been studied by direct sequencing of the
viral DNA or by cloning in small insert libraries. The short reads generated by both approaches make it very difficult to
assemble and annotate such flexible genomic entities. Many environmental viruses belong to unknown groups or prey on
uncultured and little known cellular lineages, and hence might not be present in databases.

Methodology and Principal Findings: Here we have used a different approach, the cloning of viral DNA into fosmids before
sequencing, to obtain natural contigs that are close to the size of a viral genome. We have studied a relatively low diversity
extreme environment: saturated NaCl brines, which simplifies the analysis and interpretation of the data. Forty-two different
viral genomes were retrieved, and some of these were almost complete, and could be tentatively identified as head-tail
phages (Caudovirales).

Conclusions and Significance: We found a cluster of phage genomes that most likely infect Haloquadratum walsbyi, the
square archaeon and major component of the community in these hypersaline habitats. The identity of the prey could be
confirmed by the presence of CRISPR spacer sequences shared by the virus and one of the available strain genomes. Other
viral clusters detected appeared to prey on the Nanohaloarchaea and on the bacterium Salinibacter ruber, covering most of
the diversity of microbes found in this type of environment. This approach appears then as a viable alternative to describe
metaviriomes in a much more detailed and reliable way than by the more common approaches based on direct sequencing.
An example of transfer of a CRISPR cluster including repeats and spacers was accidentally found supporting the dynamic
nature and frequent transfer of this peculiar prokaryotic mechanism of cell protection.
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Introduction

Viruses are a part of the genetic baggage of prokaryotic species

and, therefore, collecting genomes of viruses that infect a certain

prokaryotic species is of paramount importance in understanding

the genomic diversity of the host [2,3,4]. However, the problem of

characterizing phages of cells with poor culturability is a major

obstacle to properly describing the genomic diversity of these

prokaryotic species. Metagenomics provide a way to bypass the

difficulty of obtaining genomic information about microbes that

are hard to retrieve in pure culture, and sequencing the

metaviriome should help in complementing the genomic infor-

mation provided by the metagenome [5,6,7,8,9]. There are large

datasets of metaviriomes [4,10], but they are mostly short reads

that often cannot be assembled and are very difficult to study given

the enormous diversity of the gene complement of viruses and the

problems inherent in the annotation of viral ORFs. In addition,

with a few exceptions, viral metagenomes are often obtained after

amplification of environmental viral DNA using mostly two

methods (linker amplified shotgun libraries or multiple displace-

ment amplification) that have been shown to introduce different

biases in the recovery of viral diversity [11]. One way to improve

the descriptive power of metaviriome sequencing is by cloning the

purified viral DNA in fosmid vectors. They pack insert sizes that

are close to average sizes of viruses infecting prokaryotes i.e. ca.

40 kb and offer natural contigs much easier to interpret and

analyze [12].

Here we have combined the direct cloning of environmental

viral genomes with high throughput sequencing technologies to

describe putative viruses in an extreme environment of restricted

diversity: the NaCl saturated brines of the crystallizer CR30 of a

solar (marine) saltern of Santa-Pola (SP) (Alicante, Spain). This

same pond (CR30) has been studied for more than 30 years using

several approaches including cultivation, PCR 16S rDNA
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amplification sequence analysis, fluorescent in-situ hybridization

and metagenomics [13,14,15,16,17,18,19,20,21]. All these studies

show that members of the square archaeon H. walsbyi always

dominate the prokaryotic community in this pond, representing

between 60 and 80% of the cells present there. Actually, the first

strain of H. walsbyi (DSM 16790) to have its genome sequenced

[22], and one of the first two isolates of this species [23], comes

from CR30. Recently the metagenome of CR30 was described by

direct DNA 454 pyrosequencing [21] from the same sample as the

one used to construct the viral fosmid library described here.

Analysis of the rDNA fragments rescued from the metagenomic

reads confirmed the predominance of H. walsbyi (79%), followed

by S. ruber (9%), Halorubrum sp. (4%) and other haloarchaea 5%. In

this work, only 2% of the 16S rDNA fragments could not be

classified to a high-level taxon. The presence of the recently

described Nanohaloarchaea [24] was proven at lower salinities

(19%) in the SP saltern [21], but not in the 37% brine of CR30.

Although NaCl saturated brines are one of the lowest diversity

aquatic habitats on earth, it is well known that they harbor one of

the highest number of virus-like-particles (VLPs) reported for

planktonic systems, from 7.36107 [25] to 26109 VLP ml21 in the

crystallizer ponds [26] and the Dead sea [27] respectively. In salt

lakes, haloviruses generally outnumber cells by 10 to 100-fold [28].

Since the crystallizer of the SP saltern is dominated by Archaea and

more specifically by H. walsbyi, it is to be expected that most of the

viruses found here should prey on this microbe. Unfortunately, the

extremely slow and demanding conditions for growth of this

microbe [23] have prevented thus far the isolation of its viruses.

However, phages have been obtained as pure cultures from other

haloarchaea for many years (Halobacterium, Natrialba sp., Haloarcula

sp., Haloferax sp. and Halorubrum sp.), and some of them have been

sequenced (see review [29]). Most are head-tail viruses with double

stranded linear DNA genomes (such as in HF1 and HF2, phiH,

phiCh1, psiM1 and BJ1) and many times a packaging model

accounting for the partial circular permutation and terminal

redundancy of the DNA has been suggested. However, other

morphologies and DNA structures, e.g. spindle-shaped (His1 and

His2), icosaedric (SH1) or pleomorphic (HHPV-1 and HRPV-1)

or single stranded DNA as HRPV-1 have also been described.

The morphology of viral particles in saturated brines has also

been studied directly by electron microscopy of crystallizer

samples. It was shown that Haloquadratum-like cells (flat squares)

are frequently infected by lemon-shaped viruses, normally with

high burst sizes, up to more than 350 VLPs per infected cell [26].

Other works, like the metaviriome study in lake Retba (Senegal)

showed that 46% of the virus- like particles were spindle-shaped,

followed by spherical viruses (35%), filamentous viruses (13%) and

no more than 1% had head-tailed shapes [30]. However, by

sequencing 16S rDNA libraries from this lake, only 9% of the

community was adscribed to Haloquadratum. Besides, viruses with

other morphologies have also been detected infecting Haloqua-

dratum [31], probably head-tail viruses (personal communication).

Along the same lines, other hypersaline environments dominated

by Haloquadratum-related lineages have a very low concentration of

lemon-shaped viruses, as observed in a Tunisian coastal solar

saltern (Boujelbene et al., submitted) or some samples of CR30

[32]. At the moment of this work, the only spindle-shape viruses

isolated in pure culture are the ones of the thermophilic archaeon

Sulfolobus (Fuselloviridiae family).

Presently, only one putative halophage (the host remains

unidentified) genome, EHP-1 [33] has been obtained by a

culture-independent approach (again from CR30) We have cloned

and sequenced 42 fosmids containing genomes from the dsDNA

viral fraction collected from CR30, 14 of which could be clearly

assigned to H. walsbyi viruses based on GC content, tetranucleotide

frequency analysis and the presence of CRISPR protospacers [34].

In addition, we have identified two fosmids clusters that could

correspond to viruses infecting organisms of the recently described

Nanohaloarchaea cluster [21,24].

Results and Discussion

General features and classification of the viral contigs
Viral DNA was extracted and fosmid libraries were constructed

from two samples of the crystallizer pond CR-30 taken during

summer and winter 2008. Two additional fosmids (eHP-D7 and

eHP-E5) from a viral metagenomic library constructed previously

(sample taken in spring 2007) from the same pond [20] were also

sequenced. In total, 42 fosmids (ca. 1.2 Mb) representing partial to

almost complete (see below) viral genomes were reconstructed.

Table S1 supplies the annotation of all the ORFs detected. As

shown in Table 1, the sizes of the viral genomic fragments

sequenced ranged from 20.2 to 43.6 kb, which fall in the genome

size range previously reported from viruses inhabiting CR-30

[20,32,35]. Therefore, we can safely assume that the contigs

correspond to significant fractions of the genomes from virus

particles present in the crystallizer water at the time of sampling.

Also the fosmids covered the whole range of GC content (43.9% to

60.8%) characteristic of the cells known to be abundant in the

saltern [19,36] (Table 1). When we compared the viral DNA

sequences, it was possible to classify 31 from the 42 contigs into 6

different clusters which shared more than 75% nucleotide identity

over at least 3 kb. These six clusters were also supported by

tetranucleotide frequency analysis and codon usage (Figures 1, 2, 3

and S1). We have used these parameters to tentatively assign hosts

to the putative viruses. Although the similarity in the codon usage

and tetranucleotide frequencies among viruses and their hosts has

been very often observed [37,38], and has been used to detect the

putative hosts [20,39], the method is not failsafe. There are

cyanophages that carry their own tRNA genes and do not need to

have the same codon usage of the host to infect a cell [40]. Also,

even in the absence of tRNAs it is possible to find viruses with

almost a 20% different GC content with their host e.g. His1 and

His2 of Haloarcula hispanica [41]. However, In the case of cluster 1,

host assignment by codon usage (Figure 1) and tetranucleotide

sequence analysis was confirmed by the presence of a CRISPR

protospacers in the contigs.

Cluster 1: H. walsbyi phages
Fourteen sequences correspond unequivocally to phages of H.

walsbyi since they contain proto-spacers of CRISPR repeats found

in the genome of the isolate H. walsbyi C23 (see below). Besides,

they also clustered with H. walsbyi by codon usage (Figure 1) and

tetranucleotide frequencies (Figure S1). The viral genomes

retrieved are represented in Figure 2A. The genomes are largely

collinear indicating the genome is linear rather than circular. With

the exceptions of Halorubrum phage HRPV-1 and Haloarcula phage

HHPV-1 (both pleomorphic) and with circular genomes all

haloarchaeal phage genomes known are linear [29]. Cluster 1

genomes share a remarkable synteny (Figure 2A) although gene

order is sometimes rearranged in a way reminiscent of the

circularly permuted gene order seen in some phages that replicate

by the rolling circle mechanism [42]. Besides, they contain similar

highly conserved genes (shown in bold in Figure 2), including a

hypothetical protein with a DNA binding domain followed by two

small hypothetical proteins exclusively found in this cluster, a gene

annotated as a cytolytic toxin and another two hypothetical

proteins (one of them with only the N-terminal domain partially

Recovering Halovirus Genomes from the Environment
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Table 1. Main features of the fosmids.

Cluster
Fosmid
designation Length %GC Putative host

Num.
ORFs

Num. reads
recruited SP
metaviriome#

Num. reads
recruited SD
metaviriome$ Underrecruiting ORFs

eHP-2 27204 43.90 H. walsbyi 42 45 2026 Glucanase/3HP

eHP-5 29473 44.06 H. walsbyi 45 51 2099 Glucanase/2HP/2nuclease

eHP-9 30090 45.79 H. walsbyi 39 14 624 Primase/3HP

eHP-22 33770 43.79 H. walsbyi 51 52 2246 2Methyltransferase/2HP

eHP-24 32681 44.19 H. walsbyi 51 50 2353 Nuclease/5HP

eHP-29 21453 44.44 H. walsbyi 32 40 1272 Nuclease/tRNA/TerS/7HP

1 eHP-37 30300 44.81 H. walsbyi 40 47 2155 Primase/2HP

eHP-38 (*) 26566 44.64 H. walsbyi 33 32 1408 2HP/primase/terminase

eHP-39 (*) 21302 43.95 H. walsbyi 28 25 1696 2Methylase/3HP

eHP-40 (*) 33481 44.07 H. walsbyi 55 45 1989 HP/methylase

eHP-41 (*) 20197 44.84 H. walsbyi 29 26 1225 2HP/primase

eHP-42 (*) 23125 44.85 H. walsbyi 31 23 1245 3HP/primase

eHP-D7 (+) 31094 44.78 H. walsbyi 43 39 2033 Glucanase/5HP/Primase

eHP-E5 (+) 32692 45.04 H. walsbyi 41 56 2265 2HP/Primase

2 eHP-23 31231 43.47 Nanohaloarchaea 47 0 0 -

eHP-35 31263 43.68 Nanohaloarchaea 47 0 0 -

eHP-4 30520 50.76 Nanohaloarchaea 49 1 0 -

3 eHP-8 34381 50.59 Nanohaloarchaea 57 1 0 -

eHP-13 35126 50.60 Nanohaloarchaea 58 1 0 -

eHP-1 29837 51.00 - 50 3 1 -

4 eHP-15 37310 51.57 - 68 2 1 -

eHP-19 21190 51.67 - 39 3 0 -

eHP-34 34179 52.29 - 55 1 1 -

eHP-6 37376 56.76 - 58 19 443 -

5 eHP-12 27204 56.34 - 57 22 548 -

eHP-16 29473 56.45 - 41 14 409 -

eHP-36 30090 56.92 - 53 16 472 -

eHP-3 33770 56.60 S. ruber 31 0 0 -

6 eHP-17 32681 57.02 S. ruber 34 0 1 -

eHP-18 21453 57.62 S. ruber 59 0 1 -

eHP-33 30300 57.19 S. ruber 35 0 1 -

NC eHP-7 26566 58.56 S. ruber 42 0 2 -

eHP-10 21302 59.99 S. ruber 44 0 56 -

eHP-11 33481 58.49 H. lacusprofundi 35 0 0 -

eHP-14 20197 57.82 H. lacusprofundi 57 0 0 -

eHP-20 23125 52.09 58 1 203 -

eHP-25 31094 44.28 Nanohaloarchaea 32 0 0 -

eHP-27 32692 60.80 S. ruber 44 0 0 -

eHP-28 31231 57.94 - 36 2 0 -

eHP-30 31263 45.94 Nanohaloarchaea 60 2 0 -

eHP-31 30520 62.36 - 48 0 1 -

eHP-32 34381 60.36 H. lacusprofundi 56 0 29 -

(*) Samples recovered in January 2008. (+) Samples recovered in May 2007. Other samples recovered in June 2008.
NC: non-classified fosmids;
#SP metaviriome: Metaviriome from Santa Pola saltern CR30 [20];
$SD metaviriome: Metaviriomes from San Diego high salinity [5]. HP: Hypothetical protein.
doi:10.1371/journal.pone.0033802.t001
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conserved). Also very well conserved are the genes coding for

protein distantly related to the portal protein of phage-Mu, and a

capsid protein that are always present in the same order. The non-

conserved regions of the fosmids in this cluster are often very rich

in short hypothetical proteins. The order of genes involved in

morphogenesis is a conserved feature in some viral groups such as

tailed phages and prophages [42], [43]. It is noteworthy that the

phages of cluster 1 have been retrieved from the three samples

used in this work and are probably major components of the

viriome like its putative prey (H. walsbyi) is of the prokaryotic

community.

In 11 of these fosmids, there is a gene coding for a terminase

large subunit (TerL) together with a small protein which has a

DNA binding domain, is always upstream, and corresponds in all

probability to the small subunit of this enzyme (see below). These

two genes are particularly relevant since they are considered

hallmarks of head-tail phages. Terminase enzymes are hetero-

oligomers comprising a small and a large subunit and are

components of the molecular motor that translocate genomic

DNA into empty capsids during DNA packaging in the head-tail

viruses, order Caudovirales (dsDNA viruses with a head-tail

morphology) [44]. Actually, a search of terminase homologues

has been used to identify tailed proviruses integrated in archaeal

genomes [45]. It is remarkable that all the fosmids of cluster 1 (and

all the other clusters described here, see below) possess both

terminase subunits (eHP-42 and 39 did not have them but these

genomes appeared to be incomplete). Although the small subunit

(TerS) could not be identified by similarity, a small protein which

contains two long helices (essential for the functionality of the small

terminase subunit [46]) is always upstream of TerL. This gene is

likely to be the TerS of cluster 1, albeit with little similarity to

previously described TerS genes. On the other hand, since both

large and small subunits are needed for a functional ‘‘normal’’

terminase, and we have found only homologues to the large subunit,

we cannot rule out the possibility that a family of terminase-like

proteins partially related to that of Caudovirales is present in other

viral genomes with some relevant functions (as anticipated by its

wide distribution in our metaviriome). However in view of all the

other evidence this seems unlikely since many other lines of evidence

point to the Caudovirales affiliation of cluster 1. The capsid gene

found in cluster 1 shares a low but significant similarity with the

GpE capsid from the Natrialba head-tail virus phiCh1 [47,48].

Another finding that supports the idea that the viruses of cluster 1

are head-tail viruses is the large proteins (up to 800 aminoacids)

found downstream of TerL (in green in Figure 2B). Similar proteins,

with a domain of ca. 100 amino acids near the C-terminus that

shows significant similarity to a morphogenesis protein (gpF) of

phage Mu, are found downstream of TerL in methanococcal

proviruses (psiM2, psiM100 and Msmi-Pro1) [49] and in Natrialba

sp. virus phiCh1, all typical head tail viruses. These kind of proteins

have been proposed to work as portal proteins, which are essential

for tailed viruses development and infection [50]. Finally, the overall

similarity found in the structure of viruses of cluster 1 with many

Caudovirales viruses [50], where genes are clustered in three separate

modules for DNA packaging, structural components and DNA

replication module (Figure 2B), strongly suggests that these H.

walsbyi phages belong to this type. Downstream from the capsid

gene, three of the putative viral genomes had ORFs annotated as

glucanases. These genes are found in plant and bacterial viruses and

are involved in degrading the host cell wall either during virus

release and/or is packaged in the virion particle and then degrade

the polysaccharide envelope to allow virus entry into the cell

[51,52]. Although these genes appeared only in three of the contigs,

similar genes were found in other clusters and in a previous

metaviriome [20]. All known haloarchaea have glycoprotein S-

layers, and often exopolysacharide containing, cell envelopes, thus

Figure 1. Principal component analysis of the codon usage of the assembled viral contigs and halophilic genomes. Complete
genomes are shown as larger circles and the small dots correspond to the viral contigs. Different clusters are shown in different colours. In addition,
clusters have been highlighted encircled by dashed-lines. Fosmids not part of any cluster are shown as ‘‘other contigs’’ in orange and labeled as in
Table 1.
doi:10.1371/journal.pone.0033802.g001
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the presence of glucanase genes in the viruses fits well with the cell

biology of the putative host.

This was unexpected since tailed viruses, although present in a

relatively high proportion in the crystallizer CR-30, are not the

dominant morphotypes [26]. One possible explanation is that,

although one of the protocols used here (for both 2008 samples)

has often been applied to the retrieval of environmental virus

particles in metaviriomic studies, it is based in the lambda

bacteriophage CsCl purification, a head-tail virus. Therefore it is

possible that the protocol is biased to retrieving these kinds of

viruses. However, comparison of the sequences of cluster 1 against

the metaviriome of CR30 [20] point out against the existence of

this methodological bias. Part of that metaviriome was constructed

using a different methodology without CsCl gradient purification

(see Materials and Methods). From a total of 22 fosmids-ends, 14

(63.6%) have a significant similarity with some region of a cluster 1

fosmid, which means that these head-tail viruses are frequently

retrieved even with other isolation protocols. In any case,

recruitment studies leave little doubt about the high prevalence

of cluster 1 viruses in the CR30 and other saltern brines (see

below).

CRISPR related elements found in cluster 1. Most

sequenced archaeal genomes contain at least one CRISPR/Cas

system [53,54]. These genetic landmarks are composed of one or

more arrays of short (most in the range 23–38 bp) regularly spaced

direct repeats called CRISPR (Clustered Regularly Interspaced

Short Palindromic Repeats) and a variable set of cas (CRISPR

associated) genes [55]. Repeats are separated by sequences (known

as ‘‘spacers’’) that derive from other sequences (i.e. ‘‘proto-

spacers’’) located outside CRISPR loci, notably in viruses and

plasmids of the microbe carrying the spacer. Spacers are

considered to be either copied or transferred into the CRISPR

array from the foreign element during an unsuccessful attack

[56,57,58,59]. Furthermore, the possession of spacers homologous

to invader DNA molecules protects the cell against further

infection by the alien element [56,60]. Thus, for a given isolate,

the presence of a spacer homologous to a sequence in a mobile

element, such as a virus, is a strong indication that the strain has

been a host of the infectious element. So far, there are two cultured

representatives of H. walsbyi: strains C23 and HBSQ001, isolated

respectively from Australian salterns and from the crystallizer

CR30 (Spain) [23,34]. The analysis of their genomes revealed that

Figure 2. Comparative genomic organization of viral fosmids of cluster 1. Conserved genomic regions between fosmids are indicated by
red shaded areas, red intensity being a function of sequence similarity by BLASTN. Specific ORFs mentioned in the text are labeled. Conserved ORFs
are in bold. (B) Conserved modules in cluster 1 using eHP-E5 as a model. Gene colour-code is based on the functions assigned to the genes.
doi:10.1371/journal.pone.0033802.g002
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C23 contains two CRISPR systems, belonging to subtypes I-D and

I-B respectively according to the current classification [61], while

HBSQ001 only contains remnants of the I-B system [34].

The 85 CRISPR spacers present in H. walsbyi C23 were compared

against our fosmid sequences as described in Material and Methods.

These BLASTN searches revealed sequences, located in fosmids eHP-

2, 5, 22, 24, 38, 39 and 40 with identities over 90% to 4 H. walsbyi

spacers (Figure 4). This is the identity threshold established to consider

a sequence as a proto-spacer [58,62,63,64]. Additional fosmids

carrying sequences with lower identity to spacers (75–89%) were also

detected (eHP-9, eHP-37, eHP-41, eHP-42, eHP-D7 and eHP-E5).

All the fosmids in our metaviriome harboring putative H. walsbyi

proto-spacers are included in cluster 1, which reinforces the hypothesis

that this cluster contains viruses infecting H. walsbyi assemblages. This

is remarkable considering that strain C23 was isolated from salterns

located more than 16,000 km away from CR-30.

Figure 3. Comparative genomic organization of viral fosmids of cluster 2 (A), 3 (B), 4 (C), 5 (D) and 6 (E). Conserved genomic regions
between fosmids are indicated by red shaded areas, red intensity being a function of sequence similarity by BLASTN. Specific ORFs mentioned in the
text are labeled. Conserved ORFs are in bold. Colour code is same as Figure 1.
doi:10.1371/journal.pone.0033802.g003
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For a CRISPR system to confer immunity, the occurrence of a

short motif (named PAM for Proto-spacer Adjacent Motif; [62]

next to a particular end of the proto-spacer is required [65,66].

The PAM sequence depends on the CRISPR/Cas variant

[62,67,68,69]. Thus, the presence of the corresponding PAM

adjoining a sequence homologous to a given putative proto-spacer

[62] supports (i) that the sequence is indeed a proto-spacer and (ii)

the element carrying the sequence is infecting the host harboring

the spacer. In order to identify PAM motifs for each of the two

CRISPR/Cas systems of H. walsbyi, we aligned regions containing

those proto-spacers with over 90% identity to spacers previously

identified by Dyall-Smith and coworkers (2011). The conservation

of the di-nucleotide GC was observed one position after the proto-

spacers of the I-D system, and the tri-nucleotide GAA was found

adjacent to the proto-spacers of the I-B system (Figure S2). In both

cases, the orientation of the PAM with respect to the spacers in the

CRISPR arrays (proximal to the leader) concurred with that of the

motifs previously defined for type I CRISPR/Cas systems [61,62].

As expected, the proto-spacers of the 4 spacers mentioned above

had the corresponding PAM in the correct position (Figure 4).

These data strongly support the hypothesis that the viruses

carrying these spacers infect H. walsbyi, and stand for a CRISPR-

mediated interference of strain C23 against them.

Cluster 2
Cluster 2 includes two low GC fosmids, eHP-35 and eHP23

(Figure 3A), whose genomes might be circularly permuted as the

order of the genes was completely rearranged by translocation in

the two fosmid sequences. According to the oligonucleotide

composition (Figure S1), they could be associated to the only

other low GC archaeal group that has been detected in saturated

brines, the Nanohaloarchaea [21,24]. This association was less

clear by codon usage analysis (Figure 1). However, this new

archaeal group is only represented by three genome fragments,

none of which come from a solar saltern crystallizer. Recruitment

analysis with the available genomes (that come from hypersaline

Figure 4. Alignments of CRISPR spacers of H. walsbyi C23 and homologous sequences (proto-spacers) found in our metaviriome.
Putative PAM positions at the 39 end of the proto-spacers are also included. Proto-spacers are identified by the name of the carrier fosmid and
spacers by the letter of the corresponding CRISPR/Cas subtype. All proto-spacers have the PAM inferred from the analysis shown in Figure S2. PAMs
(i.e. NGG or GAA for I-D and I-B systems respectively).
doi:10.1371/journal.pone.0033802.g004
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lake Tyrrell (Australia) [24] and an intermediate salinity pond in

the Santa Pola saltern) against the CR30 metagenome [21]

indicated that distantly related Nanohaloarchaeal cells are found

in significant numbers in CR30 (identity ca. 80% to any of the

available genomes). Therefore it is possible that these two phages

infect new groups of Nanohaloarchaea not yet revealed. This

could also be the case for the eHP-30 and eHP-25, that although

do not form a cluster, are relatively close to the Nanohaloarchaea

by tetranucleotide frequencies and codon usage.

The genes found in the two fosmids in Cluster 2 are very similar

(average 94.59%) and they contain the hallmark terminase gene

also preceded by the small gene that codes for the putative small

subunit like those of cluster 1. Therefore, they also could be

members of the Caudovirales, as they share a similar order of the

genes (terminases- and portal protein [50]. Another interesting

gene found in this cluster is the prohead protease that is in the

same order as observed in many Caudovirales relative to the

terminases and the portal protein. Again, here glucanase genes

followed the portal protein, what might be taken as an indication

that the Nanohaloarchaea also have a polysaccharide containing

cell wall. Very little is known about this new group of halophiles.

Clusters 3–6 and unclassified fosmids
Low GC fosmids. By tetranucleotide analysis there are other

two low-GC clusters, 3 and 4, with no host assignation (Figure S1)

and together with eHP-20 (Figure S4), they form a tight group by

codon usage (Figure 1). Cluster 3 is formed by three fosmids

(Figure 3B), two of them eHP-13 and eHP-8 are completely synthenic

and share 100% identity. In the third one, eHP-4, the conservation is

reduced to some genes. However, the capsids and also the putative

portal protein are well conserved as found in cluster 1. At the 59 end

of eHP-13 and 8, there is a phosphoadenosine phosphosulphate

(PAPS) reductase similar (51%) to the one found in the Rhodococcus

phage RequiPine5 [70], also a member of the family Caudovirales. One

of the genes that could help to affiliate this group of sequences is the

gene with a calcineurin-like phospho-esterase domain found at the 39

terminus. As suggested before [71], this domain is very well conserved

in the small subunit of archaeal DNA polymerase II. The domains of

the genes found in the fosmids of cluster 3 have a similarity of 37 and

40% to the DNA polymerase II of Nanoarchaea equitans Kin4-M and

the one of Candidatus Nanosalina respectively. This suggests these

phages also infect the Nanohaloarchaea.

Cluster 4 (Figure 3C), also contains the terminase genes (except in

eHP-15 that is probably truncated and in eHP-1 where only the

small subunit is conserved). On the other hand, the F-like protein

(portal like) at the 59 terminus is conserved in all of them. The flip

observed in eHP-19 and the conserved regions between the fosmids

suggest that their genomes could also be circularly permutted. All

the contigs in this cluster have, like in cluster 3, the gene with a

calcineurin-like phospho-esterase domain. However, this gene

belongs to a non-conserved metallophosphatase not found in

DNA polymerases and with no similarity to nanoarchaeal genes.

Also, it is worth mentioning the presence of a gene coding for a

plasmid stabilization system of similar length in all of the genes in

the contigs of cluster 4 as well as in the non-clustering fosmid eHP-

10 (Table 1). Members of this family are described as ‘‘plasmid

stabilization protein’’ although the exact molecular function of these

proteins remains largely unknown (Boujelbene et al., submitted).

Homologues have been found in bacterial and archaeal genomes as

well as in 6 bacteriophages (Burkholderia phages phi644-2, phiE125,

and phage phi1026b, Mycobacterium phage Fruitloop, Mannheimia

phages phiMhaA1-PHL101 and phiMhaA1-BAA410), all of them

of the Caudovirales family. eHP-34 has a helicase, which are proteins

very well conserved in archaea and eukaryotes, but also are present

in other head tail halophages such as BJ1 that infects Halorubrum

[72]. All these data suggest that, again, phages from cluster 4 are

head-tail viruses.

High GC fosmids. By tetranucleotide analysis (Figure S1),

cluster 5 could not be assigned to any host, but there is protein

near the 59 terminus in eHP-12 that has a 67% of similarity to the

protein coded by an ORF of the 47 Kb plasmid pL47 (HQ4002A)

of H. walsbyi DSM 16790. However, no other similarity was found

along the plasmid. As it was found in cluster 1, the fosmids of

cluster 5 also have the primase subunits and as suggested by the

order rearrangement of the ORFs, they are also viruses with

circular or circularly permuted genomes (three of them eHP-16,

eHP-6 and eHP36 have similar structure) (Figure 3D). In addition

to the conserved terminases and the presence of capsids, a tail

protein with a domain only found in Caudovirales (56% similarity to

the Streptomyes phage mu1/6) was found here. A tail sheath protein

42% similar to the Halorubrum phage HF2 and a base plate J-like

protein leave little doubt about the head tail nature of these

viruses. The presence of these proteins suggests that cluster 5 could

correspond to phages with a more complex structure. In complex

phages, like T4, tails are surrounded by a sheath that contracts

during infection, and at the end of the tail they have a base plate

and one or more tail fibers attached to it. The base plate and tail

fibers are involved in the binding of the phage to the bacterial cell.

Downstream of these tail proteins, a phage late control D protein,

which is needed for the lysis of the cell, was detected. These data

point out that these viruses could be lytic phages and might explain

the high recruitment observed in the metagenomes (Table 1) (see

below), particularly considering that if the host is a high GC

microbe, it cannot be very abundant in CR30. In addition to the

‘‘normal’’ viral proteins, we also found some unexpected gene

products such as the proliferating cell nuclear antigen (PCNA)

homologues found in all the viruses of this cluster (Figure 3D) (plus

eHP-11 and eHP-14, outside this cluster). This protein is a non-

histone acidic nuclear protein that plays a key role in the control of

eukaryotic DNA replication. Homologues of PCNA have also

been identified in the Archaea as well as in dsDNA viruses

infecting different phototrophic and heterotrophic protists and in

virus phiCh1 infecting the haloalkalyphilic archaeon Natrialba

magadii [48].

CRISPR related elements found in cluster 5. Most

CRISPR have been found in chromosomal regions unrelated to

mobile elements [53]. Only occasionally, CRISPR/Cas components

are located in plasmids and prophage related sequences [73], which

could mediate their spread by lateral gene transfer (LGT). Indeed,

LGT of CRISPRs has been observed between distant taxonomic

groups [74,75,76]. The search of CRISPRs in our metaviriome

revealed an array with five repeats with the corresponding four

spacer sequences (Figure S3). This repeat-spacer cassette is found

also in fosmid eHP-16, which is included in cluster 5. In an attempt

to identify the origin of these CRISPRs, BLASTN analyses were

carried out against the nr/nt database at the NCBI web site (http://

www.ncbi.nlm.nih.gov/BLAST/). While spacers did not have any

significant match in the database, repeats were related to those of

haloarchaeal genomes (Figure S2). The presence of CRISPR in the

viral genome can be explained through an LTG event from the host

to the virus in a previous infection event. Many viruses acquire genes

from their host along the infection cycle [77], a phenomenon that in

many instances has been proven to confer advantages to the virus

[78]. In this case, although we are not able to envisage any putative

advantage for eHP-16, the presence of the CRISPR system can be

used to make an assignment of its putative host. Most likely,

ancestors of eHP-6 have infected high GC haloarchaea such

Haloferax or Natronomas species, both haloarchaea with GC ranging
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within the values found for cluster 5. So far, the presence of CRISPR

systems in free viruses had been detected in the human gut virome

[79] and was also reported in a potential prophage found in the

genome of Clostridium difficile [73]. This third report underscores the

relevance of viruses as gene transfer agents for CRISPR cassettes.

Fosmids of cluster 6 (Figure 3E) together with other three

unrelated fosmids (eHP-7, 10 and 27, (Figure S4)) cluster with S.

ruber DSM 13855 by tetranucleotide analysis (Figure S1) but this

affiliation could not be confirmed by the codon usage that was

different (Figure 1). Three of the four fosmids of this cluster (eHp-

33, 18 and 17) are nearly identical (100% identity in 20 kb). The

fourth, eHP-3, is distantly related and the conserved region is

reduced to the terminases and a few domains of hypothetical

proteins. Most of the predicted proteins of this cluster contigs

lacked homologues in the public databases. It is remarkable the

degree of conservation of the three nearly identical contigs found,

suggesting that this single clonal virion is very abundant or has

been recently been released en masse from a population of prey

cells. If they really prey on S. ruber, an organisms that appears

to be always a minor component of the population, they might be

under a lower pressure to change, since probably the host cells are

also less diverse than other more abundant dwellers such as H.

walsbyi [1].

Other not classified fosmids of high GC are eHP-11, 32 and 14.

All are grouped together by tetranucleotide frequency with

Halorubrum lacusprofundi ATCC 49239 but, again, the codon usage

analysis shows them to be distinct. Only two of the 42 analyzed

fosmids, eHP-31 and eHP-32, outside the 6 main clusters

described above, harbor genes coding for integrases. Thus,

according to these results and if we assume that most of the

fosmids represent almost complete viruses, only a small proportion

of the viruses present in the crystallizer at the time of sampling

have the potential to undergo a lysogenic cycle. This is in

agreement with a previous study of the viral metagenome of the

same crystallizer in which also a small number of genes coding for

integrases were found [20]. This, however, does not rule out the

possibility that the viruses studied here carry out chronic infections

in which viruses extrude continuously from the cell without

causing lysis. In fact, chronic infections [29] have been proposed to

be the most prevalent type of infection for archeoviruses [80], that

most likely dominated viral communities in hypersaline environ-

ments, although so far there is no direct evidence of such

prevalence in natural environments.

Comparison of the clusters to each other and to
hypersaline metagenomes

All the viral sequences were compared to each other (Figure 5)

and to previously published viral and cellular metagenomes from

hypersaline environments (Figure 6A). Self-to-self analysis re-

turned a total of 1162 hypothetical proteins that were conserved in

different viral genomes and should thus be considered as

conserved hypothetical proteins [20]. In this way, the amount of

HP provided by the automatic annotation was reduced in 65%.

Approximately 75% of these new HPs turned out to be specific of

a given cluster (346 of cluster 1, 77 of cluster 2, 109 of cluster 3,

131 of cluster 4, 126 of cluster 5 and 86 of cluster 6). It is worthy to

note the high number of cluster specific proteins among the

complete set of conserved HP in fosmids. Some clusters shared

very few ORFs with the rest, such as cluster 2 which did not have

hits with any other cluster.

The fosmids were also compared with previously published

cellular and viral metagenomes from two multipond solar salterns

located in San Diego, California [5] and Santa Pola, Spain [20,21]

(Figure 6A). The two samples from Santa Pola saltern corre-

sponded to two ponds of 19% (SS19) and 37% salinity (CR30,

identified as SS37 in [21]). The 37% CR30 salinity sample was the

same as the June 2008 sample used in this work, as described in

the Materials and Methods section. At first glance, it is obvious

from Figure 6A that there are discontinuities in contig recruitment

patterns between the different clusters partially associated to their

GC content (upper panel in the figure). Low GC contigs recruited

much more than high GC ones what is concordant with the

dominant GC content of the dominant members of the population

[19,36]. The cluster that displays a higher number of hits in the

analyzed metagenomes is cluster 1 (Table 1), in good agreement

with the high abundance of H. walsbyi in these systems. However,

fosmid eHP-9 recruited significantly fewer hits indicating either

uneven densities or that the differences in the genome (Figure 2A)

prevent cross-recruitment with other viriotypes. Fosmid eHP-7

that might prey on S. ruber, shows a remarkably high recruitment

from the metagenome SS19, and only a few hits from SS37

(Figure 6A, 6B and Table 1). The microbial community of these

two ponds has been analyzed by an in-depth metagenomic study

[21] and the number of environmental hits to S. ruber type strain

genome with SS19 (19% salinity) was two-fold the hits to the

CR30 (SS37) metagenome. All these data suggest that eHP-7 may

be infecting bacteria closely related to S. ruber. However, there are

other Bacteroidetes in SS19 related to Salinibacter that could be acting

as host for eHP-7. This could be also the case of contigs eHP-10

and eHP-27 that, to a different extent, follow the patterns

described for eHP-7.

As the recruitment was abundant in the SD metaviriomes and

the CR30 cell metagenome for the fosmids of cluster 1, individual

virus genome recruitments assays could be carried out as the

Figure 5. Self-against-self. BLASTP searches within all the contigs.
ORFs are referenced by a numeric label ranging from 1 to 1914
(‘‘locator’’ in the axis) and ordered by clusters (1–6). Black dots represent
BLASTP matches showing an alignment length below 100 bp, while red
dots show alignments equal to or greater than 100 bp. Vertical lines
indicate the clusters (1–6).
doi:10.1371/journal.pone.0033802.g005
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examples shown for eHP5, eHP-E5 and eHP22 in Figure 6B. The

lack of even recruitment by the phage genomes, i.e. some genes

recruit much more and at much higher similarity than others, is

immediately obvious. This is reminiscent of the metagenomic

islands described for genomes of bacterial or archaeal strains

[19,81,82] that has been shown to be a widespread phenomenon

at least in aquatic habitats [1,83]. In cellular genomes the islands

often code for phage receptors exposed on the cell surface and

have been postulated to provide diversity of targets to distribute

the load of phage predations among the different clonal lineages in

the population. This model has been termed constant-diversity

and was recently supported in a Prochlorococcus model system [84].

Figure 6. Recruitments of environmental datasets by the viral fosmids. (A) Recruitment of the environmental reads of Santa Pola (SS19, SS37
[21] and SP metaviriome [20]) and San Diego (SD metagenome and metaviriome [5]) saltern by the viral fosmids. An artificial concatenate of ORFs
were constructed and BLASTN was used to make the comparison. The order follows increasing values of the GC content (upper panel). Vertical lines
separate the clusters 1–6 (in red) and the not classified ones (in green). (B) Recruitments of San Diego metaviriome by the fosmids eHP-E5, eHP-5,
eHP-22 and eHP-7. Underrecruiting islands are indicated by red rectangles and the function of the genes is indicated when known. Colour code as in
Figure 1.
doi:10.1371/journal.pone.0033802.g006
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This model would also predict that a similar diversity would be

found in the phages at the level of adapting to the different clonal

cellular lineages. Along these lines we have found some under-

recruiting genes that indicate a clear correlation with host

recognition. The glucanase of cluster 1 was under-recruiting in

all the genomes in which it was found. This would be a gene for

which a high level of diversity would be essential to recognize the

diversity of cell envelope polysaccharides of the putative hosts [81].

The difficulty of annotating many of the phage ORFs found here

precludes more refined analysis, i.e. many of the under-recruiting

ORFs are only HPs. However, a few other examples were

detected. The second part of the gene annotated as RTX toxin

might be involved in cell lysis and slight differences in the

intracellular environment of the host might require different

versions. The same can be said about nucleases, primases and

methylases all of which under-recruited totally or partially.

Conclusions
Using a combination of cloning in fosmids and high throughput

sequencing we have obtained the sequence of 42 almost complete

viral genomes directly retrieved from the metaviriome. Previous

metaviriomes, even from low diversity environments did not allow

assembly of near complete genomes. Therefore, although this

approach might be biased by the limitations of fosmid cloning, it

appears as the most productive in terms of information about the

viral population in an environment. We could assign many of the

viruses to a putative host and also to infer the type of virus.

We have been able to describe a new group of phages that prey

on the square archaeon H. walsbyi, the predominant microbe in

saturated NaCl brines. The presence of CRISPR protospacers in

some of the phages in this cluster prove this association and could

also help identify the natural host of other environmentally

extracted viral entities. To the best of our knowledge, this is the

first metagenomic study analyzing the diversity of viruses infecting

a specific microbe using a culture-independent approach. Along

the same lines, we have been able to detect groups that probably

prey on S. ruber and the newly described, and as yet uncultured,

Nanohaloarchaea, covering thus most of the abundant cellular

types that are found in this environment. Some CIRSPR

sequences described in Haloferax and Natronomonas genomes were

also found in the genomes of viruses of cluster 5 what could be

taken as indication that these viruses prey on the high GC

haloarchaea. Additionally this finding indicates a role of viruses as

carriers of CRISPR elements (both the tandem repeat and the

spacers) by lateral gene transfer.

In spite of the predominance of archaea in the cellular

community of the saturated brines, all the viral genomes described

here have tell-tale features that are typical of the head-tail phages

Caudovirales, the most common type of bacterial phages. More

characteristic archaeal phages, such as the spindle shaped

Fuselloviridae, were not retrieved by this approach, a phenomenon

previously observed in other halophilic metaviriomes [20,30].

The variability of the recruitment efficiency of the reconstructed

phage genomes from metaviriomes of short reads allows detection

of genome regions that are highly variable. We have found high

variability of genes such as glucanases that are clearly associated to

variation in the exposed cell structures of the host. This indicates a

high diversity of viral clones that are different at the level of host

recognition features [1]. The high recruitment of viral genomes

from cellular metagenomes indicates that a high number of viruses

is contained inside the cells at the sampling time and that the

viruses are undergoing a lytic or a chronic infection cycle rather

than lysogenic what is in good agreement with the lack of integrase

genes found in cluster 1.

Materials and Methods

Sampling and isolation of viral DNA
Water samples were filtered sequentially through 20, 5 and

0.22 mm (Millipore, Westborough, MA, USA) from the crystallizer

CR30, Santa Pola, Spain (38u11947.33-N, 0u35900.800W) on May

in 2007 and January and June 2008. All necessary permits were

obtained for the described field studies. The salinity was measured

with a hand-refractometer and was 32%, 32% and 37%

respectively. Before viral DNA was extracted, a treatment with

DNAse and RNAse was carried out in all the samples. For the first

sample, the 0.22 microns filtrate was concentrated by tangential

flow filtration (TFF) through a 100-kDa filter cassette

(PTHK00005) with a Pellicon System (Millipore) followed by

ultracentrifugation (288 000 g; 3 h at 10uC; Optima XL Series,

Beckman Coulter with a SW41TI rotor). Viral DNA was

extracted, checked for quality by pulsed field gel electrophoresis

(PFGE), purified and cloned in fosmids as described before [33].

For the samples of 2008, the virus-containing filtrate was

concentrated to a final volume of ,200 ml using a 100-kDa

TFF filter (Millipore, Westborough, MA, USA) and a cesium-

chloride gradient was used for the isolation of the phage particles

as described in [6]. The viral DNA was isolated by formamide lysis

and cetyl-trimethylammonium bromide extraction [85].

Construction of the viral fosmid library
For each sample, a fosmid metagenomic library was constructed

using the CopyControlH Fosmid Library Production Kit (Epicen-

tre) following the directions of the provider. 30 to 40 kb

metagenomic DNA fragments were cloned in the pCC1Fos vector

and replicated in Escherichia coli EPI300. A total of 23 fosmids were

obtained for the sample of May 2007. In the case of the 2008

samples, a total of 65 clones were obtained for the sample of

January and 1248 for the one of June 2008.

Sequencing and assembly
Fosmids were selected randomly for complete sequencing, 65

from the winter 2008 library, 90 from the summer 2008 and 2

from May 2007. They were individually grown and induced to

high number copy. The fosmid DNA was extracted using

QIAprep Spin Miniprep kit (QIAGEN). DNA was checked for

quality on a 1% agarose gel and measured using Quant-iTH
PicoGreen H dsDNA Reagent (Invitrogen). DNA was sequenced in

a half run of the Roche 454 GS-FLX system (GATC, Konstanz,

Germany), pooling 12–13 fosmids together and tagging each

group individually using a multiplex identifier adaptor. Addition-

ally, one Solexa lane was performed to increase the coverage and

correct the 454 errors (Macrogen, Corea). Two different programs

were used in the assembly, Geneious Pro 5.0.1 (with default

parameters (http://www.geneious.com)) and MIRA [86]. Only

contigs confirmed by both programs were considered. Thus, 42

fragments larger than 20 kb were finally obtained with a coverage

range between 20–306. The two of the clones from the sample of

spring 2007 were completely sequenced in an independent ‘‘run’’

using the Roche 454 GS-FLX system. In this case, the coverage

was of 256 for eHP-E5 and 286 for eHP-D7.

Analysis of the sequences
GC content was calculated using the EMBOSS tool geecee [87].

Tetranucleotide frequency of the viral fosmids and the related

sequences were done using the on-line tools in http://insilico.ehu.

es and a dendrogram was constructed applying the UPGMA

clustering of the Euclidean distance of the frequencies. Codon

usage of the viral fosmids and the putative hosts was calculated
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with the EMBOSS tool cusp [87] and a principal component

analysis (PCA) was carried out using R 2.13.0. Gene prediction on

the assembled contigs was done using MGA [88]. The predicted

protein sequences obtained were compared using BLASTP to the

NCBI nr protein database (e-value 1e-5) (http://www.ncbi.nlm.

nih.gov/BLAST/). ORFs smaller than 100 bp and without

significant homology to other proteins were rejected. To confirm

the presence of domains in the predicted proteins the hmmpfam

program of the HMMER package [89] (e-value 1e-3) was used

and the hmm models for the protein domains were obtained from

the Pfam database (http://pfam.sanger.ac.uk). Also, different

searches were done with InterProScan (http://www.ebi.ac.uk/

Tools/InterProScan/) and the Conserved Domain Database

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Self-

against-self comparisons were done matching all the ORFs against

themselves using BLASTP. Significant matches were considered as

those having a minimum identity of 60% and a minimum

alignment length of 50 positions (e-value 1e-3). ACT Artemis.v12

[90] and perl-software developed in our laboratory was used to

compare the viral sequences among them. Also for comparative

analyses, reciprocal BLASTN and TBLASTXs searches among

the different fosmids were carried out, leading to the identification

of regions of similarity. CRISPR arrays were identified using the

CRISPR-finder program available at the web site http://crispr.u-

psud.fr/ [53], and putative proto-spacers by BLASTN searches

with spacers as query. For the identification of the proto-spacer

adjacent motifs (PAMs) of the two CRISPR/Cas systems of H.

walsbyi, regions containing proto-spacers with over 90% identity to

spacers of strains HBSQ001 and C23T were obtained from the nr

database and the strands complementary to their corresponding

crRNA were aligned with the WebLogo application (http://

weblogo.berkeley.edu/logo.cgi), using equivalent ends (with re-

spect to the CRISPR sequence) of the spacers as a reference.

Recruitments of environmental collections
Different recruitment plots against available halophilic meta-

genomes and metaviriomes were done using BLASTN [91] with a

cut-off of 75% of identity in 50% of the length of the

environmental read. For recruitment analysis we used metavir-

iomes and metagenomes recovered from the same crystallizer

CR30 (SS37) from which the viral DNA was isolated and another

pond from the same saltern and lower salinity (SS19), [20,21].

Besides, we also used the metaviriomes from the salterns of San

Diego (California, USA) [5].

Sequence data have been deposited in the Genbank under the

BioProject ID: PRJNA82917.

Supporting Information

Figure S1 Dendogram showing the distribution of viral
sequences according to their tetranucleotide frequency.
Oligonucleotide analysis of the fosmids was done using the on-line

tools in http://insilico.ehu.es and a dendrogram was constructed

applying the UPGMA clustering of the Euclidean distance of the

frequencies. In red, the prokaryote genomes and in bold, the viral

fragments sequenced in this work.

(TIF)

Figure S2 Identification of proto-spacer adjacent motifs
(PAMs) of the two CRISPR/Cas systems of H. walsbyi.
Regions containing proto-spacers (positions 233 to 0) with over

90% identity to subtype I-D (6 entries) or I-B (9 entries) spacers of

strains HBSQ001 and C23T, were obtained from the nr database

(http://www.ncbi.nlm.nih.gov/BLAST/). Proto-spacer sequences

where aligned with the WebLogo application (http://weblogo.

berkeley.edu/logo.cgi) using the CRISPR sequence as a reference

for equivalent orientation. The NGC and GAA motifs are

disclosed for subtype I-D and I-B respectively.

(TIF)

Figure S3 Alignment of the CRISPR sequence of eHP-16
fosmid and the most similar CRISPRs found in the nr/
nt collection of GenBank database. When CRISPRs are

located in a chromosome, only the name of the harboring strain is

indicated and when in a plasmid, the name of the replicon is also

shown between brackets. Mismatches with respect to the CRISPR

in the fosmid are labeled in red.

(TIF)

Figure S4 Genomic organization of the non classified
fosmids. Colour code as in Figure 1.

(TIF)

Table S1 Predicted tRNA and ORFs of the viral fosmids.
(XLSX)
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