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Abstract

Protecting the future of forests in the United States and other countries depends in part on
our ability to monitor and map forest health conditions in a timely fashion to facilitate man-
agement of emerging threats and disturbances over a multitude of spatial scales. Remote
sensing data and technologies have contributed to our ability to meet these needs, but exist-
ing methods relying on supervised classification are often limited to specific areas by the
availability of imagery or training data, as well as model transferability. Scaling up and oper-
ationalizing these methods for general broadscale monitoring and mapping may be pro-
moted by using simple models that are easily trained and projected across space and time
with widely available imagery. Here, we describe a new model that classifies high resolution
(~1 m?) 3-band red, green, blue (RGB) imagery from a single point in time into one of four
color classes corresponding to tree crown condition or health: green healthy crowns, red
damaged or dying crowns, gray damaged or dead crowns, and shadowed crowns where the
condition status is unknown. These Tree Crown Health (TCH) models trained on data from
the United States (US) Department of Agriculture, National Agriculture Imagery Program
(NAIP), for all 48 States in the contiguous US and spanning years 2012 to 2019, exhibited
high measures of model performance and transferability when evaluated using randomly
withheld testing data (n= 122 NAIP state x year combinations; median overall accuracy
0.89-0.90; median Kappa 0.85—0.86). We present examples of how TCH models can detect
and map individual tree mortality resulting from a variety of nationally significant native and
invasive forest insects and diseases in the US. We conclude with discussion of opportunities
and challenges for extending and implementing TCH models in support of broadscale moni-
toring and mapping of forest health.
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Introduction

Forests cover 31% of the world’s land surface area [1]. They are principally threatened by cli-
mate and land-use change, fires, storms, and insects and diseases [2-5]. Trees damaged by
these disturbances can pose major management challenges at a multitude of spatial scales,
ranging from individual hazard trees in urban to wildland-urban interface (WUI) communi-
ties [6] to entire stands in wilderness or other protected areas [7,8], each encompassing many
different land uses where management options may be limited or at least varied and complex.
Due to these challenges, and to strategize possible management actions, the US and other
countries stand to benefit from broadscale monitoring that can detect on an annual or periodic
basis at high spatial resolutions where trees suffer compromised health [9].

A large and growing body of research seeks to map forest damage and disturbance using
machine learning [10,11] and deep learning [12-14] models trained on high resolution multi-
or hyper-spectral imagery. However, most of these models have yet to be scaled up and opera-
tionalized over broad extents and diverse damage events, thus limiting practical management
applications. If we qualitatively characterize supervised classification models of forest health
according to three axes—spatial resolution, spectral resolution, and complexity-new models
and methods that target high spatial resolution, low spectral resolution, and low model com-
plexity are needed to bridge this operational gap. High spatial resolution is needed to be able
to map individual trees, as well as forest stands, or more generally forests at broader spatial
extents [15,16]. Low spectral resolution maximizes the number of different high-resolution
imagery sources available for training models, and the damage classes we observe in the visible
spectrum are distinct and pronounced [17,18]. Finally, low complexity equates to simple mod-
els that favor transferability [19], and further-if based on a single image—do not require stan-
dardized imagery from two or more points in time.

Here, we present a new Tree Crown Health (TCH) model that meets the specifications of
high spatial resolution, low spectral resolution, and low complexity. We describe TCH work-
flows, share the training data and code required for generating TCH models, quantify TCH
accuracy, and illustrate how results may be used to monitor and map healthy versus damaged
crowns. Our methods leverage new and emerging cloud computing platforms for geospatial
informatics, including Google Earth Engine (GEE) and Amazon Web Services (AWS), to per-
form data collection, management, modeling, and analysis. These platforms facilitate the inte-
gration and analysis of large data volumes (e.g., high resolution imagery over broad extents)
on servers in a cloud computing environment, and they represent the future of geo-big data
applications [20,21]. Furthermore, the modeling workflows we share include options that rely
solely on software and cloud computing platforms that are freely available.

Conceptually, TCH is based on the ability of humans with normal color vision to interpret
general tree crown condition classes in the visible portion of the electromagnetic spectrum. Dur-
ing the growing season, healthy crowns appear in varying forms of green, while damaged, dead,
and dying crowns appear as gray, red, or similar colors [17,18], and shadows are evident depend-
ing on canopy contiguity and heterogeneity, as well as terrain and the timing and angle of the sen-
sor when the imagery was collected (Fig 1A). Training data in each of these four crown color
classes are collected in red, green, blue (RGB) color space (Fig 1B). The training data are evaluated
after conversion to the corresponding hue, saturation, value (HSV) color space [22,23] (Fig 1C),
to solve for model equation constants that best classify or partition red, gray, green, and shadow
crown color classes in the training data (Fig 1D). Hue, or what we think of as color, is generally
understood; saturation is how intense the hue is, and value is how dark or light that hue is. Thus,
HSV facilitates human visualization and enables computers to statistically separate the variation
of greenness (health and species), gray and red (damaged, dead, or dying), and shadow.
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B RGB Space

Fig 1. Conceptual model of Tree Crown Health (TCH). (A) Visible damage, as illustrated in the aerial photo on the
left, is typically captured by red and gray crowns, whereas healthy crowns appear green, and crown shadows appear
dark/black. (B) Photo interpreters perceive these crown color classes and collect training data in red, green, blue (RGB)
color space. (C) TCH models are trained after converting RGB to hue, saturation, value (HSV) color space. (D) The
classification model is projected back onto the image, where orange = red model class, light gray = gray model class,
dark green = green model class, black = shadow or dark object model class, and white = background or areas
unclassified by the model. Credits: Photo (A) courtesy of Alaska Division of Forestry; HSV diagram (C) from SharkD,
CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons.

https://doi.org/10.1371/journal.pone.0272360.9001

The potential applications of TCH models are numerous. Results stand to inform any
groups, sites, or activities impacted by hazard trees or snags. These include wildfire incident
response teams seeking advanced knowledge of hazardous tree conditions in management
zones [24], protected areas requiring management of hazard trees in high human use areas
[25], major utilities and other infrastructure (powerline, roads, etc.) impacted by falling snags
[26], and developed areas [27], such as WUI communities, where hazard trees present both
physical safety hazards as well as fuels for wildfire [28]. Additionally, because snags can pro-
vide critical habitat for other species in a forest community [29], TCH models are useful for
ecological studies that seek to understand the distribution and location of standing dead trees
on the landscape. Results are also potentially useful for studies of long-term disturbance cycles
or change events, such as tree mortality resulting from insect outbreaks or climate change.

Damage to trees caused by storms, fire, and other abiotic disturbances are often so severe or
intense that a multitude of existing modeling methods and imagery sources already adequately
monitor those damage events [30-35]. For this reason, we have focused on applications of
TCH models for monitoring damage caused by biotic disturbances; remote sensing has strug-
gled to monitor background mortality as well as tree damage caused by a wide variety of
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insects and diseases. Many believe that data gaps may be filled by integrating remote sensing
with plot or other ground-based observations [9,36], yet ground visits take time and personnel.
In the US, over 250 different forest insects and diseases are actively monitored [37]. The inter-
action of each damage-causing agent and impacted tree species manifests as a different spectral
signature that further varies over space and time [17,18]. TCH endeavors to detect and map
damage from a wide variety of casual agents in support of broadscale monitoring of forest

health.

Materials and methods
High-resolution imagery

TCH models are designed to run on any 3-band RGB imagery of high enough spatial resolu-
tion for individuals to clearly discern distinct tree crowns and their condition (Fig 1). For our
implementation of TCH, we selected imagery from the National Agriculture Imagery Program
(NAIP) [38], which in recent years (2012-2019) is typically collected at 60 cm to 1 m resolu-
tion. As described further below, TCH uses NAIP in two ways: (1) as a basis for collecting
model training data, using photo interpretation techniques; and (2) for projecting the trained
TCH models back into geographic space using the RGB band information. Although NAIP is
4-band imagery (RGB + near infrared), TCH models only utilize the RGB bands (unsigned
8-bit integer). Distinct advantages of NAIP, relative to other available sources of high-resolu-
tion imagery, are that the images are generally cloud-free (< 10%), collected under reasonably
standardized conditions, provide complete coverage of all states in the contiguous US, and are
freely accessible. However, NAIP has some disadvantages. It has traditionally been collected
for states in alternating years (e.g., Colorado NAIP was collected in 2019 at 60 cm, and in 2017,
2015, and 2013 at 1 m), meaning more ephemeral damage events such as defoliation may be
missed. In addition, although it seeks to provide imagery near peak growing season, some
images are collected in spring or fall, during times when TCH models cannot be trained (i.e.,
because of the phenology of tree species and insects and pathogens). Any imagery collected
during spring leaf-out or fall senescence, determined by date and visual inspection of the imag-
ery, was excluded from this study. We describe in greater detail, below, how we screened for
these, and other issues encountered with NAIP, based on how such issues impacted the collec-
tion of training data and model performance.

Training and testing data

TCH models are a form of supervised classification that are most easily fitted using training
data. However, because the training data are used to solve for optimal model constants in
equations (see below), a user may optionally evaluate model results using different constants
to manually or visually “train” TCH models (the classification in Fig 1D was visually trained).
For this study, we collected training data from 190 statewide NAIP imagery datasets acquired
from 2012 to 2019, to provide a quantitative assessment of how TCH model classes were dis-
tributed in RGB color space. We targeted four RGB color classes: green (healthy crowns), gray
(damaged or dead crowns), red (damaged or dead/dying crowns), and shadow (dark areas
interspersed between crowns). The green, red, and gray color classes are digitized in accor-
dance with standard training materials that relate “aerial signatures” to tree condition status or
health [18].

Training data were collected using photo interpretation techniques, wherein trained indi-
viduals visually inspected NAIP imagery and selected representative pixels from each of the
four crown color classes (red, gray, green, and shadow) in which to digitize points. Point digi-
tizing and data collection and management were handled using a custom reactive single-page
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application graphical user interface (GUI) developed and deployed using the JavaScript appli-
cation programming interface (API) for Google Earth Engine (GEE) [39]. The NAIP Point
Digitizing GUI (NPD, S1 Fig) navigated users through a series of four steps to prepare imagery
for digitizing and collecting data points using photo interpretation: (1) select the desired NAIP
state x year combination; (2) enter digitizer identification and select the ecoregion [40] sample
stratum (we used Bailey’s ecoregion sections, defined by ecocodes, which range in size from
approximately 6000 to 226000 km?); (3) optionally filter NAIP calendar dates to exclude spring
or fall imagery when trees were not fully foliated; and (4) set crown color class, enter or digitize
points in pixels of that class (delete errors as needed), and export final digitized points to a
GEE asset managed feature collection.

Along with NPD and NAIP imagery, digitizers periodically consulted other available
recent/historic imagery in Google Earth as an additional guide for digitizing points in Google
Earth Engine (Google Earth and Google Earth Engine are separate systems); this was helpful
for examining whether canopies were comprised of deciduous vs. coniferous trees, which
often have different color signatures of damage, based on leaf-off (winter) imagery, and for
examining approximately when damage or mortality occurred in the past. We considered dif-
ferent computer monitor settings and determined that any such variation was small in relation
to the inherent color variation within each color class. Additional details and guidelines for
digitizing training points, including how areas were located in the imagery (within each state
and ecoregion), how pixels were evaluated to determine whether a point should be digitized,
what spatial scales were used in digitizing points, etc., are provided in training documents and
materials that are included with the NPD code [41].

In each ecoregion stratum (bounded by each state’s NAIP imagery), a minimum sample of
10-15 points was sought for each of the four crown color classes. Note that since NAIP is col-
lected state by state, and neighboring states are often flown in different years and/or by differ-
ent vendors utilizing different sensors, we could not fully sample ecoregions that spanned state
boundaries. Thus, our ecoregional strata were sampled within each NAIP state x year combi-
nation. Since the TCH models are trained in spectral space (not geographic space), these sam-
ples were intended to capture the spectral range of variation observed in each of the four
classes. Some of that variation could be sampled by digitizing clusters of 3-5 points (pixels) per
tree crown. In total, we collected 238509 points in 190 unique NAIP state x year combinations
across the four crown color classes.

For each NAIP state x year combination and class that had > 50 digitized points, we used
90% of the points for model training and the remaining 10% for model testing; otherwise
when a class had < 50 points, we did not subset testing data and instead allocated all points to
training. A total of 214845 points were used in training, and 23664 points for testing. Digitized
points were checked for quality in the model equations, below. The partitioned NPD data used
to train/test TCH models, along with RGB and near-infrared NAIP pixel values associated
with each point, are available for download [41].

Model equations

While the TCH training data described above were collected on maps of RGB images, the
color space most familiar to photo interpreters, TCH models are mathematically trained in
HSV color space. HSV has been utilized within the remote sensing community for many other
applications, such as forest fire recognition, urban area image classification, forest detection,
shadow detection, tree cover delineation, wetland classification, and invasive species identifi-
cation [42-46]. In the case of TCH, the distinct advantage of HSV is that hue (H) is a measure
of color, saturation (S) is a measure of color purity, which when low may be perceived as gray,
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and value (V) is measure of darkness, and these categories conform well to our four model
training classes. Thus, for TCH, hue is used to model green and red crown classes, saturation
is used to model gray crowns, and value is used to model shadows or dark objects. HSV values
in all equations below are scaled from 0 to 1, so that the equations can be applied to imagery of
any unsigned bit depth that has been max normalized.

For green and red classes, we first rescale hue so that the maximum of green (H = 1/3) or
red (H=0or 1) is 1. Furthermore, we allow for each of the two color classes to retain a non-
zero positive value within + 1/6 of the maximum. For example, rescaled green values are > 0
when hue values are > 1/6 (yellow) or < 1/2 (cyan). Similarly, rescaled red values are > 0
when hue values are > 5/6 (magenta) or < 1/6 (yellow). Thus, the red model class also includes
damage associated with hues that tend towards brown, orange, and yellow, as these are also
important color signatures of damage [17]. In addition, the green model class includes crowns
that also tend towards yellow, for certain tree species may appear yellow-green during the
growing season (e.g., quaking aspen, Populus tremuloides Michx.). Hues close to yellow are
classified red if R > G and green if G > R. In Eq (1) (rescaled green hue, Hg) and Eq (2)
(rescaled red hue, Hr), the rescaled hue values are needed to restrict each of the two model
classes to the appropriate portion of HSV color space:

Hg=1—[H—-1/3|/(1/6) (1)

Hr=[1/2 — H|/(1/6) — 2 2)

Once hue rescaling is performed, the green (G, Eq (3)) and red (R, Eq (4)) models are sim-
ple expressions that rescale the Hg or Hr values from 0 to a maximum of 1, based on model
constants (cgand c,):

o[ 1), gz 0
0, Hg <0

(4)

R (CrHril)/(Cr - ]‘)7 HT Z 0
B 0, Hr < 0

Where c, and ¢, are constants for G and R, respectively, and they are defined for all values > 2.
Gray (Y, Eq (5)) and shadow or dark object (D, Eq (6)) equations require S and V as predic-
tors. The constants (c, and c¢;), again > 2, determine the rate at which Y and D decay to 0:

Y=( " =1)/(c, 1) (5)

D=(¢, " =1)/(c;,—1) (6)

Once Egs (3)-(6) have been solved, final classification is determined by first computing the
maximum value:

X = max{G,R,Y,D} (7)

And, assuming X exceeds some minimum classification threshold (¢), where X > ¢, then
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assigning X to the appropriate class (C):

G = X, green
R=X,red
C= (8)
Y =X, gray
D = X, shadow

The above equations are valid for all values of RGB, converted to HSV, except in two cases.
One is when G = X and the red and blue values in RGB are equal, or when R = X and the green
and blue values in RGB are equal. In these situations, G or R operate independently of the
other two values in RGB, even if S or V are very close to 0. This independence of G and R on
the other two values in RGB is not permissible and to correct for it we take the blue value in
RGB and decrease it by 1/256 (that adjustment factor is due to NAIP being unsigned 8-bit inte-
ger; other bit depths and types would necessitate equivalent adjustment factors). The adjust-
ment factor is applied to RGB values where needed just prior to converting RGB to HSV; all
other unaffected RGB values are left unchanged. Eqs (1)-(8) then proceed as described above.

The other special case requiring adjustment is when S = 0. That occurs when all three values
in RGB are identical, and it represents true gray. However, when S = 0, it is independent of V.
This can result in situations when V'is very close to 0 (i.e., black) but Y = X = 1, resulting in
shadow or dark objects being classified as gray. To correct this situation, and only in situations
where S = 0, we recalculate Y as Eq (5) minus Egs (6), (7) and (8) then proceed as described
above.

While these are important adjustments to correct for proper behavior in the TCH model,
we emphasize that these cases in actual imagery such as NAIP are quite rare.

Model constants

We solved for optimal model constants (c,, ¢, ¢,, and c4) using the training data and model
equations. These constants were optimized for each NAIP state x year combination, meaning
we solved for them for all 190 models. The optimization routines were written in R [47] and
are available for download [41]. For each combination of state and year with NAIP imagery,
we permuted all possible combinations of model constants that included values 2, 5, 10, 20, 30,
40, 50, 60, 100, 1000, 10000, 100000, and 1000000 for c, and c,, and values 2, 5, 10, 100, 1000,
10000, 100000, 1000000, 10000000, and 100000000 for ¢,, and c,. In each permutation, we clas-
sified each pixel with a training point into one of the four model classes (red, gray, green, or
shadow). We then computed a confusion matrix across all samples and calculated model sensi-
tivity (true positive rate, TPR) in each model class. After averaging sensitivities for red, gray,
green, and shadow, we selected the optimal model constants based on the highest mean TPR.
An additional filter was then applied to eliminate NAIP state x year models where the mini-
mum TPR across the four model classes was < 0.7. This filter was applied because NAIP can
vary in quality (e.g., color balancing) for different states and years, and cases where training
sensitivity was < 0.7 were generally ones where NAIP quality presented challenges for photo
interpreters to accurately and consistently digitize training points into the four classes. Of the
190 NAIP state x year combinations where training data were collected, 167 of those were
retained by nature of minimum TPR being > 0.7. The optimal model constants selected using
these criteria are available for download, along with the R code to permute and evaluate differ-
ent sets of constants for use in the models [41].

We evaluated a wide range of model constants in our study, to fully explore model parameter
space, and because the model constants are critical to fitting models using Eqs (1)-(8) (Fig 2).
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Fig 2. Tree Crown Health (TCH) model classifications in hue, saturation, value (HSV) color space. Plots in top row show color in relation to hue (x-
axis), saturation (y-axis), and three levels of value, corresponding to the three columns of plots (V = 0.12 [left column], 0.35 [middle column], 0.75
[right column]). Plots in rows two through five (bottom row) show how HSV color space is classified using the TCH model equations and different sets
of model constants, shown to the left of each row of plots (orange = red model class [red tree crowns], light gray = gray model class [gray tree crowns],
dark green = green model class [green tree crowns], black = shadow or dark object model class [crown shadows], and white = background or areas
unclassified by the model [i.e., X <, in Eq (8), where ¢ = 0.1]). The left and middle columns of plots have fewer points because, at lower values, hue and
saturation are compressed into smaller portions of HSV space. The bottom row of plots corresponds to the median optimal model constants across all
NAIP state x year combinations, and thus is most representative of the best fit models.

https://doi.org/10.1371/journal.pone.0272360.9002

Nonetheless, certain combinations of constants are often likely unacceptable for partitioning

HSV color space into the four model classes, such as when all constants are small (5) or ¢;and ¢,
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are large (1000000). Meanwhile, different combinations of constants where ¢, and ¢, are small
(5) and ¢, and ¢4 are large (10000 to 10000000) tend to similarly classify the four model classes,
and the classes themselves conform well to human perception of the class colors.

Model implementation

TCH model code is available for use in the JavaScript API for GEE [39], as well as ArcGIS®)
Pro [48] as a Raster Function written in Python v.3.7.10; the two versions of code are available
for download [41]. While both platforms enable users to run TCH models and generate pre-
dictions in raster format, the latter can be deployed in multiple cloud environments using Arc-
GIS® Image Server—Raster Analytics [49], which allowed us to run and save results for
modeling domains at spatial extents that were not permissible in GEE (e.g., entire states), and
to seamlessly ingest model results into any other software needed for post-processing, analysis,
and visualization. In our case, we deployed the workflow using ArcGIS®) Enterprise [50] in
Amazon Web Services (AWS, S2 Fig). The GEE and Python scripts referenced above both rep-
licate TCH raster predictions for equations and optimal model constants.

To identify damaged trees as objects (vector polygons or points), we use two additional geo-
processing GUIs deployed in ArcGIS®) Pro. The first ingests the raster outputs of ArcGIS®
Image Server—Raster Analytics and converts the contiguous groupings (rook moves) of red
and gray pixels to polygons, saving them as a feature class in a geodatabase [41]. The second
uses the “Shape_Area” geodatabase field created in the previous geoprocessing step to then
optionally select polygons of each class (red or gray) based on a size range and save them out
as point centroids, constrained to being inside each polygon [41]. The second geoprocessing
step is valuable for eliminating model noise from spurious pixels as well as commission errors
from non-treed objects, for damaged tree crowns tend to fall within a relatively narrow size
range. In our results that utilize these two additional geoprocessing steps, we set the size
thresholds in the second step to > 4 m? and < 50 m2. We selected these thresholds because
they roughly equate to radii of 1 and 4 m, which generally approximate well canopy crown
sizes throughout our study areas.

Model evaluation and testing

For all model classes where a minimum of 5 testing points were available for each of the four
model classes (122 NAIP state x year combinations), we calculated overall accuracy and Kappa
on these randomly withheld points, using the package “caret” [51] in R [47]. These results pro-
vided quantitative assessments of TCH model performance. We performed these assessments
once using the optimal model constants for each NAIP state x year combination, and again
using median optimal constants across states and years (c, = 5, ¢, = 10000000, ¢, = 5, c; = 10000).
The latter was done to evaluate model transferability, by comparing model accuracies when
trained using a single set of model constants (i.e., a “global” model across all states and years).

In addition, we selected known damage events caused by forest insects and diseases and
examined how well TCH models mapped tree damage for those same areas. Recent damage
events from insects and diseases were selected from the Insect and Disease Survey (IDS) [52],
and we reference specific damage observations according to the unique “DAMAGE_AR-
EA_ID” in IDS. We do not show the IDS data in our figures primarily because they are col-
lected at a much coarser scale than our TCH models (i.e., the IDS polygons would often fully
encompass and extend beyond the figure extents). Although the presence of tree damage (red
and gray crowns) cannot be statistically evaluated using IDS, due to the scale mismatches, IDS
data provide a useful guide for understanding likely agents causing damage to particular host
tree species.

PLOS ONE | https://doi.org/10.1371/journal.pone.0272360 October 5, 2022 9/24


https://doi.org/10.1371/journal.pone.0272360

PLOS ONE

A spectral three-dimensional color space model of tree crown health

Since TCH does not distinguish between treed vs. non-treed areas, we applied a forest vs.
non-forest masking layer derived from the 2016 National Land Cover Database (NLCD) [53].
We created this layer by reclassifying NLCD as forest for values 41 (deciduous forest), 42 (ever-
green forest), 43 (mixed forest), and 90 (woody wetlands), while all other NLCD classes were
reclassified as non-forest. The non-forest pixels derived from NLCD were at 30 m, and any
TCH model predictions occurring within these 30 m pixels were masked out.

Results

TCH models exhibited high accuracies when assessed using randomly withheld testing data
for 122 different models reflecting different NAIP state x year combinations. While minimum
values for overall accuracy (0.55) and Kappa (0.41), both for the state of Massachusetts the first
year NAIP imagery was analyzed (2012), were rather low, median values for the 122 models
were 0.89 (overall accuracy) and 0.85 (Kappa), indicating that most of the models performed
well when assessed over all four model classes. Furthermore, the 5™ percentile for overall accu-
racy (0.71) and Kappa (0.60) indicate that 95% of models have measures of performance
greater than or equal to these values. The model accuracy results obtained using independent
testing data for all 122 models, including overall accuracy, Kappa, and TPR (below), are avail-
able in the model constants table [41].

The sources of confusion or error in the models followed clear patterns. Shadow was the
class with the lowest TPR based on the testing data (38% of models), followed by gray (29%),
red (18%), and green (15%). For models where shadow exhibited the lowest TPR, almost all of
the confusion was due to shadow being misclassified as gray (94% of models). Meanwhile,
models where TPR was lowest for gray tended to misclassify gray as red (57%), and-con-
versely-models where TPR was lowest for red tended to misclassify red as gray (68%). This
pattern of gray and red confusion is expected based in part on damaged trees tending to fall on
a color gradient from red to gray, and in either case both model classes signify damaged
crowns. Lastly, models where green was the class with the lowest TPR tended to misclassify
green as shadow (89%).

TCH models exhibited comparably high accuracies when assessed using the single set of
median optimal model constants (c, = 5, ¢, = 10000000, c, = 5, ¢; = 10000). For the same 122
models that were also assessed using individually trained models, median overall accuracy was
0.90 and median Kappa was 0.86, indicating that a single global model using a standard set of
model constants can match model accuracy while also being highly transferable.

When compared to known damage events, TCH models reliably mapped tree damage (red
and gray crowns) from a wide variety of regionally and nationally significant forest insects and
diseases in the US, where damage events were originally detected and attributed as part of IDS.
We show results, below, using a combination of raster model predictions for the four color classes
(red, gray, green, and shadow), as well as for red and gray crowns as individual objects (points).

The first example is oak wilt (Bretziella fagacearum (Bretz) Z.W. de Beer, Marincowitz, T.A.
Duong & M.]. Wingfield) in Minnesota, north of Minneapolis. Oak wilt is caused by an inva-
sive pathogen, first described in the US in the 1940s, and it has greatly impacted oaks (Quercus
spp. L.) in the midwestern, northeastern, and portions of the southern US [54]. This example
of multiple active pockets of disease in 2019 shows the progression of mortality from orange/
red (dying) to gray (dead) phases (Fig 3).

Emerald ash borer (Agrilus planipennis Fairmaire), an invasive wood-boring beetle that was
first detected in the US in southeastern Michigan in 2002 [55], has devastated ash (Fraxinus
spp. L.) throughout the Midwest. Infested trees often start dying about 4 to 6 years after infes-
tation [56], as illustrated in Fig 4.
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Fig 3. Mortality in a mixed stand of northern pin oak (Quercus ellipsoidalis E. J. Hill) and northern red oak (Q. rubra L.) caused by oak wilt
(Bretziella fagacearum). (A) NAIP imagery from 2019. (B) TCH model results (orange = red crowns, light gray = gray crowns, dark green = green crowns,
black = shadowed crowns). Location: North of Minneapolis, Minnesota. Insect and Disease Survey database DAMAGE_AREA_ID: {e3260d8f-6e10-4eb1-
8e51-23e4a3105d7b}. NAIP imagery (public domain) provided by USDA-FSA-APFO.

https://doi.org/10.1371/journal.pone.0272360.9003

Sudden oak death (Phytophthora ramorum Werres, De Cock & Man in’t Veld) is an inva-
sive pathogen first detected in California in the mid-1990s that has since caused significant
mortality in tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, C.H. Cannon, & S.
Oh) and many oaks (Quercus spp.) in California and Oregon [57,58]. TCH models detected
mortality from sudden oak death over the course of 6 years, from 2012 to 2018 (Fig 5).

Eastern larch beetle (Dendroctonus simplex LeConte, 1868) is a native bark beetle that can
cause extensive and severe mortality in tamarack (Larix laricina (Du Roi) K. Koch) [59]. In
northern Minnesota, a sharp increase in mortality occurred in 2017, and TCH shows the pro-
gression of mortality from 2013 to 2019 (Fig 6).

Western pine beetle (Dendroctonus brevicomis LeConte, 1876) is another native bark beetle
that causes mortality in ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson)
[60]. In California, likely due in part to recent drought causing tree stress [61], extensive mor-
tality was observed in the Sierra Nevada (Fig 7). This example illustrates opportunities to iden-
tify individual red (dying) and gray (dead) tree crowns from the model.

Southern pine beetle (Dendroctonus frontalis Zimmermann, 1868) is a native bark beetle
that can cause significant mortality in various Pinus spp. L. in the southeastern US [62]. In
2017, a major outbreak of southern pine beetle occurred, an example of which is shown on the
William B. Bankhead National Forest in Alabama, pre (2015), mid (2017), and post (2019) out-
break (Fig 8).

Discussion

Our results demonstrate the ability to monitor and map forest health conditions using mathe-
matically simple TCH models in combination with high spatial and low spectral resolution
imagery. TCH thus offers new opportunities for evaluating the health of individual trees to
entire stands over broad geographic areas, given that the models only require 3-band (RGB)
imagery from a single point in time. Results are useful for informing our understanding of
where hazard trees or snags exist on the landscape, which in turn may support other research
examining snags as habitat or ecological niches in a community, as well as offer decision
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Fig 4. Mortality in a mixed stand of white ash (Fraxinus americana L.), green ash (F. pennsylvanica Marsh), and black ash (F. nigra Marsh) caused by
emerald ash borer (Agrilus planipennis). Left panels are NAIP imagery from 2016 (A) and 2012 (C). Right panels (B, D) are the corresponding TCH
model results from each year (light gray = gray crowns, dark green = green crowns, black = shadowed crowns). Note: None of the red crown color class
existed in this area. Location: Eastern Michigan, near Lake Huron. Insect and Disease Survey database DAMAGE_AREA_ID: {7a2df48e-6€22-45bd-b9cf-
b0e8d5a28536}. NAIP imagery (public domain) provided by USDA-FSA-APFO.

https:/doi.org/10.1371/journal.pone.0272360.9004

making support to resource managers and communities where hazard trees pose safety risks.
Results may also contribute to survey and mapping of damage caused by forest insects and dis-
eases, as well as other abiotic disturbances such as storms, fire, and drought. Understanding
the distribution and density of standing dead trees, including when they suffered mortality,
can help guide timber and salvage operations, which may in turn mitigate fuels and fire risk,
and create new opportunities for restoration. Additional opportunities relate to using TCH
results to study the environmental correlates of damage distribution and severity, establish
standing dead tree baselines for future monitoring in the context of climate change, recon-
struct the spread and associated ecological impacts of invasive insects (e.g., emerald ash borer)
and pathogens causing disease (e.g., oak wilt), and contribute to inventory and assessment
mapping of recent and historical damage.

TCH supports these potential applications by providing both vector and raster data models.
Raster results map the extent of healthy green crowns, damaged, dying or dead red and gray
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Fig 5. Mortality of tanoak (Notholithocarpus densiflorus) caused by sudden oak death (Phytophthora ramorum). Left panels are NAIP imagery from
2018 (A) and 2012 (C). Right panels (B, D) are the corresponding TCH model results from each year (orange = red crowns, light gray = gray crowns, dark
green = green crowns, black = shadowed crowns). Location: Northern California. Insect and Disease Survey database DAMAGE_AREA_ID: {015c6d5a-
ee89-4f6c-a3ea-7799b6401bfc}. NAIP imagery (public domain) provided by USDA-FSA-APFO.

https://doi.org/10.1371/journal.pone.0272360.9005

crowns, and crown shadows. These outputs enable the estimation of green, red, and gray
crown areal extents, while accounting for uncertainty from crown shadows. Following addi-
tional post-processing of the raster outputs, vector results of the red and gray crown classes
further discern damaged, dying, or dead trees as objects. These outputs enable individual tree
counts and trees per acre (TPA) calculations of hazard trees or snags. Since snags often repre-
sent older standing dead trees that have lost many of their branches, opportunities may exist to
further categorize or distinguish snags from other more recent tree mortality based on gray
crown areal extents, where snags have smaller areal extents, compared to recent mortality in
trees that still retain many of their branches. Furthermore, the timing of mortality may be
determined from TCH models run on imagery from multiple points in time, as illustrated for
certain results (e.g., Figs 4 and 5).

Additional work is needed to evaluate the accuracy of TCH models. While the measures of
accuracy calculated in this study using randomly withheld testing data were generally quite
high, additional assessments using independent testing data are warranted. The figures
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Fig 6. Mortality of tamarack (Larix laricina) caused by Eastern larch beetle (Dendroctonus simplex). Left panels are
NAIP imagery from 2019 (A), 2017 (C), and 2013 (E). Right panels (B, D, F) are the corresponding TCH model results
from each year (orange = red crowns, light gray = gray crowns, dark green = green crowns, black = shadowed crowns).
Note: The red crown color class is difficult to see at this map scale, but it mostly exists in panel D. Location: Northern
Minnesota. Insect and Disease Survey database DAMAGE_AREA_ID: {83accf7a-04b6-4{34-8e8e-4ab2770b42df}.
NAIP imagery (public domain) provided by USDA-FSA-APFO.

https://doi.org/10.1371/journal.pone.0272360.g006

showing TCH model results in relation to the base NAIP imagery illustrate how TCH may be
used to refine maps of damage based on IDS, but the patterns of healthy vs. damaged trees in
the images and models can be complex (e.g., Figs 6 and 7). Unfortunately, the IDS data used in
our study cannot be statistically compared to our TCH models. IDS data are collected at a radi-
cally different (much coarser) spatial scale, and the damage polygons can exhibit low positional
accuracy, because they are primarily hand-drawn observations mapped while flying in small
aircraft. Rather, as demonstrated in our results, IDS data are primarily useful for understand-
ing generally where and when forest damage occurred, as well as what caused the damage and
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Fig 7. Mortality of ponderosa pine (Pinus ponderosa) caused by western pine beetle (Dendroctonus brevicomis). Left panel is NAIP imagery from 2016
(A). Right panel (B) shows the damaged tree crowns as points on top of the 2016 NAIP imagery (orange = red crowns, light gray = gray crowns). Location:
Sequoia National Forest, California. Insect and Disease Survey database DAMAGE_AREA_ID: 20165031067. NAIP imagery (public domain) provided by
USDA-FSA-APFO.

https://doi.org/10.1371/journal.pone.0272360.9007

which tree species were impacted. Unlike IDS, Forest Inventory and Analysis (FIA) data [63]
may be used to assess the accuracy of area-based TCH summary statistics, and FIA affords the
added opportunity to measure how much understory mortality is occurring that is missed by
TCH and other imagery (top down) measures of mortality in the canopy. A quantitative TCH
vs. FIA comparison was beyond the scope of this study, but important considerations for
future study design include controlling for vertical stratum in FIA, as well as FIA plot revisit
frequency, plot sample size, and how those two factors affect FIA area-based estimation of
biotic damage events that are often spatiotemporally aggregated or biased.

Variation in TCH model performance is anticipated based on the spatiotemporal scales of
damage interacting with the timing and frequency of imagery available to train and project the
models. The examples provided in this study all demonstrate the ability of TCH to detect and
map tree mortality occurring in trees identified as showing signs of stress. Most trees experi-
ence mortality and remain standing dead for multiple years, even many decades in certain
environments [64,65]. Thus, our results pertain to damage occurring over long (inter-annual)
time scales. However, other damage types such as defoliation occur over comparably short
(intra-annual or even intra-seasonal) time scales [66]. These ephemeral damage events may be
captured and mapped well by TCH if the available imagery is timed appropriately. Similarly,
the spatial scale and spectral signature of damage also affect TCH model results. The tree mor-
tality examples shown here involve entire crowns delineated by multiple contiguous red or
gray pixels (i.e., patches). However, other damage types may affect only portions of tree crowns
(e.g., branches) or result in signatures that retain more of a green hue (e.g., crown discolor-
ation) [17,18]. In these cases, the spatial resolution of the imagery may be too coarse to detect
damage at a sub-crown level, or the signature of the damage may be misaligned with the red
and gray models used to detect damage.

Our successes with mapping tree mortality using supervised classification models are not
unique to TCH. Other studies have similarly demonstrated the ability to map damage caused
by insects or diseases using moderate to high resolution imagery [67-75]. However, most of
these studies are highly focused on local and species-specific damage events (e.g., pine
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Fig 8. Mortality in a mixed stand of mostly loblolly pine (Pinus taeda L.) caused by southern pine beetle
(Dendroctonus frontalis). Left panels are NAIP imagery from 2019 (A), 2017 (C), and 2015 (E). Right panels (B, D, F)
are the corresponding TCH model results from each year (orange = red crowns, light gray = gray crowns, dark

green = green crowns, black = shadowed crowns). Location: William B. Bankhead National Forest in northern
Alabama. Insect and Disease Survey database DAMAGE_AREA_ID: {d9b4b4b9-855{-4a9f-9d87-87b7c95c211e}. NAIP
imagery (public domain) provided by USDA-FSA-APFO.

https://doi.org/10.1371/journal.pone.0272360.g008

mortality from bark beetles [67,69,70]) and are thus limited in their ability to monitor and
map damage occurring from the wide variety of insects, diseases, and other abiotic factors
affecting forests. In addition, previous studies have often relied on high resolution multi- or
hyper-spectral imagery collected for special purposes over relatively small areas (e.g., [10,74]).
Methods that rely on such specialized imagery further restrict the areas over which monitoring
and mapping of forest health conditions may occur, and they require advanced knowledge of
remote sensing to conduct analyses using the specialized imagery. Meanwhile, other studies
that utilize existing and readily accessible satellite imagery covering all or most of the world’s
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surface (e.g., [8,33,66]) do not currently have a high enough spatial resolution to map individ-
ual tree crowns. We acknowledge that these and additional remote sensing studies of forest
damage are difficult to compare, due to variation in both data and methods. Additional work
is required to benchmark various forest health remote sensing modeling techniques while con-
trolling for imagery source, to evaluate which combinations of modeling technique and imag-
ery are best suited to detecting and mapping different damage events.

Our results demonstrate that TCH applied to NAIP or other comparably high resolution
RGB imagery offers opportunities to monitor and map forest damage caused by a variety of
agents impacting different tree species over broad geographies. Hence, it is a novel method
that stands to advance the use and adoption of remote sensing data and technologies in the
field of forest health. Nonetheless, additional research is warranted to overcome several key
challenges with broadscale implementation, as well as integration with other existing methods
that may improve the accuracy and utility of TCH. One key challenge relates to constraining
TCH model predictions to treed areas. TCH does not model what is treed but rather the color
or condition status of tree crowns. Interpreting TCH results thus requires a separate tree
model or mask to restrict model predictions to treed pixels. In this study, we used a simple tree
mask derived from NLCD [53], but that mask is at a spatial resolution of 30 m, which is
extremely coarse compared to the meter to sub-meter resolution of the imagery used in TCH
models. Canopy height models developed from LiDAR (Light Detection and Ranging) could
complement TCH models by constraining model predictions to individual tree crowns.

Deep learning models also show promising results for mapping tree crowns in RGB color
space [13,76-79], especially when large labeled datasets like the TCH samples are available,
since such models are often limited by the number and quality of labels that are used in model
fitting [80]. Future research applying deep learning models to NAIP, or imagery at a compara-
ble spatiotemporal resolution, could greatly improve TCH applications. However, deep learn-
ing models usually require two-dimensional image patches as input, while TCH samples are
points. One area of future work is to use a region growing algorithm to expand each point to
the surrounding homogeneous pixels to convert the point data into image patches, which can
then be utilized by deep learning models for model training and prediction. We are exploring
the use of a point-to-patch label generation algorithm [81] using TCH training points, and pre-
liminary results suggest these methods may allow us to derive a large number of image chips
and labels for use in training deep learning models (Fig 9).

In many instances it is important to know more than where damaged trees exist, but also
the tree species impacted, cause of damage, and damage type. The TCH models presented here
are unable to assess or predict any of these factors and the examples we show in results were all
based on known damage events documented in IDS [52]. IDS data include information on
damage causing agent, host tree species, and damage type, enabling us to infer these attributes
for TCH results paired with IDS dates and locations. However, for TCH to support real-time
operations where such details are needed, additional models or observations would be
required to label or attribute TCH model predictions. Other remote sensing studies of forest
health that are agent and host specific (e.g., [71,73,74]) could complement TCH results and
offer insights on these additional attributes. Alternatively, attributes could be derived by data-
mining IDS or other existing forest health observational data sources [82,83], as well as infor-
mation on host tree species [63,84], to probabilistically infer data labels at moderate spatial
resolutions. Such integration of remote sensing with other traditional forest health survey data
stands to play an important role in reducing risk exposure (i.e., of field surveyors) while also
facilitating new and varied approaches to conducting surveys when traditional field activities
are seriously curtailed, such as what occurred during the COVID-19 pandemic [85]. Further-
more, TCH results stand to complement existing IDS survey data by offering opportunities to
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A). shadow class sample B). absence class sample C). green class sample D). red class sample E). gray class sample

Fig 9. NAIP image chips and labels. A) shadows (South Dakota 2018), B) absence (non-treed areas, Minnesota 2019), C) green healthy crowns (Oklahoma 2019), D) red
damaged crowns (Alabama 2017), and E) gray damaged crowns (Virginia 2012). The chips are 59 x 59 pixels in size, and the green points in the center of each chip are the
NAIP digitized points collected using the NPD tool in Google Earth Engine, for each respective color class. Red outlines show the results of the algorithm used to “grow”
points into patches, with patch labels determined from the color classes of the digitized points. NAIP imagery (public domain) provided by USDA-FSA-APFO.

https://doi.org/10.1371/journal.pone.0272360.9g009

refine or improve estimates of damage location (i.e., mapping damage more precisely and
accurately) and intensity (e.g., TPA).

While our demonstration of TCH models is limited to a single source of imagery (NAIP),
TCH models are capable of being run on any high spatial resolution RGB imagery. Opportuni-
ties exist to apply TCH models to other real-time high spatial resolution satellite imagery,
including WorldView or other imagery from companies such as Planet Labs. However, these
applications come with challenges, including procuring or gaining access to proprietary imag-
ery and obtaining training data. The latter may be overcome by the high transferability we
found with our TCH models trained using NAIP. Given how NAIP has variable observation
geometries, we did not expect the global models trained using median optimal model con-
stants to perform as well as the models trained separately for each NAIP state x year combina-
tion. The fact that the global model performed as well indicates that TCH models are highly
transferable, and further that the model constants are robust to a range of values. These factors
suggest that TCH models may be manually or visually trained on representative RGB images
from alternative sources (e.g., as illustrated in Fig 1 for an aerial photo), without having to nec-
essarily collect new training data.

To facilitate additional study and research, we share all TCH data and code from this study.
Our desire is to encourage others to expand and transcend what we have developed. Using the
materials we provide, opportunities exist to collect new training data, set baselines for what
healthy, dying, and dead trees could look like in RGB and HSV space, derive new optimal
TCH model constants, train and project new and alternative TCH models, and explore the
utility of TCH results as data inputs for other more complex models. We contribute these
resources to the scientific community with hope that they advance research and development
of remote sensing applications to monitoring and managing forest health.

Conclusion

We demonstrate the ability to monitor and map damage and mortality occurring in individual
tree crowns over broad extents using simple supervised classification models trained on high
spatial resolution three band (red, green, blue) imagery. The results of these Tree Crown
Health (TCH) models applied to imagery provided by the United States Department of Agri-
culture, National Agriculture Imagery Program (NAIP), showed high accuracy and transfer-
ability when assessed over 167 different years and states in the contiguous US. TCH models
show promise for operationalizing remote sensing monitoring of forest health conditions and
hazard trees over large landscape scales. Furthermore, the training data and code provided as
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part of this study offer opportunities for extending the TCH models using newly collected
training data, new imagery, and new modeling methods, such as models developed using
machine and deep learning techniques. Two key challenges lie in quantifying the accuracy of
TCH models using independent observational data on forest health conditions and improving
our ability to mask treed vs. non-treed areas at sub-meter resolutions.

Supporting information

S1 Fig. NAIP Point Digitizing (NPD) graphical user interface (GUI) in Google Earth
Engine (GEE). The GUI navigates photo interpreters through a series of 4 steps that prepare
the GEE map interface for digitizing training data in each of the four crown color classes (red,
gray, green, and shadow; figure example shown for gray; map portion of GUI not shown).
(TIF)

S2 Fig. Conceptual diagram of the Amazon Web Services (AWS) architecture used to
deploy Tree Crown Health (TCH) modeling workflows using ArcGIS®) software solutions.
The system is founded on ArcGIS® Enterprise, which manages work and connections
between ArcGIS® Pro and ArcGIS® Image Server, which runs Raster Analytics, as well as
connections to storage (file server and s3). The names on the boxes (c5.2xlarge, m5.xlarge,
r5.4xlarge, and m5.large) indicate the AWS instances (server specifications) used.

(TIF)
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