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Transplanting stem cells with the abilities of self-renewal and differentiation is one of the
most effective ways to treat many diseases. In order to optimize the therapeutic effect of
stem cell transplantation, it is necessary to intervene in stem cell differentiation. Inorganic
nanomaterials (NMs), due to their unique physical and chemical properties, can affect the
adhesion, migration, proliferation and differentiation of stem cells. In addition, inorganic
NMs have huge specific surface area and modifiability that can be used as vectors to
transport plasmids, proteins or small molecules to further interfere with the fate of stem
cells. In this mini review, we summarized the recent advances of common inorganic NMs in
regulating stem cells differentiation, and the effects of the stiffness, size and shape of
inorganic NMs on stem cell behavior were discussed. In addition, we further analyzed the
existing obstacles and corresponding perspectives of the application of inorganic NMs in
the field of stem cells.
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INTRODUCTION

Stem cells refer to cells with self-renewal and differentiation capacity, which can be roughly divided
into embryonic stem cells and somatic stem cells. Embryonic stem cells are derived from blastocysts
(Reubinoff et al., 2000). Typical somatic stem cells include mesenchymal stem cells (MSCs), neural
stem cells (NSCs), hematopoietic stem cells (HSCs) and so on. Terminally differentiated somatic cells
can be reprogrammed into induced pluripotent stem cells (iPSC) with embryonic stem cells (ESCs)-
like properties by transfection of defined factors (Takahashi and Yamanaka, 2006), and further
differentiate into different cell types. With the increasing of research on stem cells in recent years,
more and more evidence is emerging that stem cell transplantation is one of the most effective
methods to treat neurological diseases, bone injury and other diseases (Yang et al., 2018; Krukiewicz
et al., 2020). The growth and differentiation of stem cells are easily affected by their surrounding
matrix. Changing the size, hydrophilicity, roughness, and arrangement of the cell attachment surface
can directly affect cell behavior (Zanden et al., 2014). To be able to fully realize the therapeutic
potential of stem cells in the field of regenerative medicine, precise control of the fate of stem cells is
one of the first issues to be addressed (Solanki et al., 2013b).

Inorganic NMs have been widely used in bioimaging, drug delivery, biosensing, photothermal
therapy, and 3D printing due to their own excellent properties (Wu et al., 2018; Mashayekhi et al.,
2020; Tavares et al., 2021). In recent years, inorganic NMs have been widely used to manipulate the
fate of stem cells. Inorganic NMs exert their influence on stem cell behavior as unique biomolecules,
besides that, as modifiable non-viral transfection vectors, inorganic NMs can carry various bioactive
molecules that regulate stem cell behavior, including RNA, plasmids, proteins, or polypeptides, etc.,
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thereby further stimulating the proliferation, migration,
differentiation and paracrine behavior of stem cells. Various
inorganic NMs, including graphene (Rostami et al., 2020),
carbon dots (Shao et al., 2017), gold nanoparticles (AuNPs)
(Heo et al., 2014), silver nanoparticles (AgNPs) (Wan et al.,
2020), nano titanium-based alloys (Jalali et al., 2020), strontium
nanoparticles (Hu et al., 2017), iron oxides nanoparticles (Zhang
et al., 2020), manganese dioxide (MnO2) nanoparticles (Wang
et al., 2017), silicon dioxide (SiO2) nanoparticles (Gandhimathi
et al., 2019), and black phosphorus (BP) nanosheets (Xu et al.,
2020), have been extensively explored in stem cells regeneration
medicine. The stiffness, size and shape of inorganic NMs can
directly affect the bioactivity of materials and, in turn, affect the
differentiation of stem cells (Huang et al., 2020). In this paper, we
summarized the progress of various inorganic NMs on the
regulation of stem cells differentiation, and the physical
properties of inorganic NMs in regulating stem cell
differentiation were discussed. In addition, the obstacles to the
application of inorganic NMs and the corresponding solutions
were further analyzed.

Carbon-Based Nanomaterials
Carbon-based materials such as carbon nanotubes (CNTs) and
graphene have good physical properties, stability and
biocompatibility, which can maintain the adhesion and
proliferation of stem cells and can influence the differentiation
fate of stem cells (Lee et al., 2011; Shao et al., 2018; Gupta et al.,
2019). But different types of carbon-based materials show
different effects on stem cells. Compared with graphene, iPSCs
are more likely to grow on the surface of graphene oxide (GO)
because the oxygen-containing functional groups of GO greatly
improve the surface hydrophilicity, which is conducive to cell
adhesion, growth and differentiation (Liu et al., 2011; Feng et al.,
2018; Yang et al., 2018) compared the effects of CNTs, GO, and
graphene on dopamine neural differentiation of mESCs. Only GO
was found to significantly enhance the differentiation of ESCs
into dopaminergic neurons (Yang et al., 2014a). GO can improve
biological activity during biomineralization and promote
osteoblast adhesion (Krukiewicz et al., 2020). Go can also
promote the attachment and proliferation of MSCs, which
promotes spontaneous and stimulated osteogenic
differentiation (Rostami et al., 2020). In addition,
carbonaceous nanomaterials called fullerenes are a potential
material for inducing osteogenic differentiation of MSCs (Yang
et al., 2014b). Gadofullerene nanoparticles effectively reduce
reactive oxygen species (ROS) levels in blood and promote
erythrocyte maturation (Jia et al., 2020).

Being able to simultaneously monitor and direct stem cell
differentiation is important for the application of stem cells. Kim
et al. (2013a) reported a non-invasive and rapid electrochemical
method to detect the differentiated state of NSCs using 3D GO
encapsulated AuNPs based on the feature that there are many
C�C unsaturated groups on the surface of NSCs, while the
unsaturated groups significantly decrease after differentiation.
Shao et al. (2017) used citric acid-based carbon dots (CDs) to
label rat bone marrow mesenchymal stem cells (BMSCs) without
affecting cell viability to provide real-time monitoring of cell

activities. Meanwhile, the presence of CDs could enhance the
osteogenic differentiation efficiency of rBMSCs by promoting
matrix mineralization and up-regulating the expression of
osteoblast gene markers alkaline phosphate (ALP), runt related
transcription factor 2, osteocalcin and bone sialoprotein.
Similarly, (Meng et al., 2019; Yang et al., 2019), synthesized
Mg2+-doped CDs and Zn2+-doped CDs, which were
internalized by cells as a biomarker and simultaneously
promoted the osteogenic differentiation of mouse embryo
osteoblast precursor cells (MC3T3-E1) by increasing their ALP
activity.

Metal-Based Nanomaterials
Gold Nanoparticles
AuNPs possess good biocompatibility and can serve as an ideal
alternative material to promote bone tissue regeneration. AuNPs
significantly promote osteogenic differentiation and mineral
deposition in MSCs (Suarasan et al., 2015; Mahmoud et al.,
2020). In vivo experiments have shown that AuNPs can
promote bone regeneration at bone defect sites and play a
positive role in bone healing (Heo et al., 2014).

AuNPs as vehicles also play an important role in the
applications of stem cells. AuNPs deliver basic fibroblast
growth factor and bone morphogenetic protein-2 (BMP2) to
promote osteogenic differentiation of MSCs (Qi et al., 2017).
Patel et al. (2014) constructed a mimic transcription factor
NanoScript based on AuNPs, which could achieve nuclear
localization and initiate the transcriptional activity of both
reporter plasmids and endogenous genes, and successfully
initiate selective differentiation of adipose derived
mesenchymal stem cells (ADMSCs) into myoblasts (Patel
et al., 2015c). Next, they designed NanoScript to depress the
expression of SOX9 gene in NSCs and promote the formation of
functional neurons (Patel et al., 2015a). After that, they modified
the NanoScript which specifically enhanced SOX9 gene
expression with a small molecule to enhance the chondrogenic
differentiation of ADMSCs by increasing the activity of histone
acetyltransferases (Patel et al., 2015b). Wu et al. (2020) developed
multifunctional AuNPs to control and detect osteogenic
differentiation of hMSCs in real time, giving AuNPs multiple
applications in stem cell regenerative medicine.

Silver Nanoparticles
AgNPs have promising anti-inflammatory and antimicrobial
activities (Hebeish et al., 2014; Xia et al., 2020). Topical
coating facilitates the healing of wounds (Tian et al., 2007).
Implanting stem cells into dressings containing AgNPs also
promotes cell growth and wound healing (Gao et al., 2020).
Silver nanomultilayers decorated on the surface of titanium
alloy implants enhance osteogenic differentiation of rBMSCs
(Wan et al., 2020). Therefore, AgNPs which possess both
antibacterial and osteogenic differentiation abilities are
potential biomaterials for treating infectious bone defects (Li
et al., 2020a). AgNPs induce osteogenic differentiation
independent of Ag+ (Qin et al., 2014), but associated with the
increase of intracellular ROS (Chowdhury et al., 2018; Dayem
et al., 2018).
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Nano Titanium Alloys
Titanium (Ti)-based alloys are a common type of bone implants.
Inert Ti alloy implants can quickly form TiO2 film on the surface
in vivo, and the film can be recovered in a short time after
disruption. Therefore, Ti alloy implants have good
biocompatibility (Zhang and Chen, 2019).TiO2 films enhance
the osseointegrative properties of the orthopedic implant material
(Blendinger et al., 2021). Ti-based materials such as Ti-modified
TiO2 nanotubes can promote the adhesion, proliferation and
osteogenic differentiation of MSCs, and in vivo transplantation
can improve osteoporosis (Yu et al., 2017). At the same time, they
promote the adhesion of macrophages and the transformation of
M1-to-M2, which induces a favorable immune
microenvironment for bone fusion (Yang et al., 2020). TiO2

nanotubes can promote F-actin polymerization and osteogenic
differentiation in BMSCs (Liu et al., 2021). Apart from that, TiO2

nanotubes can target drugs to bone and enhance osteoblast
differentiation (Hashemi et al., 2020; Tong et al., 2020).

Strontium Nanoparticles
Strontium (Sr) has biological effects to promote osteogenesis, and
moderate supplementation of Sr enhances calcium absorption
(Nielsen, 2004). Zhang et al. (2013) loaded Sr on TiO2 nanotubes
to obtain Crystalline SrTiO3, which can realize the slow release of
Sr. It further enhances the ALP activity and matrix mineralization
ability of MSCs. SrTiO3 nanotube arrays have good
biocompatibility and are ideal implants for osteoporotic bone
(Xin et al., 2009). Meanwhile Sr can depress the activity of
osteoclasts, which greatly improves the osteogenesis (Hu et al.,
2017). In addition, Sr also promotes M2 type polarization of
macrophages and reduces proinflammatory factor to create a
favorable environment for bone healing (Li et al., 2018).

Iron and its Oxides-Based Nanoparticles
Fe3O4 nanoparticles (Fe3O4 NPs) are typical magnetic materials
for promoting bone tissue regeneration (Zhang et al., 2020).
Fe3O4 NPs composite scaffolds could enhance adhesion,
proliferation and osteoconduction of hMSCs (Bock et al.,
2010; Kim et al., 2020b). Magnetite-modified scaffolds
facilitate the adhesion and proliferation of cells, which in turn
promotes osteogenic differentiation of MSCs and osteogenesis in
vivo (Lee et al., 2019b; Pistone et al., 2019; Xia et al., 2019). (Li
et al., 2020c) treated hMSCs with Fe3O4 NPs and obtained
exosomes labeled with Fe3O4 NPs, which significantly
promoted proliferation, migration, and angiogenesis of human
umbilical vein endothelial cells (hUVECs) in the skin
injury model.

Manganese Dioxide-Based Nanoparticles
One of the most important applications of MnO2 in stem cell
regenerative medicine is bio-imaging, in which MRI is used to
track the distribution of stem cells in vivo (Yang et al., 2018).
MnO2 nanotubes are reduced to Mn2+ in acidic solution or by
intracellular glutathione and further activate magnetic resonance
imaging (MRI) (Lu et al., 2017; Wu et al., 2018). Mn2+ can
promote neural differentiation and neurite growth of rat
pheochromocytoma cells (PC12). Moreover, the ππ stacking

interaction affects the charge-carrier density between
catecholamines and MnO2 nanoellipsoids through which the
catecholamines secreted by PC12 cells can be monitored in
real time (Kim et al., 2013a).

MnO2 as an antioxidant can alleviate the oxidative
environment of injured tissues. Modification of MnO2 on the
surface of MSCs can improve cell survival in oxidative disease
tissue while secreting more proangiogenic factors (Teo et al.,
2019). MnO2-modified hydrogel significantly reduces the ROS at
the site of spinal cord transection injury in rats and promotes the
neural differentiation of the implanted MSCs (Li et al., 2019).
Based on the large specific surface area and molecular
characteristics, (Yang et al., 2018), used MnO2 3D
nanoscaffolds to deliver hNSCs and small molecules to the
spinal cord injury site in mice, improving cell survival and
facilitating repair. BMP2 loaded MnO2 nanoparticles can
enhance the recruitment of skeletal stem cells to promote bone
repair (Li et al., 2020b).

Non-Metallic Nanomaterials
Silicon Dioxide Nanoparticles
Silicon is one of the essential mineral elements in human body,
which plays an important role in the formation and maintenance
of human bones. Soluble silicon dioxide plays a dual role in bone
metabolism. On the one hand, it can promote osteoblasts. On the
other hand, it can inhibit the formation of osteoclasts and bone
resorption (Mladenovic et al., 2014). Therefore silicon holds great
promise for osteoporosis therapy (Price et al., 2013). SiO2 can
enhance the hydrophilicity of nanofibers and favor the adhesion
and growth of MSCs, which in turn promote osteogenic
differentiation (Gandhimathi et al., 2019).

Mesoporous silica nanoparticles (MSNs), with excellent
adsorption properties, stability and biocompatibility, are often
used as vehicles for various active molecules to direct the fate of
stem cells (Mashayekhi et al., 2020). BMP2 delivery by MSNs can
promote the differentiation of MSCs towards osteoblasts (Zhou
et al., 2015). Solanki et al. (2013a) developed a SiO2 nanoparticle-
mediated reverse uptake platform that delivered siRNA to depress
SOX9 expression and enable NSCs to differentiate into neurons.
Tavares et al. (2021) used functionalized MSNs as inorganic bone
building blocks of multi-bioactive nanocomposite bio-ink, and
used 3D bio-printing technology to generate biomaterials
containing MSCs, which opened up great potential for bone
tissue engineering to fabricate living 3D structures.

Black Phosphorus Nanomaterials
Black phosphorus, as a new type of semiconductor material,
possesses good optical and electrical properties. In addition,
BPNMs have many advantages such as large specific surface
area, high photothermal conversion efficiency, good
biocompatibility and biodegradability, which are widely used
in biological fields (Yin et al., 2017). BPNMs are not only
widely used in photothermal therapy of tumors (Luo et al.,
2020), (Chen et al., 2018) also reported neuroprotective effects
of BPNMs. BP hydrogel scaffolds combined with electrical
stimulation can significantly promote the transformation of
BMSCs into neuro-like cells (Xu et al., 2020). In addition,
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BPNMs can promote the proliferation, migration and osteogenic
differentiation of stem cells and is widely used in bone repair (Lee
et al., 2019a; Raucci et al., 2019). BP degradation produces
phosphate ions. Hydrogels encapsulated with BPNMs can
capture free calcium ions in vivo to form calcium salts, thus
accelerating the biomineralization of bone defects and enhancing
bone regeneration (Huang et al., 2019). BP hydrogel promotes
osteogenic differentiation of hMSCs in vitro and shows the fastest
rate of bone formation when transplanted into a rat model of
skull defects (Miao et al., 2019). Pan et al. (2020) synthesized a
chitosan thermosensitive hydrogel containing BPNMs for
rheumatoid arthritis treatment. BP can eliminate the
hyperplastic synovial tissue under the irradiation of near-
infrared light, so as to relieve inflammation. Meanwhile,
BPNMs continue to degrade in situ and release phosphate
ions to realize the mineralization of calcium for bone
regeneration.

Physical Properties of Inorganic
Nanomaterials Modulate Stem Cell
Differentiation
Stiffness
The stiffness and elasticity of the extracellular matrix (ECM)
determine the differentiation fate of stem cells (Trappmann et al.,
2012). Modulating the stiffness of nanomaterials can direct the
fate of stem cells. Neural crest stem cells differentiate into smooth
muscle cells around stiff substrates and into glial cells in softer
matrix (Zhu et al., 2019). Similarly, MSCs mainly differentiate
toward neurons in the soft matrix similar to nerve tissue, toward
myocytes in the medium hardness matrix, and toward osteoblasts
in the high hardness matrix (Engler et al., 2006). Wang et al.
(2020) enhanced the efficiency of osteogenic differentiation by
improving the hardness of gradient nanostructured Ti materials.

Shape
The microstructure of the cellular matrix greatly influences the
growth and differentiation of cells. Solanki et al. (2010) found that
the arrangement of the ECM affects the differentiation of NSCs,
which are more likely to differentiate into neurons on grid-

shaped ECM than strip or square. Later, they proved that the
nanotopographic cues of the carbon nanotube network could
cooperatively induce the selective growth of hNSCs (Park et al.,
2011). Nanostructure modification on the surface of titanium
grafts can promote osseointegration (Souza et al., 2019). Zhao
et al. (2010) found that titanium microstructure surface can
promote osteogenesis-related gene expression in osteoblasts,
but has a down-regulation trend in cell proliferation, total
protein formation, ALP activity and cell matrix mineralization.
However, the addition of nanostructures on the surface of
titanium microstructures significantly promotes osteogenic
differentiation. At the same time, there is no significant
difference between the total protein content and ALP activity
on the nanostructured surface and the smooth surface, but the
micro/nano surface features significantly increase the expression
of both. In vivo transplantation can also promote new bone
formation and osseointegration at the femoral defect (Zhang
et al., 2013; Li et al., 2016a; Yuan et al., 2018). These results
indicate that the micro/nano structure has a synergistic effect on
promoting bone regeneration.

Size
There have been many studies reporting the effect of the size of
nanomaterials on stem cell behavior. Stem cells exhibit different
adhesion, proliferation, migration and environmental stress
responses on different sizes of nanostructured substrates (Kim
et al., 2020a). The osteoinduction activity of AuNPs at 20 nm is
higher than that at 40 nm (Li et al., 2016b). However, (Li et al.,
2017), reported that AuNPs below 10 nm significantly decreased
osteogenesis-related gene expression in BMSCs, but increased the
expression of genes related to adipogenesis and the formation of
oil droplets. Zhang et al. (2015) demonstrated that AgNPs with an
average diameter of 10 ± 5 nm could promote the proliferation
and osteogenic differentiation of mMSCs in vitro. However,
AgNPs with a mean diameter of 43 ± 11 nm could promote
adipogenic differentiation of hMSCs and inhibit osteogenic
differentiation in the early stage of differentiation (He et al.,
2016). So, the size of AgNPs has a significant effect on the
differentiation of MSCs. Shen et al. (2015) demonstrated that
Ti nanoparticles with large particles (80 nm) greatly promoted

FIGURE 1 | Illustration of inorganic NMs in regulating stem cell differentiation and their biological applications. The physical properties of inorganic NMs, including
stiffness, shape, and size, can influence the guidance of inorganic NMs to the fate of stem cells, which in turn mediate the differentiation of stem cells to produce different
kinds of functional cells that are beneficial for neurogenesis, angiogenesis, and osteogenesis.
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TABLE 1 | A summary of inorganic nanomaterials guiding stem cell differentiation and its application in regenerative medicine.

Types of
nanomaterials

Cell sources Animal model Cell lineages generated/
effectiveness

In
vitro/in
vivo

Underlying mechanism References

GO/Poly(methyl
methacrylate)
composite scaffolds

hMSCs Enhanced osteogenic
differentiation

In vitro Krukiewicz et al.
(2020)

PCL/GO
nanocomposite
scaffolds

rBMSCs Enhanced osteogenic
differentiation

In vitro Rostami et al.
(2020)

CDs rBMSCs Enhanced osteogenic
differentiation

In vitro ROS-mediated MAPK
pathway

Shao et al. (2017)

Mg2+-doped CDs,
Zn2+-doped CDs

MC3T3-E1 Enhanced osteogenic
differentiation

In vitro Meng et al. (2019);
Yang et al. (209)9

CNTs mNSCs Promoted neuronal
differentiation and neurite
outgrowth

In vitro Integrin-mediated interactions
between NSCs and CNT
multilayers

Shao et al. (2018)

CNTs mouse hippocampal
neuronal cells (HT-22)

Enhanced neural cell adhesion
and neurite outgrowth

In vitro Gupta et al. (2019)

Graphene-based mat rADSCs Enhanced Neurogenic
differentiation

In vitro Feng et al. (2018)

AuNPs/gelatin
hydrogels

hADSCs rabbit Parietal bone
defects

Enhanced osteogenic
differentiation

In vitro
and in
vivo

Heo et al. (2014)

AuNPs hMSCs Enhanced osteogenic
differentiation

In vitro Silenced the adipogenic-
related gene peroxisome
proliferator-activated receptor
c (PPARγ)

Wu et al. (2020)

Core-Shell Mesoporous
Silica Containing
AgNPs

rBMSCs Antibacterial activity and
osteogenic differentiation

In vitro Li et al. (2020a)

AuNPs hMSCs Promoted adipogenesis In vitro Induced cellular ROS level Li et al. (2017)

Silver-rich TiN/Ag nano-
multilayers

rBMSCs Subcutaneous
implantation in rats

Antibacterial activity and
osteogenic differentiation

In vitro
and in
vivo

Wan et al. (2020)

AgNPs mouse kidney-derived
stem cells (mKSCs)

Enhanced podocyte
differentiation

In vitro Chowdhury et al.
(2018)

AgNPs mMSCs Mouse model of
bone fracture

Enhanced osteogenic
differentiation

In vivo Zhang et al. (2015)

TiO2/hydroxyapatite
thin films

hMSCs/mouse
mesenchymal tumor
stem cell line ST-2

Enhanced osteogenic
differentiation, adhesion and
proliferation

In vitro Jalali et al. (2020);
Blendinger et al.
(2021)

Ti- implants with zinc-
modified calcium
silicate coatings

rat bone marrow-
derived pericytes

Ovariectomized
rabbits

Promoted osteogenic
differentiation

In vivo TGF-beta/Smad signaling
pathway

Yu et al. (2017)

TiO2-nanorods murine macrophage
cell line RAW264.7
and BMSCs

Femur marrow
cavities of rabbits

Enhanced osteogenic
differentiation and M1-to-M2
transition of macrophages

In vitro
and in
vivo

Yang et al. (2020)

TiO2 nanotubes rBMSCs Enhanced osteogenic
differentiation

In vitro Polymerization of F-actin
enhanced the expression of
RhoA and transcription factors
YAP/TAZ

Tong et al. (2020);
Liu et al. (2021)

Sr-loaded nanolayer on
plasma sprayed Ca-Si
coating

hBMSCs Enhanced osteogenic
differentiation and inhibited
osteoclastogenesis

In vitro Activated integrin 1and
extracellular calcium sensitive
receptor (CaSR)

Hu et al. (2017)

(Continued on following page)
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the proliferation and differentiation of MSCs compared with
other small particles (20 and 40 nm). The ability of TiO2 to
promote osteogenic differentiation of MSCs is enhanced with the
increase of nanotube diameter in a certain range (74–148 nm)
(Tong et al., 2020). In contrast, when compared with 100 nm,
TiO2 nanotubes with a size of 15 nmwere reported by (Park et al.,
2009) to be the best for both mMSCs and HSCs to promote
adhesion, proliferation and differentiation. These conflicting
conclusions led us to be cautious when looking at the size
issue, and further determine the optimal size in combination
with the preparation process of nanomaterials and cell types.
In addition, the size of nanomaterials is often closely related to
biological toxicity, which should not be ignored.

Taken together, a variety of inorganic NMs are capable of
intervening in the differentiation of stem cells and are used for the
treatment of specific diseases. Meanwhile, the physicochemical
characteristics including stiffness, shape and size of inorganic

NMs greatly influence their differentiation guidance (see
Figure 1).

Obstacles and Solutions for the Application
of Inorganic Nanomaterials
We searched the literatures through the PubMed website using
“stem cells and nanomaterials” as keywords in the past 5 years. A
total of 3,526 results were displayed, and only two remained after
adjusting article type to clinical trial, both about
nanocurcumin. In addition, our keywords search for
“nanomaterials and nanoparticles” in the ClinicalTrials.gov
database yielded only four results and none of the clinical
studies were related to stem cells, so we can see the extremely
low clinical translation of nanomaterials. Combined with the
analysis of the current published papers on the effects of
inorganic NMs on stem cell differentiation (see Table 1), it is

TABLE 1 | (Continued) A summary of inorganic nanomaterials guiding stem cell differentiation and its application in regenerative medicine.

Types of
nanomaterials

Cell sources Animal model Cell lineages generated/
effectiveness

In
vitro/in
vivo

Underlying mechanism References

Sr-doped nanowire RAW264.7 and
rBMSCs

Improved osteogenic activities
and reduced inflammatory
reactions

In vitro Enhancement of CaSR
expression and further PKC
and ERK1/2 phosphorylation

Li et al. (2018)

Fe3O4 NPs)/GO rBMSCs Intracellular ROS scavenging
and osteogenic differentiation

In vitro Zhang et al. (2020)

magnetic iron
oxide NPs

hBMSCs Enhanced osteogenic
differentiation

In vitro Upregulated long noncoding
RNA INZEB2

Wang et al. (2017)

Fe3O4 NPs hADSCs/Primary
mice Osteoblast cells

Enhanced osteogenic
differentiation

In vitro Pistone et al.
(2019); Kim et al.
(2020b)

Fe3O4 NPs, chitosan
and calcium-phosphate
nanoflakes

hADSCs Enhanced osteogenic
differentiation

In vitro Lee et al. (2019b)

Fe3O4 NPs hUVECs Skin injury Promoted proliferation,
migration, and angiogenesis

In vitro
and in
vivo

Li et al. (2020c)

MnO2 with ECM hiPSC-NPCs Mouse spinal cord
injury

Enhanced neural
differentiation

In vivo Yang et al. (2018)

MnO2 nanocatalysts hADSCs Chick
chorioallantoic
membrane

Antioxidant and promoted
angiogenesis

In vitro Teo et al. (2019)

MnO2 NPs hMSCs Rat spinal cord
injury

Antioxidant and neural
differentiation

In vivo Li et al. (2019)

Mesoporous silica NPs hBMSCs Enhanced osteogenic
differentiation

In vitro Tavares et al.
(2021)

Silica-coated AuNPs hMSCs Enhanced osteogenic
differentiation

In vitro Gandhimathi et al.
(2019)

BPNMs rBMSCs Enhanced neural
differentiation

In vitro Xu et al. (2020)

BPNMs MC3T3-E1 Enhanced osteogenic
differentiation

In vitro Lee et al. (2019a)

BPNMs Human dental pulp
stem cells

rabbit model of
bone defects

Enhanced osteogenic
differentiation

In vivo The bone morphogenic
protein runt-related
transcription factor 2 pathway

Huang et al. (2019)
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not difficult to find that the research methods and contents
are monotonous and repetitive. Most of the papers just
simply characterize some differentiation markers in vitro
and in vivo. Articles usually emphasize that inorganic NMs
possess good biocompatibility. However, these experiments
only carry out short-term tests in vivo and in vitro, and even
do not detect the distribution of nanoparticles in various
organs in the body, which is far from the actual clinical
application. In addition, due to the profound differences in
anatomy, physiology and genetics between humans and
animals (Su et al., 2018), successful animal experiments
will not necessarily be replicated in humans. The safety
problem is one of the important reasons for the failure of
clinical translation (Arrowsmith, 2011). In the absence of
complete safety data, clinical failure of nanomaterials is
inevitable. As for the research strategies of nanomedicine,
(Su et al., 2018), put forward critical and balanced
suggestions, including multi-field cooperation, encouraging
research to focus more on the biosafety of nanoparticles
rather than the efficacy, and establishing standardized
evaluation methods.

Previous studies have suggested that the efficacy of stem cell
transplantation depends on the differentiation into specific cell
types, but there is growing evidence that the efficacy depends on
paracrine behavior, which produces neuroprotective,
angiogenesis, and immunomodulatory effects through the
secretion of a large number of cytokines and proteins. MnO2

nanoparticles increase the secretion level of pro-angiogenic
factors in MSCs (Teo et al., 2019). Li et al. (2020c) reported
that exosomes produced by Fe3O4 NPs-treated hMSCs
significantly promoted the angiogenesis of hUVECs. In
addition, cell-derived nanoparticles have emerged as a
promising alternative to synthetic nanocarriers for safer
clinical outcomes (Chakravarti et al., 2020). Exosom-based
therapies can effectively circumvent the toxicity of
nanomaterials and the immune rejection problems associated
with cell transplantation, with a broader application prospect in
the field of regenerative medicine.

CONCLUSION AND PERSPECTIVES

Stem cell transplantation has enabled the cure of many diseases.
Based on previous studies, we know that the unique
physicochemical characteristics of inorganic NMs greatly
influence stem cell fate (Shao et al., 2018; Hashemi et al.,
2020), and the combination of inorganic NMs and stem cells
provides new insights into the treatment of several diseases, such

as bone injury and neurological disorders (Gandhimathi et al.,
2019; Zhang et al., 2019). Inorganic NMs, as vehicles, can
effectively deliver soluble factors such as growth factors and
cytokines to induce stem cell differentiation, and can also
interfere stem cell survival, homing and paracrine behaviors by
forming specific patterns with fibrous/hydrogel scaffolds (Qi
et al., 2017; Zhang et al., 2019).

Biosafety issues are one of the main reasons for the low clinical
translation efficiency of inorganic NMs in the field of regenerative
medicine, so we should also perform more comprehensive and
systematic studies on the biosafety of inorganic NMs, which are
not limited to superficial cytotoxicity tests, but should pay more
attention to the in vivo distribution, visceral toxicity, as well as
metabolic pathways of the NMs. Next, HSCs are known to play
an important role in the field of regenerative medicine. But there are
few publications related to inorganic NMs’ role in HSCs (England
et al., 2013; Bari et al., 2015). Based on the advantages of inorganic
NMs, it is significant to explore the effect of inorganic NMs on the fate
of HSCs and the derived therapeutic effect. Furthermore, most of the
researches on inorganic NMs focus on the differentiation of stem cells
into terminal functional cells, such as bone cells or neurons (Shao et al.,
2018; Tong et al., 2020). The limited efficacy is accompanied by safety
problems. Therefore, it is more promising to turn the research hotspot
to the exosomes secreted by stem cells stimulated by inorganic NMs.
Exosomes are rich in active molecules while having lower toxicity and
can be used for the treatment of more diseases.

In conclusion, inorganic NMs enrich the applications of stem
cells, and there are still many problems to be solved, but
nanomaterials combined with stem cell therapy is promising
and will lead to major breakthroughs in the near future.
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