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In most applications, functional materials operate at finite temperatures and are in contact

with a reservoir of atoms or molecules (gas, liquid, or solid). In order to understand

the properties of materials at realistic conditions, statistical effects associated with

configurational sampling and particle exchange at finite temperatures must consequently

be taken into account. In this contribution, we discuss the main concepts behind

equilibrium statistical mechanics. We demonstrate how these concepts can be used

to predict the behavior of materials at realistic temperatures and pressures within the

framework of atomistic thermodynamics. We also introduce and discuss methods for

calculating phase diagrams of bulk materials and surfaces as well as point defect

concentrations. In particular, we describe approaches for calculating the configurational

density of states, which requires the evaluation of the energies of a large number of

configurations. The cluster expansionmethod is therefore also discussed as a numerically

efficient approach for evaluating these energies.

Keywords: statistical mechanics, cluster expansion, chemical potential, phase diagram, atomistic

thermodynamics method, configurational entropy

1. INTRODUCTION

At finite temperatures (T > 0 K), where functional materials typically operate, atoms move
randomly in all directions due to the energy provided by heat sources. Moreover, a material is
almost always in contact with a gas (or liquid), and can exchange particles with its environment.
The system (“material plus environment”) therefore constantly samples its configurational space
with a finite probability to eventually overcome barriers that separate the minima on the potential-
energy surface (PES). If the barriers are not very high and/or the time for the system to explore
its configurational space is sufficiently large, the system will end up in a state of thermodynamic
equilibrium. In the hypothetical situation when the system is efficiently cooled down to T = 0 K, it
will eventually relax from an arbitrary state to a local or global minimum on the PES, minimizing
the internal energy at these conditions. A more realistic scenario, however, is a case where the
material interacts with a heat bath (a practically infinite energy reservoir, e.g., Earth’s atmosphere),
which keeps the temperature of the system constant. In this case, for purely statistical reasons,
the system will tend to spend most of its time (i.e., will have a high probability to be found)
in the parts of the PES with many local minima of a similar energy (i.e., with a high density
of states), provided the energies of these states are not much higher than the global minimum.
This effect can be formalized by introducing the concepts of entropy and free energy: at a finite
temperature, the system tends to minimize its free energy rather than its internal energy because
entropy is maximized.
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The entropy can be viewed as a measure of the
(quasi)degeneracy of the states of a system that are accessible
at a given temperature. The distinguishable states of a material
contributing to entropy can vary in origin, as they correspond
to different degrees of freedom. For example, vibrational
and electronic states give rise to the corresponding entropic
contributions in solid-state materials, whereas rotational and
translational contributions are important for a gas. An additional
important component in determining the concentration of
point defects and order-disorder phase transitions is the
configurational entropy, which is associated with the degeneracy
of different atomic/molecular configurational states (see
Figure 1).

In solid-state alloys, the configurational disorder corresponds
to all the distinct ways the lattice sites can be occupied at a
specific concentration. As an example, consider a solid-state
compound A with a small amount of impurities B. If species
A and B tend to form a stable compound AB (or any other
stoichiometry), the ground state of this system at T = 0 K will
be the (ordered) compound AB embedded into A. At finite
temperatures, however, the component B prefers to be randomly
distributed in A because there are many more configurations
with B distributed than for the single chunk of AB, resulting
in a higher entropy. Depending on several factors, such as the

FIGURE 1 | Pictorial demonstration of phenomena driven by thermodynamics. (A) Illustration of the oxidation of a metal surface as the oxygen pressure is increased,

where first a change in the oxygen content at the surface and then subsequently in the bulk metal is observed. A (very) small amount of oxygen can be present in the

bulk even at low pressures, while some O atoms may be missing once the oxide is formed at higher pressures. (B) Formation of defects. A generic atomic/molecular

lattice model (e.g., of a crystal surface) with missing atoms/molecules illustrates a random distribution of vacancy defects. The white curve shows the dependence of

the Gibbs free energy of the system with the defect concentration. In thermodynamic equilibrium, the concentration of defects minimizes the free energy. (C)

Illustration of an order disorder phase transition for a binary alloy. At higher temperatures, the alloy components are randomly mixed (left image) due to thermal

population of quasi-degenerate configurational states. As the temperature is decreased, the attractive interaction between atoms within each alloy component causes

separation of the components (right image).

concentration of B, the energy gain due to the formation of
AB, and the temperature, the entropy term may therefore drive
the system to where B is randomly dispersed in the material
despite the stability of AB at T = 0 K. Similar considerations
are applicable to adsorbates on surfaces (see Stampfl et al.,
1999; Reuter et al., 2005; Capdevila-Cortada and López, 2016;
Goldsmith et al., 2018 and references therein). A slightly different
situation occurs when the concentration of B can vary due to
the presence of a reservoir of B. This is a typical situation for
defects (e.g., oxygen vacancies in a material exposed to air).
In the simplest case when the interaction between defects B
can be neglected and the formation of each defect consumes
energy the equilibrium concentration is determined entirely by
the entropy.

To calculate the effects of configurational entropy on stability,
the configurational density of states (DOS) has to be evaluated.
If there is no way to determine a priori which configurations
fall within a given energy range, an extensive sampling of the
configurational states is required. At the same time, the relative
energies of different configurations should be evaluated with
an accuracy that is on the order of thermal energy kBT for
a reliable prediction of thermodynamic properties. This poses
a challenge for modern ab initio electronic-structure methods,
such as density-functional theory (DFT). Although certain DFT
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approximations work well within their domain of applicability,
the computational cost remains too high for sampling of the
potentially very large configurational space. Numerically efficient
methods that still maintain a high accuracy are thus needed.

Force fields (trained on either empirical or ab initio data) have
been traditionally used to study thermodynamics of solid-state
materials, molecules (e.g., proteins) and liquids (e.g., solutions).
Parameterized force fields, however, typically retain an acceptable
accuracy only within the narrow range of structures and
compositions for which they were tuned. Recently, more flexible
approaches have emerged based on machine learning (ML) that
allows for the sampling of large materials spaces (Bartók et al.,
2010; Thompson et al., 2015; Behler, 2016; Shapeev, 2017; Smith
et al., 2017). Typically, however, ML models require a large
number of training samples (i.e., structures where the energy is
already known) before a sufficient accuracy can be achieved. In
addition, issues with transferability and generalizability between
significantly different structures could also be a problem with
these methods (Sutton et al., 2019). Although addressing these
issues is an active area of ongoing research (Sutton et al., 2020),
we instead focus the discussion here on the cluster expansion
(CE) method (Sanchez et al., 1984; de Fontaine, 1994; Ducastelle,
1994). The CE method has been widely used in calculating the
thermodynamic properties of alloys because it is a numerically
efficient approach for estimating the energy for practically all of
the numerous configurational states of a specific lattice, given
only a handful of initial DFT calculations (typically <100) for
training the model.

In this contribution, we begin with an introduction to the
basic concepts of thermodynamics in section 2. This is followed
in sections 3 and 4 by a brief description of computational
methodologies for evaluating configurational density of states
and other thermodynamic quantities, including several sampling
techniques and the CE approach. In section 5.1, we compare
the computed thermodynamic quantities from two different
sampling methods for an exemplary alloy (CuAu). We then
provide a discussion of the role of configurational disorder in
point defect formation in section 5.2. Finally, construction of the
surface phase diagram using first first-principles calculations is
discussed in section 5.3.

2. BASIC CONCEPTS

Here, we only outline the basic concepts of statistical mechanics
and thermodynamics to pave the way for understanding the
methods and practical examples discussed in this contribution. A
more detailed and general formulation can be found elsewhere,
e.g., Hołyst and Poniewierski (2012). To begin let us consider
a system of a large set of (interacting) particles (atoms and/or
molecules) in contact with a thermostat (i.e., a large auxiliary
system that can serve as a source or a sink of the heat, keeping the
temperature of the system constant). The system can be a solid,
liquid, gas, or any combination of these. Due to the statistical
effects described in the introduction, the system will tend to
minimize its free energy. If both the temperature T and volumeV
are constant, the system will minimize the Helmholtz free energy

F:

F = U − TS. (1)

Instead of (or in addition to) a constant volume, if the pressure
p is kept constant, the system tends to a state that minimizes the
Gibbs free energy G:

G = U + pV − TS. (2)

These quantities are called thermodynamic potentials. In both
cases, the number of atoms/molecules of each type is assumed
to be constant as well. These particles are enclosed in a volume
that is either kept constant or evolves so that the pressure is
constant. If the system consists, for example, of a solid and a
gas, the number of particles of each type in the solid can change,
which must be accompanied by a corresponding change in the
number of particles of the same type in the gas so that the total
number of particles in the system (i.e., solid + gas) is constant.

According to statistical mechanics, all thermodynamic
quantities, including the Gibbs free energy, internal energy, and
entropy, can be expressed via a partition function Z:

Z =
∫ ∞

−∞
σ (E) exp−E/kBT dE, (3)

where σ (E) is the DOS (number of states per energy unit). In this
form, the equation is applicable to both manifolds of continuous
and discreet states, with the latter formally represented by Dirac δ

functions in the DOS located at the energies of the discreet states.
Knowing Z allows for various thermodynamic quantities to be
calculated as follows:

U = kBT
2 ∂ lnZ

∂T
, S = kB lnZ + kBT

∂ lnZ

∂T
,G = −kBT lnZ + pV . (4)

The DOS thus fully determines the thermodynamic properties
of a system.

An important quantity is chemical potential that characterizes
the system and needed for practical applications of Equation (2).
Here, we focus on the constant (T, p) conditions since these
are the most common constraints in well-controlled experiments
and industrial applications. By p we imply a set of partial
pressures pi for each particle type i (in all examples in this
contribution i enumerates different atomic species), each of
which is kept constant. At these conditions, chemical potential
of species i is defined as the derivative of G with respect to the
number of particles of type i:

µi =
(

∂G

∂Ni

)

T,p,Nj 6=i

. (5)

In thermodynamic equilibrium, the chemical potential of each
particle type has the same value everywhere in the system (i.e.,
either in the solid or in the gas).

From the extensivity of the free energy (i.e., the fact that it
should change proportionally to the number of particles in the
system) follows the Gibbs-Duhem relation:

G =
∑

i

µiNi. (6)
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This relation can be used to determine the stoichiometry of a
part of the whole system in thermodynamic equilibrium. This
describes realistic situations, such as a solid (bulk and/or surface)
in equilibrium with a surrounding atmosphere. The free energy
of the whole system can be written as the following:

G = G(1) +
∑

i

µiN
(2)
i , (7)

where G(1) is the free energy of phase 1 (e.g., a bulk solid or a

surface), andN(2)
i is the number of particles of type i in the second

phase (e.g., a gas). Here, we used Equation (6) for the second
phase and the fact that chemical potentials in equilibrium are the
same for both phases. Thus,

G = G(1) +
∑

i

µi(Ni − N
(1)
i ), (8)

where N
(1)
i is the number of particles in phase 1. At this stage

we assume that phase 2 is a reservoir large enough to set the
chemical potential for the whole system, so that µi = const.
Because Ni = const, the minimum of the total free energy G with

respect to N(1)
i corresponds to the minimum of

G̃ = G(1) −
∑

i

µiN
(1)
i . (9)

The quantity G̃ is in fact a thermodynamic potential,
corresponding to conditions of constant T, p, and µ (not
N). It describes an open system that can exchange particles (i.e.,
atoms, molecules, or electrons) with a reservoir. The electronic
chemical potential is often referred to as Fermi energy, although
sometimes a distinction is made between these two concepts by
specifying that the Fermi energy is the chemical potential at T =
0 K (Kittle, 2004).

The use of Equation (9) also requires knowledge of the
chemical potentials of all particle types in the system. The
experiments where (T, p) conditions for multiple species are
carefully controlled are very rare (e.g., FactSage) (Bale et al.,
2016). Assumptions on the values of chemical potentials of
at least some of the species therefore have to be made for
comparison with experimental results. This is done based on
physical considerations, assuming reasonable reservoirs for the
species. For example, for a binary metal oxide MexOy in an O2

atmosphere at constant T and pO2 , the chemical potential of the
metal (Me) atoms is determined by the bulk oxide as the reservoir
according to the Gibbs-Duhem relation:

gMexOy = xµMe + yµO, (10)

where gMexOy is the Gibbs free energy of the bulk oxide per
formula unit. For a ternary or a more complex oxide, this
approach would only determine the chemical potential of the
combination of metal species, but not each of them separately.
Moreover, in an experiment, the species may be present in
another form, e.g., as a component of another compound, which
can then serve as a reservoir for that species. A common

approach to addressing such issues is to study the whole
range of chemical potentials and compare the predicted and
experimentally detected changes in the system (phase transitions
in particular) upon varying (T, p) conditions.

In some cases, it is reasonable to assume that the number of
particles of a certain type is constant or changes negligibly for a
range of conditions. For example, in metal or oxide alloys, when
the minority metal species are not volatile at the conditions of
interest. In this case, the free-energy differences between different
configurations/compositions do not depend on the chemical
potential of the particles of that type.

Finally, chemical potentials can be calculated self-consistently
by minimizing the free energy under additional physical
constraints, such as charge neutrality. This is a widely adopted
approach for calculating concentrations of charged defects in
solids, where the chemical potential of electrons is determined by
the concentration and vice versa (Van de Walle and Neugebauer,
2004).

In the case of a gas-phase reservoir, the chemical potentials for
the species whose temperature and pressure are controlled in an
experiment can be calculated explicitly. This is particularly
straightforward for an ideal gas, which is an accurate
approximation for most gases at realistic temperatures and
pressures. Furthermore, because the translational, electronic,
rotational, vibrational, and nuclear (due to nuclear spin)
degrees of freedom for each molecule in the gas can usually
be decoupled, the partition function of the system is simply a
product of partition functions for each molecule and each degree
of freedom.1

After calculating of the partition function for each molecule,
the chemical potential is obtained using Equation (5), with the
expression of G in terms of the total partition function Z, and the
ideal gas law pV = NkBT:

µ(T, p) = ∂

∂N

(

−kBT lnZ + NkBT
)

. (11)

Alternatively, the chemical potentials of common gases can be
calculated from experimental data, for example the NIST-JANAF
thermochemical tables (see Chase, 1998 and https://janaf.nist.
gov/). Usually, data are reported only for a reference pressure p◦.
For an arbitrary pressure, the chemical potential can be calculated
assuming the ideal gas behavior:

µ(T, p) = µ(T, p◦)+ kBT ln(p/p◦). (12)

Another common practice is to introduce references for the
chemical potentials. Implicitly, a reference is used whenever a
numerical value for chemical potential is given. By introducing
references µref

i , Equation (9) can be re-written:

G̃ = [G(1) −
∑

i

µref
i N

(1)
i ]−

∑

i

1µiN
(1)
i , (13)

1There is, however, a normalization factor N! due to the invariance of the
translational states of the whole system to the permutation of the identical
molecules
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where 1µi = µi−µref
i . Note that this expression is equivalent to

Equation (9) because we simply added and subtracted the same

term. No observable, including the equilibrium values for N(1)
i ,

can thus be affected by changing chemical-potential references.
They are introduced for convenience, namely, to put the values
of chemical potentials on a scale physically relevant for a given
problem. For example, for a surface under an O2 atmosphere,
a convenient reference for the oxygen chemical potential is
µO = 1/2EO2 , where EO2 is the total energy of an isolated
oxygen molecule. Then the values of 1µO are of the order
of an eV and reflect changes in the free energy (including the
zero-point vibrational energy) per O atom of an O2 gas with
temperature and pressure relative to the isolated O2 molecule.
The zero-point energy can be also included in the reference.
Interestingly, 1µO is less sensitive to the approximations in the
electronic-structure method than µO (including 1/2EO2 ) due to
a cancellation of errors. Similarly, the value of the difference
in the square brackets in Equation (13) acquires the meaning
of a formation energy or enthalpy upon a proper choice of
µref
i and can be directly compared to an experimental value. In

general, chemical-potential references can be temperature and/or
pressure dependent.

The free energy G(1) in Equation (9) can be calculated using
an electronic-structure method, such as DFT. The resulting
approach is called ab initio atomistic thermodynamics (Weinert
and Scheffler, 1986; Kaxiras et al., 1987; Qian et al., 1988;
Moll et al., 1998; Reuter and Scheffler, 2001, 2003a). In
principle, this requires calculating the electronic, vibrational, and
configurational DOS as well as the pV term (e.g., accounting
for the change in volume of a solid due to formation of defects
or adsorption of molecules at the surface). The pV term at
realistic pressures can, however, usually be neglected (Reuter
and Scheffler, 2001). In any case, such approximations must be
carefully tested and used with caution (Valtiner et al., 2009). This
can be done by calculating the contributions for representative
systems or by using approximate models (Reuter and Scheffler,
2001).

The vibrational contribution to the free energy can be
estimated by ab initio methods (Stoffel et al., 2010), requiring
the calculation of the interatomic force constants in a large
supercell, which is computationally demanding. An important
approximation that significantly simplifies the calculation of
vibrational contributions to the free energy in solids is the
harmonic approximation. In this approximation, the vibrational
free energy takes the form (Ghatak, 2005):

Fvib =
∫ ∞

0
σphonon(ω)

[

h̄ω

2
+ kBT ln

(

1− e−h̄ω/kBT
)

]

dω,

(14)
where σphonon(ω) is the phonon DOS. The σphonon(ω) is
available for several hundred compounds in the Phonon database
(PhononDB) (Togo, 2015). The harmonic approximation usually
works well at low to moderately high temperatures (i.e., below
1,500 K), unless the PES is strongly anharmonic (e.g., when
weak bonds are present in the system). The contribution of
anharmonicity to the free energy can be evaluated using effective
harmonic Hamiltonians or, more accurately, molecular dynamics

simulations (see Grabowski et al., 2019 and references therein).
The latter can be achieved either via thermodynamic integration
or via enhanced sampling (Abrams and Bussi, 2014; Ikebe et al.,
2016; Zhou et al., 2019).

Although computationally demanding to account for, the
vibrational contribution to the free energy has been shown to
be important for describing the stability of solid-state alloys
(Ozoli and Asta, 2001; van de Walle and Ceder, 2002; Fultz,
2010; Benisek and Dachs, 2015). A main contributor to the
vibrational entropy is the variation in the bonding environment
of the different lattice sites in a given material (Fultz, 2010).
For a reaction that involves two different phases of an element
(e.g., oxygen in a bulk oxide as the product formed from a
gaseous oxygen reactant), the vibrational free energy of the
reactants and products can differ significantly because of the
change in the bonding between the atoms in these different states.
This incomplete cancellation of the vibrational contributions to
the free energy can grow with an increasing temperature and
significantly impact the calculated stability of a material (Bartel
et al., 2018). A cancellation of errors is most likely to occur when
taking the differences in Gibbs free energies of compounds with
similar interatomic bonding environments in the reactant and
products; however, this should be carefully tested.

3. CONFIGURATIONAL ENTROPY

In this section, we introduce approaches for estimating ensemble
averages of materials parameters. In principle, ensemble averages
can be obtained directly using molecular-dynamics simulations
(see, e.g., Baron et al., 2006; Rick, 2006 and references therein).
This is, however, computationally expensive and currently even
unfeasible for a majority of practically relevant problems in
materials science. Instead, here we discuss a few commonly used
approaches, such as the Monte-Carlo Metropolis algorithm and
the Wang-Landau algorithm, as well as the Bayesian method
nested sampling, which has emerged recently as an approach
to explore phase space in an unbiased way. In section 5.1, we
provide a comparison of the Metropolis algorithm and nested
sampling in modeling the order-to-disorder transition in the
binary alloy, CuAu.

We note that the three methods discussed here are just to
highlight a few different common approaches. Several other
algorithms can be used to calculate thermodynamic properties,
such as umbrella sampling (Berg andNeuhaus, 1992) and replica-
exchange molecular dynamics (Swendsen and Wang, 1986).
Moreover, an interesting approach that has been developed
recently combines replica-exchange molecular dynamics with
Monte Carlo steps, adding or removing atoms (Zhou et al.,
2019). This allows for both the exploration of configurational
and compositional spaces in a single framework and the
incorporation of anharmonic contributions to the free energy,
although at a high computational cost. Additionally, several
fast stochastic optimization techniques have been developed
to efficiently search for ground-state structures. Examples
include simulated annealing (Kirkpatrick et al., 1983), genetic
algorithms (Abraham and Probert, 2006; Oganov and Glass,
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2006; Falls et al., 2016), basin hopping (Wales and Doye, 1997;
Doye andWales, 1998), and minima hopping (Goedecker, 2004).
These approaches are not constrained to sample space according
to a distribution, which enables global optimization algorithms to
be more efficient in determining the lowest-energy configuration
of the PES.

3.1. Metropolis Sampling
The Metropolis algorithm (Metropolis et al., 1953) has been
extensively employed for evaluating thermodynamic properties
of a system at some desired temperature. The algorithm begins
by initiating a random configurational state (i) that is evolved
using a Monte Carlo random walk for some pre-defined number
of stochastic steps. During the random walk, a new trial
configuration (t) is generated at each step (by, e.g., the swapping
of atomic positions of two different components). If the energy
of the random trial state (Et) is lower than the initial state (Ei),
the trial state becomes the initial state (Ei) in the subsequent
stochastic step. If Et > Ei, then the trial state is accepted with
the probability of exp(−β(Et − Ei)), where β = 1/kBT. By
increasing the temperature, therefore, the acceptance rate of
higher-energy trial states is increased compared with sampling
at low temperatures.

After a Metropolis run completes at a fixed temperature,
properties, such as the average energies of the accepted trial states
can be calculated. The entropy and free energy cannot, however,
be readily computed from this approach because these statistical
properties cannot be expressed as ensemble averages. Instead,
thermodynamic integration can be used to estimate the free
energy (Tuckerman, 2010). Moreover, one issue with the fixed-
temperature sampling of the PES using the metropolis algorithm
arises when several low-lying minima exist that are separated
by high barriers, which can trap the sampling algorithm locally
and limit sampling of the configurational space. Typically,
multiple runs are needed to accurately describe quantities over
a large range of temperatures (Landau et al., 2004) to avoid
the dependence of the results on the starting configuration. See
textbooks, such as Landau and Binder (2005) for a more in-depth
discussion of Monte Carlo approaches.

3.2. Wang-Landau Algorithm
TheWang-Landau (WL) algorithm (Wang and Landau, 2001a,b;
Landau and Wang, 2002) allows for the direct estimation the
temperature-independent DOS [σ (E)] based on an histogram of
energies that is updated iteratively as more states are sampled. In
the WL algorithm, sampling is performed by initiating a random
configurational state that is evolved using a Monte Carlo random
walk typically in an energy range Emin < E < Emax, and the trial
structure with energy Et is accepted based on the probability:

ρ(Ei − Et) = min

(

1,
σ (Ei)

σ (Et)

)

, (15)

where σ (Ei) is the initial DOS and σ (Et) is the DOS of the trial
state. If the trial state is accepted, the DOS histogram is updated
according to: σ (Et) = σ (Et)× f , where f is the WL factor. If the
trial state is rejected, σ (Ei) is update by the same factor instead.

For the initial iteration, an f = e1 was recommended by Wang
and Landau (2001b), which is updated to decrease monotonically
in each subsequent iteration.

In addition, a histogramH(E) corresponding to the frequency
a distinct configurational state (s) visited during the Monte Carlo
random walk is also updated according to:

H(Es) = H(Es)+ 1 . (16)

Where Es = Et if Et is accepted, otherwise Es = Ei. H(E)
is initially set it to zero for all E because no states have been
sampled. The random walk continues until the histogram H(E)
becomes flat for some range of energies and then resets to
zero for all energies [in contrast to σ (E), which is continuously
updated as the calculation progresses]; as H(E) becomes flatter
over larger energy ranges in subsequent iterations, σ (E) becomes
more accurately estimated. Once σ (E) is known, the partition
function (see Equation 3) and thermodynamic quantities, such
as the internal energy and free energy (see Equation 4) can be
estimated at any temperature.

3.3. Nested Sampling
The nested sampling (NS) algorithm was originally proposed by
J. Skilling for Bayesian computations (Skilling, 2004, 2006) and
subsequently adapted for the automated calculation of pressure-
temperature composition phase diagrams (Pártay et al., 2010;
Baldock et al., 2016, 2017). The key feature of the NS algorithm
is the iterative elimination of a fixed fraction of the phase space
(corresponding to high-energy subset above some defined energy
limit, Emax,i), which effectively allows for a top-down energy
sweep of phase space and constructing the (cumulative) DOS. At
each iteration (i) of the NS algorithm, an energy limit (Emax,i)
is defined and the corresponding state is evolved using a Monte
Carlo random walk for some set of pre-defined number of
stochastic steps. At each stochastic step, the trial state is accepted
if the energy (Et) is below the defined energy limit Et < Emax,i.
A new energy limit Emax is selected at each NS iteration and
sampling in performed again below this new upper-bound. This
sequence of recorded Emax values is the main output from NS
and can be viewed as a discretization of the cumulative density of
states χ(E), which is given by the following:

χ(E) =
∫ E

−∞
σ (E′) dE′. (17)

This is because each energy level Emax,i at iteration i can be
associated with a fraction of configuration space, where χ(Ei) =
αi. The DOS [σi(E)] is the (normalized) volume of phase space
between successive energy levels (i.e., αi−αi+1). This allows for a
relatively straight forward calculation of the partition function in
Equation (3) a posteriori at any value of β = 1/kBT by a discrete
sum over the energy levels (ignoring an additional pre-factor due
to the momentum):

Z ≈
∑

i

(αi − αi+1)e−βEmax,i . (18)
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With the determination of Z, various thermodynamic
observables (e.g., internal energy and free energy) can be
calculated readily for any temperature.

This iterative (decreasing) constraint on the energy in the
nested sampling algorithm allows for an unbiased exploration of
the phase space and aims to uniformly sample areas of the phase
space where significant changes occur (i.e., during a first-order
phase transition, where the available phase space increases as the
energy of the system increases). This is in contrast to the WL
algorithm, where the phase space is explored by sampling the
energy uniformly and could lead to issues with sampling properly
near phase transitions (Pártay et al., 2010). A potential limitation
of nested sampling algorithm is that this decreasing energy
constraint can prevent exploration of an unexplored minima on
the PES, which is problematic in dealing with systems exhibiting
broken ergodicity (Pártay et al., 2010).

4. CLUSTER EXPANSION

As discussed in the Introduction, an accurate calculation of
the configurational DOS is needed to estimate thermodynamic
properties and stability. The CE approach (Sanchez et al., 1984;
de Fontaine, 1994; Ducastelle, 1994) provides a numerically
efficient way to evaluate the properties of a large number of
configurations using a relatively small number of reference
calculations in training the model. CE can be combined with
stochastic sampling techniques to identify new stable structures
and calculate the thermodynamic quantities and phase diagrams.
Because of this, CE has become a standard approach for
calculating the properties of solid-state alloys (Magri and Zunger,
1991; Asta et al., 2001; Franceschetti et al., 2006; Ruban and
Abrikosov, 2008; Casola et al., 2010; Chan et al., 2010; Wu et al.,
2016), to identify key arrangements of surfaces (Borg et al., 2005;
Cao et al., 2018) and adsorbate layers (Stampfl et al., 1999), and
modeling materials with vacancies or defects (Van der Ven et al.,
2001; Van der Ven and Ceder, 2005; Muzyk et al., 2011; Zhang
and Sluiter, 2015). Several CE packages are available including
the Universal Cluster Expansion Code (UNCLE) (Lerch et al.,
2009), Alloy Theoretic Automated Toolkit (ATAT) (van de
Walle et al., 2002), Clusters Approach to Statistical Mechanics
(CASM) software (CASM, 2017), CLUPAN (Seko et al., 2009),
CLEASE (Chang et al., 2019), and Cluster Expansion for large
parent ceLLs (CELL) (Troppenz et al., 2017). In section 5.1, we
will demonstrate how CE can be used to evaluate the energy
of a large number of configurations to model thermodynamic
properties of an exemplary binary alloy. Here, we provide the
necessary background of the CE method (Sanchez et al., 1984;
de Fontaine, 1994; Ducastelle, 1994).

To illustrate how the CE model works, consider a simple
binary alloy AxB1−x with only two atomic species (A and B). The
CE model relies on the fact that a crystalline material with N
atomic sites can be represented as a N-dimensional vector Eη of
the occupation of each atomic site i (1, ..., N):

Eη = (η1, ..., ηN) (19)

where η specifies which type of atom occupies a given site, e.g.,
η = +1 (η = −1) if the site is occupied by atom A (atom B).

The energy of the configuration, E(Eη) (or any other
configuration-dependent property), can then be modeled as a
function of Eη:

E ≈ E(η1, ..., ηN) (20)

E(Eη) can be represented in an orthonormal basis set of clusters
(α). Different choices of the cluster basis functions have
been implemented (Sanchez et al., 1984; van de Walle, 2009),
consisting of combinations of lattice sites α = (i, j, k, ...) up to the
N-site cluster, which represent the different types of interactions:

Es(Eη) = ECEs (Eη) =
∑

α

υαJαXsα , (21)

where Jα is the regression coefficient associated with a cluster
α and the sum runs over all possible inequivalent clusters.
The multiplicity υα accounts for clusters that are symmetrically
equivalent to α. The value Xsα represents the correlation of the
cluster α with the configuration Eηs and is calculated by taking the
products of the occupation value ηi for each site:

Xsα = 1

υα

∑

α′≡α

∏

i∈α′
ηsi . (22)

The sum runs over the set of clusters (α′) that are symmetrically
equivalent to α. The product of the occupation variables ηsi
runs over all lattice sites i. This operation is performed for
each configuration s, which leads to structure-specific values
that depend on the lattice site occupations. The values for Xsα

range between −1 and +1 and are essentially an average of the
rotated/translated clusters used in the model over the occupation
of each lattice site when a binary cluster function is used.

Obtaining an accurate CE model requires determining the
optimal Jα values. The set of possible clusters are practically
infinite, however, which is underscored for an fcc system in
Figure 2. Typically, this is solved by taking advantage of the
“nearsightedness” of interactions in the solid-state by truncating
the set of clusters. For example, by only including only one-,
two-, and three-body clusters within a relatively small cutoff.
If the number of clusters is smaller than the number of DFT
calculations used for training, it is straightforward to use linear
regression to determine the Jα values.

As an alternative approach, the training of a cluster expansion
model can be represented as a minimization of equation:

loss = 1

N

∑

s

(ECEs − Es)
2 + λ

∑

α

|Jα|l. (23)

The first term (i.e., the mean-squared error) ensures that
the cluster expansion model has a low overall error, which
is penalized by the second term that is weighted by the
regularization parameter λ. This penalty term is used because an
additional goal is to select only the best and smallest subset out of
the large set of possible clusters. This is referred to as a “sparse”
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FIGURE 2 | Number of clusters as a function of the cluster radius in units of

lattice constant for an fcc system. Reproduced from Nelson et al. (2013) with

permission from APS.

solution because there are only a few non-zero components
compared with the total number of possible clusters. To optimize
a sparse solution using Equation (23), a few values of l can be
used. If l = 0 (the so-called l0 norm), then themean squared error
is penalized by the total number of non-zero Jα values. However,
Equation (23) with l = 0 is challenging to solve because there
is a combinatorially large number of possible solutions. Instead,
l = 1 (the so-called l1 norm) is commonly used in Equation (23),
which allows for a convex minimization problem whose solution
is the same or close to the optimal solution with the l0 norm. The
l1 norm optimization is typically used in the field of compressed
sensing but has recently been adapted to training CE models in
one shot (Nelson et al., 2013).

It should be noted that the optimal regularization parameter λ

in Equation (23) is selected from a set of values within some pre-
defined range and step-size. The total CE model (i.e., set of α and
corresponding Jα and λ) should be optimized via Equation (23)
to ensure the predictive accuracy is preserved on data outside of
the training set. This is accomplished by evaluating the model
error on data that was withheld from the model training (i.e., a
test set). Because the solution could therefore depend on which
samples are in the training and test set, a common strategy to
reduce the variance in the estimated error across splits is to use
cross-validation (CV), which involves partitioning the dataset
into several non-overlapping training/test splits. For example,
in leave-one-out cross validation (CVLOO), k-folds are created
(where k is the number of structures in the training set) each
containing only one structure in the test set. The CE model is
trained on k-1 structures, and the error is calculated for this single
excluded structure and averaged over all k-folds:

CVLOO = 1

k

∑

s

(ECE, k-1s − Es)
2 , (24)

where s is the withheld structure and ECE, k-1s is the energy
of structures using the optimal CE model parameters (both
the optimal penalization strength λ and the optimal set of Jα
values) obtained by minimizing the error for k-1 structures. The

FIGURE 3 | Convex hull of CuxAu1−x . Reproduced from Takeuchi et al. (2017)

with permission from APS.

CV scheme has been widely employed to build accurate CE
models because it helps ensure that the predictive accuracy of
the CE model obtained for relatively small number of reference
calculations can generalize to structures outside of the training
set (van de Walle et al., 2002).

Although the optimal choice of clusters and Jα values is crucial
for obtaining an accurate model, we note that the accuracy of
CE is typically limited in cases where large geometry relaxations
away from ideal lattice positions occur. This is because of an
inherent limitation in the representation of a complex geometry
by a vector of lattice site occupations via Equation (19).

5. EXAMPLES

5.1. Thermodynamics of Alloys
In this section, we demonstrate the main concepts of
thermodynamics of alloys in an examination of the Cu-Au
binary alloy, which provides a convenient system for analysis
because it has been investigated in several previous studies (Ozoli
et al., 1998; Wolverton et al., 1998).

At T = 0 K, the stability of a material can be estimated if
its formation energy per atom [E(x)] is lower than all other
compounds at all relevant compositions. This is determined by
identifying the set of compounds that form the convex hull,
which is the convex boundary of the 2D landscape of energies
and compositions.

The convex hull for ca. 10,000 CuxAu1−x structures is shown
in Figure 3. E(x) is computed by subtracting the energies of the
pure metals (using the energy per atom of Au [E(Au)] and Cu
[E(Cu)] in the fcc lattice):

1E(x) = E(CuxAu1−x)− xE(Cu)− (1− x)E(Au). (25)

The points above the convex hull correspond to higher-energy
configurations states that are considered to be unstable because
the system can minimize the total energy by relaxing to a
lower energy structure either at that composition or into
other compositions. Accurately modeling the stability therefore
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FIGURE 4 | Illustration of the unsubstituted Au and two CuAu configurations in the (L10 distorted) fcc lattice, which has four inequivalent lattice positions. The

equivalent lattice sites by translational symmetry are labeled accordingly.

requires inputting the correct set of configurations into the
convex hull construction.

It can be observed from Figure 3 that finding the lowest-
energy configuration at a given composition is computationally
difficult because of the large number of states that have to be
analyzed. Indeed, for a binary mixture, there are ∼2N ways to
decorate the lattice, where N is the number of possible lattice
sites. Some of the resulting 2N configurations may be equivalent
due to symmetry, but the scaling with N remains exponential,
leading to a large configurational space. As an example, three
configurations are illustrated in Figure 4 for CuAu in the L10
distorted fcc lattice.

The CE model provides an efficient method for evaluating
the energy of each configuration, which can be combined
with stochastic sampling techniques for efficiently searching
a large configurational space. This is demonstrated for one
composition, CuAu, using the Metropolis algorithm for three
different temperatures in Figure 5. In this illustrative example,
the CE model consists of up to two-body clusters within a radius
of 6 Å and was obtained with CVLOO on a previously computed
training set of 32 structures taken from Chang et al. (2019).

Using the Metropolis algorithm, each trial configurations
are accepted with the probability exp(−β(Et − Ei)), leading
to the sampling of higher-energy trial configurations at higher
temperatures. This is evident in Figure 5 where at the T =
200 K only the lowest-energy ordered structure is adopted and
only one other higher-energy trial state is generated (but not
accepted). In contrast, at T = 800 K, several configurational
states are accepted, effectively leading to the case where the
atomic species are randomly distributed over the various lattice
sites. The larger range of energies sampled with increasing
temperature in turn increases the internal energy of the system,
which is estimated as the average 〈E〉T of the configurational
states sampled with the probability exp(−β(Et − Ei)) at a given
temperature. (Note: for an unbiased averaging, the energies are
taken only after some pre-defined initial set of stochastic steps
are performed, which would exclude the initial almost linear
decrease in the accepted trial energy.) The temperature where
the systems transitions from a predominately ordered structure

to the completely disordered state is indicated by a non-linear
change in the internal energy of the system beginning around ca.
T = 600 K. The temperature of the phase transition is observed
more clearly as a peak in the specific heat (Cv) in the bottom
panel of Figure 6, which is calculated (in units of kB) from the
following equation (Frenkel and Smit, 2001):

Cv(β) = β2(〈E2〉T − 〈E〉2T) . (26)

Using Equation (26), the specific heat reaches a peak at T =
650 K for CuAu, which is comparable values previously reported
using CE combined with metropolis algorithm (Ozoli et al., 1998;
Wolverton et al., 1998; Chang et al., 2019) and experiment [T =
680 K (Okamoto et al., 1987)].

For comparison, the order-to-disorder transition temperature
is also computed for CuAu using the NS algorithm (using 100
random walkers, 4,000 NS iterations to construct the set of
maximum energies Ei, and 40 stochastic steps were used to
randomize the walkers at each NS iteration, i). As discussed in
section 3.3, all thermodynamic properties can be extracted from
the list of successive energy levels, which are used to determine
the DOS. For example, the evolution of the average energy of the
system with increasing temperature [U(β)] can be evaluated:

U(β) = 1

Z(β)

∑

i

(αi − αi+1)Eie
−βEi , (27)

The heat capacity using NS can then be evaluated according to
the following equation:

Cv(β) = β2(
1

Z(β)

∑

i

(αi − αi+1)E2i e
−βEi − U(β)2) , (28)

where β = 1/kBT.
Using NS, the order-disorder phase transition at T = 645 K

is determined from the maximum in the heat capacity shown in
the bottom panel of Figure 7, which compares well with what is
obtained using the Metropolis algorithm for the same CE model
and experiment.
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FIGURE 5 | Trial (gray) and accepted (blue) configuration energies (in eV) at

each iteration during a single Metropolis run at T = 200 K (top), T = 400 K

(middle), and T = 800 K (bottom).

5.2. Point Defect Concentrations
Point defects, such as vacancies, interstitials, antisite defects, and
substitutional defects, can form spontaneously or intentionally in
a material. For example, the bright colors observed in precious
stones, such as ruby and sapphire are due to point defects
(different defects and concentrations resulting in strikingly
different colors). A very small concentration of impurities in Si
(intentionally introduced at the level one per billion Si atoms)
determines its semiconducting properties that are the basis of
almost all modern electronics. Charge transport, thermoelectric
and optical properties of materials are often determined by the
presence and distribution of defects. The ability to predict the
behavior of point defects at realistic temperatures and pressures
is therefore very important (Van der Ven et al., 2001; Van der Ven
and Ceder, 2005; Osorio-Guillén et al., 2007; Muzyk et al., 2011;
Gopal and van de Walle, 2012; Zhang and Sluiter, 2015).

FIGURE 6 | (Top) Evolution of the internal energy of CuAu and (Bottom)

corresponding heat capacity, where the peak corresponds to the

order-disorder transition determined using the Metropolis algorithm for the

range of temperatures from 200 to 1,100 K, evaluated in 50 K increments.

The formalism presented in this section can be found in
Drabold and Estreicher (2007); here, we just give a general
overview. Let us first consider the simplest example of non-
interacting point defects in a crystal. This is usually a
sufficiently good model for charge-neutral defects, provided their
concentration is not too high, and there is no strong short-range
attractive interaction between the defects. This is the case, e.g.,
for oxygen vacancies in MgO. For simplicity, let us also focus
on the case of a single defect site type, i.e., all possible crystal
lattice sites where a defect can form are equivalent. For non-
interacting defects, the formalism presented below is trivially
extended to the case of multiple site types by treating defects in
each non-equivalent site of the sublattice independently.

At fixed (T, p) conditions, the system will tend to the
minimum of its Gibbs free energy with respect to the number of
defects N. The free energy can be written as follows:

G(T, p,N) = Gperf(T, p)+ N1Gf(T, p)− TSconf(N), (29)

whereGperf is the Gibbs free energy of the systemwithout defects,
Sconf is the configurational entropy, and 1Gf is the Gibbs free
energy of the defect formation:

1Gf(T, p) = Gdef(T, p)− Gperf(T, p)−
∑

i

1niµi(T, pi). (30)
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FIGURE 7 | (Top) Evolution of the average energy of the system with

increasing temperature (in 10 K increments) analyzed as a post-processing

scheme from NS. (Bottom) An order disorder transition is observed by the

largest change in the internal energy, which is indicated by a peak in the heat

capacity at T = 645 K. The energies in the plot were shifted by the minimum

outer energy entry.

Here, Gdef is the Gibbs free energy of the system with a single
defect, 1ni are the changes in the number of atoms of type i
with respect to the perfect system for a single defect that is either
removed (i.e., a vacancy, 1n = −1) or added (i.e., an interstitial,
1n = 1), and µi(T, pi) are chemical potentials as defined in
Equation (5). Note that 1Gf contains all entropic contributions
(vibrational, electronic, etc.) except the configurational entropy.
In thermodynamic equilibrium, defects with a positive formation
energy are stabilized by their configurational entropy, which was
previously shown to be the largest contribution to the overall
entropy (Estreicher et al., 2004). Recent results suggest, however,
that vibrational contributions to the defect formation energies are
also important (Sun et al., 2018), but are often neglected because
of high computational cost (Fultz, 2010). These results suggest
the need to investigate these contributions for each specific
material of interest.

In order to minimize Equation (29), Sconf as a function
of N has to be determined. For non-interacting defects, the
configurational DOS, and, consequently, the partition function,
can be trivially calculated, since all configurations have the same
energy: the DOS is equal to the number of non-equivalent ways
by which N defects can be distributed among Nsites (multiplied
by the Dirac δ-function centered at the total energy E(N) of the
system with N defects). This number is the binomial coefficient

CN
Nsites

= Nsites!/N!(Nsites−N)!. In addition, each defect may have
its own internal configurational freedom, e.g., due to the crystal
symmetry. The partition function for a given N is thus

Z(N) = �NCN
Nsites

e−E(N)/kBT , (31)

where � is the on-site configurational degeneracy. Using
Equation (4), we obtain the configurational entropy:

Sconf(N) = kB ln�NCN
Nsites

. (32)

To minimize G(T, p,N) from Equation (29), one can calculate
its derivative with respect to N and set it to zero. For this,
we need to cast Equation (32) into a differentiable form. For a
macroscopic system with a large number of defects and defect
sites (≥ 1010), Stirling’s formula (lnN! ≈ N lnN − N) gives a
very good differentiable approximation of a factorial. Using the
formula and minimizing Equation (29) with respect to N, we
obtain the following:

N = Nsites�/
(

exp (1Gf/kBT)+ �
)

. (33)

In textbooks, often an � = 1 is assumed. Also, 1Gf/kBT ≫ 1 is
typically assumed, which corresponds to a small concentration of
defects, N ≪ Nsites. In this case, the concentration is

N ≈ Nsites exp (−1Gf/kBT). (34)

This is a reasonable approximation when the defect formation
energy is large compared to thermal energy kBT, which is a
typical situation for stable materials. This approximation is also
consistent with the assumption that defects do not interact
because at small concentrations the average distance between
defects is large. However, there are practical situations when
N ∼ Nsites, but Equation (33) is still applicable, namely,
when the concentration of defect sites themselves is small. In
this case, a situation can occur when several types of defects
compete for available sites, but the interaction between them
can still be neglected [e.g., for defects at corners of the MgO
surface (Bhattacharya et al., 2017)]. A naive application of
Equation (33) to determine concentration of each type of
defect independently fails because it could yield a non-physical
total concentration of defects greater than the concentration of
possible defect sites. Instead, we have to take into account the fact
that the number of available sites for each defect type is reduced,
resulting in a coupled system of equations:

Ni = (Nsites −
∑

j 6=i

Nj)�i/

(

exp (1G
(i)
f /kBT)+ �i

)

, (35)

with index i labeling defect types. Equation (35) is easily solved
to give:

Ni = Nsites
�ie

−1G
(i)
f /kBT

(

∑

j �je
−1G

(j)
f /kBT + 1

) . (36)

Now,
∑

i Ni < Nsites is always fulfilled.
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In the case of a short-ranged (see below) interaction between
defects, similar considerations can be applied to determine the
concentration of the defects and their clusters. Let us consider a
fixed total numberN of dopant atomsA in a material (e.g., a non-
volatile transition-metal impurity in an oxide). If the dopants
interact with an attractive potential that decays with distance,
we can interpret every unique (not convertible to one another
by symmetry operations) combination of 1, 2, etc. dopants as
a distinct defect type i. Since N is fixed, the chemical potential
of species A is not fixed in this case, it is determined by the
final concentrations of the defect clusters (including size 1,
which corresponds to a single dopant). If we assume that the
concentration of the dopants is small, so that when they are
evenly distributed in the system the distance between them is
much larger than the interaction length scale, we can write
Equation (29) as the following:

G(T, p, {Ni}) = Gref(T, p,N)+
∑

i

Ni1I(i)(T, p)− TSconf({Ni}),

(37)
where Gref is the free energy of the reference system where all A

are far from each other. 1I
(i)
f (T, p) are interaction free energies:

1I(i)(T, p) = 1G
(i)
f (T, p)−mi1G

(1)
f (T, p), (38)

where 1G
(i)
f is the formation energy of a dopant cluster of type

i containing mi atoms A, and 1G
(1)
f is the formation energy of

the defect containing a single atom A. Note that µi in 1G
(i)
f

are dummy variables and can be chosen arbitrarily in this case,
since 1I(i) does not depend on µ. Following the same logic as
for Equation (35), i.e., each cluster type competes for its sites, and
taking into account the conservation of the number of A,

∑

i

Nimi = N, (39)

we obtain for the concentrations:

Ni = N�i
exp (−1I(i)/kBT)

∑

jmj�j exp (−1I(j)/kBT)
. (40)

One should remember that this formula was obtained assuming
small concentrations of A. For larger concentrations, unlimited
cluster size, and for long-range interactions (like the Coulomb
interaction), a combination of the CE method introduced in
section 4 and Monte Carlo sampling can be used to calculate
the configurational DOS and cluster concentrations (Van der Ven
et al., 2001; Van der Ven and Ceder, 2005; Osorio-Guillén et al.,
2007; Muzyk et al., 2011; Gopal and van de Walle, 2012; Zhang
and Sluiter, 2015).

Defects can be charged by losing or acquiring electrons,
which can significantly alter their properties. The formation
energy of an isolated charged defect can be calculated using
Equation (30), where one of the particle types is electron, and
the corresponding chemical potential µe is the Fermi level.
In thermodynamic limit (number of particles in the system

approaching infinity) any finite concentration of charge would
result in an infinitely high energy. This is the consequence
of the long-range nature of the Coulomb interaction. Charged
defects must therefore be compensated either by defects of
opposite charge or by delocalized electrons or holes so that the
system remains overall neutral. This charge neutrality condition
determines the electronic chemical potential of a system with
charged defects, which implies that charged defects cannot be
considered non-interacting. This interaction results in a non-
trivial distribution of the configurational DOS, which can be
examined through sampling. In the case of localized charged
defects, however, the long-range part of the interaction can be
sampled with a simple electrostatic model, where each defect
is represented by multipoles interacting with other defects by a
screened Coulomb interaction (depending on the static dielectric
tensor of the solid). So far the most common approach in the
literature is to use an even a simpler model, where the Coulomb
interaction between defects is completely neglected, but the
charge neutrality condition is still enforced and determines µe

(Freysoldt et al., 2014). This in turn affects the defect formation
energies and consequently their concentrations (Freysoldt et al.,
2014):

Ni(µe) ≈ Nsitese
−1G

(i)
f (µe)/kBT ,

∑

i

Ni(µe)qi = 0, (41)

where qi are the defect charges. Physically, this approximation
corresponds to a very low concentration of charged defects.
The formation energy should be calculated in this case for
isolated charged defects. In periodic models, there is an artificial
interaction between the defect and the compensating background
charge, as well as between the defect and its images in other unit
cells. This interaction affects the calculated formation energy and
must be removed (Makov and Payne, 1995; Freysoldt et al., 2009;
Komsa and Pasquarello, 2013).

In the case of compensation by delocalized charge carriers, the
overall Coulomb interaction energy will depend on the electronic
DOS (number of electronic states per energy unit per volume
unit) near the Fermi level. This opens up an intriguing possibility
of tuning defect concentrations by modifying the charge-carrier
dopant distribution (doping profile), which determines the
electronic DOS at the Fermi level. Formation of charged defects
at surfaces of semiconductors is accompanied by formation of
a space-charge layer under the surface, and the energy of the
induced electric field can be a significant part of the energy
of the whole system (Richter et al., 2013). In general, charge-
carrier doping is ubiquitous and should be treated as a variable
defining thermodynamic equilibrium along with temperature
and pressure.

5.3. Surface Phase Diagrams
A surface of a solid material under a gaseous atmosphere is
constantly bombarded by the molecules or atoms of the gas.
Assuming that the gas can be described approximately as an ideal
gas, we can estimate the molecular flux ν, i.e., the number of
molecules (or atoms for an atomic gas) hitting the surface per
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unit area per second (Reif, 2000):

ν = p√
2πmkBT

, (42)

where p is the pressure of the gas, m is the mass of the
molecule/atom, and T is the temperature. In, for example, an
oxygen atmosphere (m ≈ 2.66 · 10−26 kg) at T = 300 K
and p = 1 atm, about 4 · 106 molecules thus hit each square
Angstrom of the surface per second. This implies that at realistic
T and p the thermodynamic equilibrium between the surface
and the gas can be reached relatively quickly. At low pressures
or/and high temperatures, the surface may also lose atoms to the
gas phase, until the equilibrium with the gas phase is restored.
The equilibrium structure and composition of the surface will
therefore follow the changes in temperature and pressure and
may be very different from the bulk composition.

Let us consider a Pd(100) surface in an O2 atmosphere as
an example (Todorova et al., 2003; Reuter and Scheffler, 2004).
In order to find the equilibrium composition and structure of
the surface at a given T and p, we have to minimize the Gibbs
free energy of the surface with respect to the number of O
atoms at these fixed T and p. In general, this implies that we
also have to find energies of all possible configurations of the
NO O atoms at the surface and in the subsurface layers of the
system, and all possible surface reconstructions, and calculate
the free energy including the configurational entropy from the
partition function. Depending on the material, a whole ensemble
of (quasi-)degenerate structures may co-exist simultaneously in
different parts of the surface. In practice, a simplified approach
is often taken by considering a limited number of configurations,
constrained by periodic boundary conditions.

A slab model is commonly used in DFT calculations to
describe surfaces of a crystal (Sholl and Steckel, 2009). Based on
Equation (9), the surface free energy is defined:

γ (T, p,NO) =
1

A

(

Gslab(T, p,NO)− NOµO(T, p)− NPdg
bulk
Pd (T, p)

)

,

(43)
where Gslab is the free energy of the slab model per unit cell, A
is the area of the surface unit cell, NO and NPd are the numbers
of O and Pd atoms per unit cell, respectively, and gbulkPd is the free
energy of Pd bulk crystal per atom. Note that γ is the sum of free
energies of the two surfaces of the slab. In principle, the energy
of each surface can be calculated separately by choosing a slab
model with two identical surfaces and dividing γ by 2. In practice,
however, this may require a large thickness of the slab model, to
avoid the artificial interaction between the two surfaces of the
slab. Also, choosing equivalent surfaces on the two sides of the
slab is not always possible, namely when the inversion symmetry
is broken along the surface normal (Levchenko and Rappe,
2008). Fortunately, for constructing a surface phase diagram
only knowledge of the relative free energy 1γ with respect to a
particular surface state is necessary. For example, we can choose
a clean Pd(100) slab as the reference:

1γ (T, p,NO) =
1

A

(

1Gslab(T, p,NO)− NO1µO(T, p)
)

, (44)

where 1Gslab(T, p,NO) = Gslab(T, p,NO) − Gslab(T, p, 0) −
NOEO2/2, and1µO = µO−EO2/2.We emphasize that, although
1Gslab is expected to converge fast with slab thickness, this
convergence must be carefully tested.

As pointed out in section 2, the p1V contribution to
the relative free energy is usually very small and can be
neglected (Reuter and Scheffler, 2001). For now, we will also
neglect the vibrational and configurational entropy contributions
(their effects will be discussed later; see Borg et al., 2005 for an
example of surface configurational entropy treatment). In this
case, the relative free energy 1Gslab in Equation (44) is replaced
by the total energy differences. In order to construct the phase
diagram, a range of NO is considered, and for each value of NO

several surface structures are calculated. The NO and the surface
structure that minimize 1γ (Equation 44) yield the equilibrium
composition and surface structure at given (T, p), provided the
surface structure with the lowest energy is among the calculated
ones. The resulting phase diagram is shown in Figure 8.

Since we neglected the vibrational free energy and
configurational entropy contributions, as well as the pV
terms, the dependence of 1γ on T and p enters only through
1µO(T, p), and the surface free energy is just a linear function
of 1µO(T, p), as can be seen from Equation (44). If these
contributions are taken into account, additional dependence
on (T, p) will appear via 1Gslab. Note that the sharp transitions
from one surface state to another (e.g., the crossing between
the lines in Figure 8, signifying the transition from the
clean surface to the surface oxide phase) are an artifact of
neglecting the configurational entropy contribution. At a
finite temperature, the two or more quasi-degenerate surface
configurations with different atomic structures and maybe also
NO will coexist at the surface, and the transition from one
dominant structure to another will be smooth. Qualitatively, the
deviation from the straight line in the vicinity of the crossing
in Figure 8 will decay exponentially away from the crossing
and will be noticeable in a larger range of 1µO at higher
temperatures since the ratio of surface areas occupied by one
or another structure is proportional to the Boltzmann factor
exp [(1γ (1) − 1γ (2))/kBT] (the superscripts 1 and 2 denote the
two surface structures for which the 1γ (1µO) lines cross).

Similar considerations apply tomore complex situations when
the atmosphere consists of more than one particle type. In this
case, the surface free energy will depend on chemical potentials
of several species:

1γ (T, {pi}, {Ni}) =
1

A

(

1Gslab(T, p, {Ni})−
∑

i

Ni1µi(T, pi)

)

,

(45)
with p = ∑

i pi. The surface energy 1γ becomes a hyperplane
in the space of 1µi. In the case of two gas-phase species,
different surface compositions/structures are represented by
different (possibly crossing) planes. A 2D surface phase diagram
is obtained by projecting the parts of the planes corresponding
to the lowest surface free energy at given (µ1,µ2) onto a
1γ (µ1,µ2) = const plane. This will create a map with regions in
the (µ1,µ2) space signifying different surface phases. An example
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FIGURE 8 | Surface phase diagram for Pd(100) in an O2 atmosphere. Reproduced from Reuter and Scheffler (2004) with permission from Springer.

FIGURE 9 | Calculated phase diagrams for ZnO(0001)-Zn surface under an O2/H2O atmosphere without (left) and with (right) vibrational contributions to the free

energy. The vibrational contributions are calculated at T = 973 K. Zn, O, and H are denoted by gray, red, and white spheres, respectively. Reproduced from Valtiner

et al. (2009) with permission from APS.

of the 2D phase diagram is shown in Figure 9. As in the case of
a single gas-phase species, the sharp borders between the phases
resulting from the projection of the plane crossings are in reality
smoothed out by configurational entropy.

Although thermodynamic equilibrium in general implies
equilibrium between all parts of the system, there are
technologically important situations when the gas-phase
equilibrium is too slow to be reached in a reasonable time, while
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the equilibrium between all gas-phase components and the
surface is reached relatively quickly. In such cases, a constrained
equilibrium approach (Reuter and Scheffler, 2003a,b) can
be employed.

While in some cases neglecting vibrational contributions to
the free energy can be justified, this is not true in general.
As was demonstrated, e.g., in Valtiner et al. (2009), taking
into account vibrational contributions can result not only in
quantitative but also in qualitative changes in the phase diagram,
when the relative stability of different phases is reversed by the
vibrational contributions. Figure 9 left panel shows the phase
diagram of the polar ZnO(0001)-Zn surface under an O2/H2O
atmosphere when the vibrational contributions are neglected,
while in Figure 9 right panel they are included. The most striking
effect of including vibrational contributions is the appearance of
the new phase (the 2×2-O phase) on the diagram. This makes
the calculated phase diagram consistent with the experimental
measurements (Valtiner et al., 2009).

6. CONCLUSIONS

In this tutorial review, we have briefly discussed existing and
emerging methods for evaluating thermodynamic properties of
solids from first principles. As practical examples, approaches
to modeling thermodynamics of alloys, crystal surfaces, and
point defects at realistic temperature and pressure conditions
are discussed in detail. In particular, we introduced methods for
calculating configurational entropy and related thermodynamic
properties. To evaluate configurational entropy, configurational
DOS must be calculated. Approaches for the efficient calculation
of configurational DOS are thus also discussed in detail.
In particular, recently developed Wang-Landau and nested
sampling algorithms are introduced. These approaches allow for
calculating configurational DOS without the need for sampling
configurations at each temperature.

A fast but accurate evaluation of relative energies of
numerous atomic configurations for a given system is required
for calculating the configurational contributions to the free
energy. We show how cluster expansion based on DFT data
can be used to achieve the necessary speed and accuracy.

This approach is, however, only applicable to systems whose
configurations can be represented by site occupations of a lattice.
More general situations (for example, when configurational
changes include strong atomic relaxations and reconstructions)
require development of more flexible methods for interpolating
potential-energy surfaces. Particularly promising in this regard
is the development of machine-learned interatomic potentials
learning (Behler and Parrinello, 2007; Rupp et al., 2012;
Bartók et al., 2013; Li et al., 2015; Shapeev, 2016; Huo
and Rupp, 2017), which are unbiased in terms of functional
form and can be systematically improved by increasing the
number of training data. These approaches are relatively
new, however, and have been so far applied to a limited
number of system types. Further development and testing
of these methods are necessary to insure reliability across
chemical space.

Despite the ubiquitous nature and important consequences
of statistical effects, in particular configurational sampling, the
account for these effects in a rigorous and system-dependent
way in modeling remains rare. This is partly because their role
is still often underestimated. We hope that this review will help
computational materials scientists to appreciate more the role of
statistical effects at realistic temperatures, and of configurational
entropy in particular, and to quickly start with including these
effects into their models.
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