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Multisite implementation of a workflow-integrated machine
learning system to optimize COVID-19 hospital admission
decisions
Jeremiah S. Hinson 1,2✉, Eili Klein1,3, Aria Smith1,2, Matthew Toerper1, Trushar Dungarani 4, David Hager5, Peter Hill1, Gabor Kelen1,
Joshua D. Niforatos1, R. Scott Stephens5, Alexandra T. Strauss2,5 and Scott Levin 1,2

Demand has outstripped healthcare supply during the coronavirus disease 2019 (COVID-19) pandemic. Emergency departments
(EDs) are tasked with distinguishing patients who require hospital resources from those who may be safely discharged to the
community. The novelty and high variability of COVID-19 have made these determinations challenging. In this study, we developed,
implemented and evaluated an electronic health record (EHR) embedded clinical decision support (CDS) system that leverages
machine learning (ML) to estimate short-term risk for clinical deterioration in patients with or under investigation for COVID-19. The
system translates model-generated risk for critical care needs within 24 h and inpatient care needs within 72 h into rapidly
interpretable COVID-19 Deterioration Risk Levels made viewable within ED clinician workflow. ML models were derived in a
retrospective cohort of 21,452 ED patients who visited one of five ED study sites and were prospectively validated in 15,670 ED
visits that occurred before (n= 4322) or after (n= 11,348) CDS implementation; model performance and numerous patient-
oriented outcomes including in-hospital mortality were measured across study periods. Incidence of critical care needs within 24 h
and inpatient care needs within 72 h were 10.7% and 22.5%, respectively and were similar across study periods. ML model
performance was excellent under all conditions, with AUC ranging from 0.85 to 0.91 for prediction of critical care needs and
0.80–0.90 for inpatient care needs. Total mortality was unchanged across study periods but was reduced among high-risk patients
after CDS implementation.
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INTRODUCTION
As of December 2021, there have been more than 270 million
confirmed cases of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) infection worldwide and 5.3 million deaths
attributed to coronavirus disease 2019 (COVID-19)1. Resources
required to care for this population and overwhelming demand
have strained emergency and inpatient care systems across the
globe2,3. Moreover, new highly transmissible SARS-CoV-2 variants
and vaccine hesitancy have caused recurrent surges of infection
and severe COVID-19 that outstrip healthcare resources (e.g., staff,
physical space, ventilators)4. To optimize capacity, patients with
and under investigation for COVID-19 must be matched to
appropriate levels of care.
Emergency departments (EDs) are the primary point of access

to hospital-based care and are tasked with distinguishing patients
who require hospitalization from those who do not5–7. These
determinations are often based on limited data and prior clinical
experience is used to anticipate clinical trajectory. The novelty of
COVID-19 and highly variable clinical courses introduce high
uncertainty for this population8. High content analytics, applied to
data collected from the thousands of patients cared for in the ED
with COVID-19 to date, can be used to reduce this uncertainty and
optimize resource allocation.
We describe the development and health system-wide imple-

mentation of a clinical decision support (CDS) system that uses
machine learning (ML) prediction models to estimate short-term

risk of clinical deterioration in patients with diagnosed or
suspected COVID-19 and to optimize ED disposition decisions.
This system analyzes electronic health record (EHR) data in real
time. It delivers CDS in the form of COVID-19 Deterioration Risk
Levels and disposition recommendations integrated within exist-
ing EHR workflow and delivered at the point of disposition
decision-making.

RESULTS
Cohort characteristics
A retrospective cohort comprised of 21,452 adult ED encounters
by 18,810 unique patients was used for model derivation,
separated into training (67%) and testing (33%) datasets (Fig. 1).
Overall incidence of critical care needs at 24 h in this cohort was
10.6% (n= 2265), while the overall incidence of inpatient care
needs at 72 h was 22.2% (n= 4760); incidence was similar
between derivation and validation datasets (Table 1). After
excluding patients who met full or partial outcome criteria prior
to ED disposition decision from the testing dataset, 6873 (97.0%)
and 5511 (77.8%) encounters remained for evaluation of model
performance in predicting need for critical and inpatient care,
respectively (Fig. 1).
Models were prospectively evaluated in 15,670 ED visits by

14,103 unique patients, divided into two separate validation
cohorts. The first included 4322 encounters that occurred during
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silent deployment of the CDS, and the second included 11,348
encounters that occurred after CDS was made viewable to ED
clinicians (Fig. 1). Rates of critical care needs were 9.4% for the
prospective silent and 11.3% for the prospective visible cohorts,
while rates of inpatient care needs were 25.0% and 22.0%,
respectively (Table 1).
All cohorts included representation of patients across age

groups, gender, race, and ethnicity with most patients self-
identifying as white non-Latino (38.0–43.7%) or black non-Latino
(30.8–43.7%) and a minority of all cohorts identifying as Latino
(8.5–15.8%). The five most common ED chief complaints across
cohorts were shortness of breath, concern for COVID-19, chest
pain, fever, and abdominal pain (Table 1). Prevalence of
comorbidities, ED disposition vital signs, laboratory values, and
oxygen requirements were similar across all time periods, as
shown in Table 1. Rates of SARS-CoV-2 RT-PCR positivity were
lower in our retrospective cohort (6.7%) than in our prospective
cohort (17.4%) (Fig. 1). RT-PCR results were unknown at the time of
ED disposition decision-making for a substantial portion of SARS-
CoV-2 positive patients in all cohorts (Table 1).

Model specification
Final models contained 39 distinct prediction variables that were
normalized to discrete categories prior to input and inspected for
relative importance to each model (Supplementary Table 1 and
Supplementary Figure 1). Supplemental oxygen requirements and
respiratory rates and trends were among the four most important
predictors for both models. Shortness of breath was the only chief
complaint that exhibited high importance for the prediction of
both critical care and inpatient care outcomes. Levels of lactate,
troponin, BUN, creatinine, AST, WBC and INR were important
laboratory-based predictors. Histories of hypotension and kidney
disease prior to the index visit were the only medical history
elements among the 20 most important predictors for the critical
care and inpatient care outcomes, respectively.

Model performance
Receiver operator characteristic curves for both models are shown
in Fig. 2. Overall prediction performance within respective
decision groups, as measured by area under the receiver
operating characteristic curve (AUC) was robust under all
scenarios. The critical care outcome prediction model achieved
an AUC of 0.91 (95% CI 0.91–0.92) during derivation Fig. 2a) and
0.85 (95% CI 0.83–0.87) during the silent prospective validation.
Predictive performance remained stable after model-driven CDS

became visible to ED clinicians with an AUC of 0.85 (95% CI
0.84–0.87) (Fig. 2a). The inpatient care outcome prediction model
achieved an AUC of 0.89 (95% CI 0.88–0.90) in our retrospective
derivation cohort and 0.80 (95% CI 0.78–0.83) the prospective
silent cohort. Predictive performance was similar after CDS was
made visible in the clinical environment with an AUC of 0.82 (95%
CI 0.81–0.84) (Fig. 2b). The Brier Score for this cohort was 0.080
and 0.129 for the critical care and acute care outcome,
respectively. Calibration curves that by COVID-19 Deterioration
Risk Level group may be seen in Supplementary Fig. 1.

CDS Integration
Model-generated outcome probabilities were translated to a
single COVID-19 Clinical Deterioration Risk Level (1–10) for each
ED encounter, which was then incorporated into EHR disposition
workflow as a non-interruptive CDS module. COVID-19 Deteriora-
tion Risk Levels were displayed at the top of the ED clinician’s
disposition module for all persons under investigation (PUIs) for
COVID-19, along with estimated risk (low, moderate, high) of need
for critical care within 24 h and need for inpatient care within 72 h
(Fig. 3a). EHR-embedded hyperlinks were also provided, and
allowed treating clinicians to access EHR-embedded web pages
with additional model-driven disposition guidance and detailed
information about model derivation, validation and risk-
thresholding schema (based on observed risk) used to generate
risk levels (Fig. 3b). As shown in Fig. 3b, assignment to levels 1–6
was determined based on model-estimated risk of inpatient care
outcome at 72 h, while assignment to levels 8–10 was assigned
based on model-estimated risk of critical care outcome at 24 h.
Assignment to level 7 could be assigned based on meeting the
risk threshold for either (or both) outcome.

Patient-oriented outcomes
The distribution of ED visits across COVID-19 Deterioration Risk
Levels during the prospective visible portion of our study, along
with the proportion of visits where patients met inpatient care
and/or critical care outcome criteria, is shown in Fig. 4. Overall
rates of hospitalization, mortality, 24-h ICU upgrade, 72-h ED
return, and lengths of stay were similar during the retrospective
and prospective visible study periods (Table 2). A reduction in
mortality from 6.7% (95% CI 5.7–7.8%) to 2.9% (95% CI 1.9–3.8%)
was observed among high-risk patients (level 9–10) following CDS
deployment. Nonsignificant downward trends in rate of 24-h ICU
upgrade were also seen for high risk (11.4 [95% CI 10.0–12.8%]
before versus 8.5% [95% CI 6.9–10.2%] after) and elevated risk

Fig. 1 Study inclusion flowchart.
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Table 1. Study cohort characteristics.

Total Retrospective
derivation

Retrospective
validation

Prospective silent Prospective visible

Total visits 37,122 14,369 7083 4322 11,348

Critical Care Decision Group 35,842 (96.6) 13,916 (96.8) 6873 (97.0) 4184 (96.8) 10,869 (95.8)

Inpatient Care
Decision Group

28,987 (78.1) 11,272 (78.4) 5511 (77.8) 3274 (75.8) 8930 (78.7)

Age, N (%)

18–44 years 15,123 (40.7) 6046 (42.1) 2933 (41.4) 1456 (33.7) 4688 (41.3)

45–64 years 11,764 (31.7) 4416 (30.7) 2249 (31.8) 1348 (31.2) 3751 (33.1)

65–74 years 4684 (12.6) 1786 (12.4) 887 (12.5) 598 (13.8) 1413 (12.5)

>74 years 5551 (15.0) 2121 (14.8) 1014 (14.3) 920 (21.3) 1496 (13.2)

Gender, N (%)

Female 19,805 (53.4) 7522 (52.3) 3766 (53.2) 2358 (54.6) 6159 (54.3)

Race/ethnicity, N (%)

Black non-Latino 14,377 (38.7) 5399 (37.6) 2686 (37.9) 1331 (30.8) 4961 (43.7)

White non-Latino 14,479 (39.0) 5556 (38.7) 2688 (38.0) 1887 (43.7) 4348 (38.3)

Latino 4843 (13.0) 2192 (15.3) 1122 (15.8) 564 (13.0) 965 (8.5)

Other 3423 (9.2) 1222 (8.5) 587 (8.3) 540 (12.5) 1074 (9.5)

COVID-19 status, N (%)

COVID-19 positive 4167 (11.2) 972 (6.8) 464 (6.6) 788 (18.2) 1943 (17.1)

Positive at disposition 1884 (5.1) 724 (5.0) 401 (5.7) 227 (5.3) 532 (4.7)

Chief complaint, N (%)

Shortness of breath 8257 (22.2) 3190 (22.2) 1554 (21.9) 1037 (24.0) 2476 (21.8)

COVID-19 concerns 4297 (11.6) 1732 (12.1) 863 (12.2) 805 (18.6) 897 (7.9)

Chest pain 3931 (10.6) 1503 (10.5) 763 (10.8) 414 (9.6) 1251 (11.0)

Fever 2951 (7.9) 1372 (9.5) 663 (9.4) 332 (7.7) 584 (5.1)

Abdominal pain 3415 (9.2) 1211 (8.4) 605 (8.5) 406 (9.4) 1193 (10.5)

Comorbidities, N (%)

Atrial fibrillation 1770 (4.8) 693 (4.8) 354 (5.0) 199 (4.6) 524 (4.6)

Coronary artery disease 2315 (6.2) 905 (6.3) 454 (6.4) 239 (5.5) 717 (6.3)

Cancer 3336 (9.0) 1225 (8.5) 645 (9.1) 322 (7.5) 1144 (10.1)

Cerebrovascular disease 1538 (4.1) 591 (4.1) 308 (4.3) 163 (3.8) 476 (4.2)

Diabetes 4009 (10.8) 1566 (10.9) 760 (10.7) 401 (9.3) 1282 (11.3)

Heart failure 2041 (5.5) 813 (5.7) 407 (5.7) 166 (3.8) 655 (5.8)

Hypertension 6887 (18.6) 2584 (18.0) 1309 (18.5) 731 (16.9) 2263 (19.9)

Immunosuppression 2650 (7.1) 1012 (7.0) 526 (7.4) 225 (5.2) 887 (7.8)

Kidney disease 3174 (8.6) 1194 (8.3) 568 (8.0) 291 (6.7) 1121 (9.9)

Liver disease 3339 (9.0) 1347 (9.4) 641 (9.0) 260 (6.0) 1091 (9.6)

Pregnancy 506 (1.4) 198 (1.4) 102 (1.4) 35 (0.8) 171 (1.5)

Prior respiratory failure 662 (1.8) 253 (1.8) 107 (1.5) 78 (1.8) 224 (2.0)

Smoker 1593 (4.3) 643 (4.5) 313 (4.4) 88 (2.0) 549 (4.8)

Vital signs, Mean (95% CI)

Temperature, oF 98.5 (96.8–101.9) 98.6 (96.8–102.0) 98.6 (96.8–102.0) 98.6 (96.8–102.0) 98.4 (96.6–101.5)

Heart rate, bpm 86.6 (56.0–125.0) 86.6 (57.0–125.0) 86.4 (56.0–126.0) 86.2 (56.0–122.0) 86.8 (56.0–126.0)

Respiratory rate, bpm 18.5 (14.0–30.0) 18.4 (14.0–30.0) 18.5 (14.0–30.0) 19.0 (14.0–32.0) 18.4 (14.0–30.0)

Oxygen saturation, % 97.4 (92.0–100.0) 97.5 (92.0–100.0) 97.5 (91.0–100.0) 97.1 (91.0–100.0) 97.4 (92.0–100.0)

Systolic blood
pressure, mmHg

131.0 (95.0–184.0) 131.3 (95.0–185.0) 131.1 (95.0–183.0) 130.7 (94.4–181.6) 130.8 (94.0–184.0)

Labs, N tested, Mean (95% CI)

Absolute lymphocyte Count,
K/cu mm

2155, 1.9 (0.1–7.3) 669, 1.9 (0.1–7.0) 361, 2.3 (0.2–7.3) 315, 1.8 (0.1–8.4) 810, 1.9 (0.1–6.4)

Alanine aminotransferase, U/L 24,123, 36.2
(7.0–136.0)

8776, 37.7
(7.0–139.0)

4312, 35.5
(7.0–128.0)

3159, 35.0 (7.0–130.0) 7876, 35.3
(7.0–142.0)

Aspartate
Aminotransferase, U/L

21,518, 40.8
(11.0–156.1)

7858, 41.9
(11.0–160.6)

3832, 38.2
(11.0–155.2)

2854, 42.3 (13.0–142.7) 6974, 40.4
(11.0–159.0)
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patients (level 7–8) patients (5.9% [95% CI 5.0–6.9%] versus 3.9%
[95% CI 2.7–5.1%]).

DISCUSSION
In this study, we developed and deployed an EHR-embedded CDS
system that relied on locally derived ML prediction models to
optimally match PUIs for COVID-19 with appropriate care and
guidance. Our models reliably estimated risk for short-term clinical
deterioration and model output was translated into actionable
advice within existing clinical workflow for emergency clinicians.
While numerous other ML prediction and prognostication

models for COVID-19 have been reported9,10, very few have been
integrated into clinical care or used to guide health system
resource utilization. Indeed, clinical implementation of artificial
intelligence assisted tools (including ML) has been slow in general,
despite a proliferation of studies describing their development in
many fields of medicine. Translation of ML models to clinical
practice is difficult for reasons both technical (e.g., suboptimal
prospective performance, difficult to integrate into existing EHR
workflow) and social (e.g., fear of replacement, lack of trust)11,12.
These challenges are accentuated in the ED practice environment,
where decisions must be made rapidly and with limited
information.
We overcame these barriers by employing a pragmatic and

user-centered approach to data science and CDS development.

Unlike previously reported ML models for COVID-19, ours were
designed to be used not only for patients with known COVID-19
infection, but also in those where it is suspected. Infection status is
often unknown at the point of ED disposition decision-making
(Table 1) and models developed for prognostication of patients
with confirmed infection only are of limited utility to ED clinicians.
Infection status (positive, negative, unknown) was included as a
predictor in our models but carried much less importance than
direct measurements of a patient’s condition (e.g., vital signs,
shortness of breath) and trends. Our outcomes were designed by
clinicians to capture physiologic states and events that reflect
specific care level (eg, inpatient, ICU) needs, as these are the
events ED clinicians are attempting to anticipate when making
disposition decisions.
Our approach to model training and evaluation was also

unique. Many patients met full or partial outcome criteria at the
time of ED disposition; the traditional approach is often to exclude
these patients from all cohorts. However, these patients represent
valid cases for algorithmic learning because they are part of the
spectrum of illness severity (e.g., highest severity) seen in the ED.
The ML methods applied can draw relationships between
outcome and predictor data useful for predictive modeling. These
patients were included in training datasets but were excluded
from reported predictive performance metrics in testing and
validation datasets. These exclusions were made to isolate the
patients where disposition decisions may be usefully supported by

Table 1 continued

Total Retrospective
derivation

Retrospective
validation

Prospective silent Prospective visible

Bilirubin, mg/dl 24,616, 0.6 (0.0–1.9) 8959, 0.6 (0.0–2.0) 4414, 0.6 (0.0–2.0) 3193, 0.6 (0.0–1.8) 8050, 0.6 (0.0–1.8)

Blood urea nitrogen, mg/dL 25,212, 18.5
(5.0–64.7)

9165, 18.3 (5.0–63.0) 4542, 18.8 (5.0–66.5) 3298, 19.5 (6.0–68.0) 8207, 18.1
(6.0–63.0)

Creatinine, mg/dL 25,212, 1.3 (0.5–5.2) 9165, 1.2 (0.5–4.9) 4542, 1.3 (0.5–5.8) 3298, 1.2 (0.5–4.9) 8207, 1.3 (0.5–5.4)

C-Reactive protein, mg/dL 1792, 19.5
(0.0–160.0)

698, 19.3 (0.0–159.9) 326, 21.9 (0.0–178.9) 306, 29.2 (0.0–168.7) 462, 11.9
(0.0–105.8)

D-dimer, mg/L 5625, 1.3 (0.0–8.4) 1851, 1.3 (0.0–9.6) 904, 1.3 (0.0–9.3) 753, 1.2 (0.0–5.3) 2117, 1.4 (0.0–7.5)

Ferritin, ng/mL 232, 511.9
(25.3–2228.9)

97, 490.6
(26.8–2276.8)

41, 442.0
(27.0–1899.0)

37, 491.8 (31.6–1474.6) 57, 611.4
(20.4–2124.6)

Fibrinogen, mg/dL 353, 458.4
(181.8–812.0)

161, 472.4
(220.0–812.0)

80, 469.3
(182.8–800.3)

30, 450.4 (196.8–795.8) 82, 423.1
(184.1–735.0)

International normalized ratio 6977, 1.2 (0.9–3.0) 2586, 1.2 (0.9–3.0) 1258, 1.3 (1.0–3.4) 1058, 1.1 (0.9–2.2) 2075, 1.2 (0.9–2.9)

Lactate, mmol/L 6581, 2.1 (0.7–7.4) 2611, 2.2 (0.7–7.1) 1183, 2.1 (0.7–8.0) 773, 1.9 (0.7–6.1) 2014, 2.2 (0.7–7.9)

Lactate dehydrogenase, U/L 742, 377.4
(148.0–1169.8)

306, 361.2
(140.6–1025.8)

164, 352.7
(153.2–1048.3)

122, 493.5
(152.2–1873.0)

150, 342.8
(167.4–987.6)

Platelets, K/cu mm 26715, 244.6
(94.0–466.0)

9751, 245.7
(94.0–471.2)

4803, 242.9
(92.1–469.0)

3445, 235.9 (98.0–436.0) 8716, 247.7
(92.0–468.0)

Partial thromboplastin time, s 4030, 17.8 (0.8–43.0) 1473, 17.2 (0.8–43.8) 747, 16.9 (0.8–45.8) 646, 17.7 (0.8–41.8) 1164, 19.3
(0.8–40.2)

Troponin, N Tested, N
Positive (%)

14,930, 1718 (4.6) 5395, 664 (4.6) 2699, 328 (4.6) 2056, 210 (4.9) 4780, 516 (4.5)

White blood cell count, K/
cu mm

27,026, 15.7
(0.0–56.3)

9865, 14.9 (0.0–56.3) 4871, 21.0 (0.0–69.0) 3472, 15.2 (0.0–88.9) 8818, 14.0
(0.0–39.6)

Oxygen requirements, N (%)

Low-flow oxygen, <2 L/min 2337 (6.3) 816 (5.7) 362 (5.1) 285 (6.6) 874 (7.7)

Mid-flow oxygen, 2–9 L/min 1769 (4.8) 660 (4.6) 333 (4.7) 266 (6.2) 510 (4.5)

High-flow oxygen, > 10 L/min 1278 (3.4) 453 (3.2) 210 (3.0) 138 (3.2) 477 (4.2)

Outcomes, N (%)

Critical care outcome 3954 (10.7) 1523 (10.6) 742 (10.5) 406 (9.4) 1283 (11.3)

Inpatient care outcome 8343 (22.5) 3183 (22.2) 1577 (22.3) 1081 (25.0) 2502 (22.0)

Data are shown as frequencies with percentages in parentheses.
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Fig. 2 Model performance assessment. Receiver operating characteristic (ROC) curves are shown for our (a) inpatient care and (b) critical care
outcome prediction models. ROC curves and measurements of area under the curve (AUC) are shown for three separate validation cohorts:
retrospective out-of-sample (retro), prospective but prior to decision support activation (silent) and prospective after decision support
activation (visible). Performance assessment was limited to patients not meeting outcome criteria prior to ED disposition decision.

Fig. 3 Clinical decision support interface. a Model-generated COVID-19 Deterioration Risk Levels were displayed in real-time for every
patient with or under investigation for COVID-19 within the electronic health record (EHR). A screenshot of the emergency clinician
disposition (Dispo) module is shown. b A hyperlink embedded within the Dispo module (bottom left of panel a) allowed emergency clinicians
to access a more detailed explanation of model development and function within the EHR.
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CDS (i.e., decision group). This modeling and validation approach
is purposeful in evaluating the pragmatic utility of CDS in practice.
Our models also provide insights that can inform clinical

practice and interpretation of similar models in the future.
Diabetes, chronic lung disease, cardiovascular disease and

hypertension have all been identified as important risk factors
for severe illness and mortality due to COVID-1913,14, yet these
comorbidities were not among the most important predictors for
either of our models (Supplementary Fig. 1). Age and gender, two
demographic variables that have consistently been linked to risk

Fig. 4 Distribution of ED visits across risk levels (bottom panel) and percent of patients within each risk level who met outcome criteria (top
panel) during the index hospital visit are shown for the (a) inpatient care and (b) critical care outcome models. Data for the decision group
only are shown in solid colors (blue and red) and data for all patients are shown in gray.

Table 2. Patient-oriented outcome measures.

All patients High risk (9–10) Elevated risk (7–8) Moderate risk (4–6) Low risk (1–3)

Total, No

Retrospective 22,347 2163 2909 9328 7947

Prospective visible 11,348 1214 1200 4995 3939

Hospitalized, No, % (95% CI)

Retrospective 9661, 43.2 (42.6–43.9) 2001, 92.5 (91.4–93.6) 2428, 83.5 (82.1–84.8) 4515, 48.4 (47.4–49.4) 717, 9.0 (8.4–9.7)

Prospective visible 4757, 41.9 (41.0–42.8) 1065, 87.7 (85.9–89.6) 953, 79.4 (77.1–81.7) 2242, 44.9 (43.5–46.3) 497, 12.6 (11.6–13.7)

24-h Mortality, No, % (95% CI)

Retrospective 158, 0.7 (0.6–0.8) 146, 6.7 (5.7–7.8) 7, 0.2 (0.1–0.4) 5, 0.1 (0.0–0.1) 0, 0.0 (0.0–0.0)

Prospective visible 47, 0.4 (0.3–0.5) 35, 2.9 (1.9–3.8) 6, 0.5 (0.1–0.9) 5, 0.1 (0.0–0.2) 1, 0.0 (0.0–0.1)

24-h ICU Upgrade, No, % (95% CI)

Retrospective 475, 4.9 (4.5–5.3) 229, 11.4 (10.0–12.8) 144, 5.9 (5.0–6.9) 92, 2.0 (1.6–2.4) 10, 1.4 (0.5–2.3)

Prospective Visible 206, 4.3 (3.8–4.9) 91, 8.5 (6.9–10.2) 37, 3.9 (2.7–5.1) 61, 2.7 (2.0–3.4) 17, 3.4 (1.8–5.0)

72-h ED Return, No, % (95% CI)

Retrospective 623, 5.6 (5.1–6.0) 4, 4.7 (0.2–9.1) 28, 8.0 (5.2–10.9) 298, 7.0 (6.3–7.8) 293, 4.5 (4.0–5.0)

Prospective visible 296, 5.9 (5.2–6.5) 5, 18.5 (3.9–33.2) 14, 9.7 (4.9–14.6) 150, 7.0 (5.9–8.0) 127, 4.7 (3.9–5.5)

Total LOS hospitalized, Median (IQR)

Retrospective 98 (49–178) 146 (73–268) 121 (70–213) 81 (39–147) 29 (8–91)

Prospective visible 97 (47–172) 141 (77–264) 110 (62–188) 84 (30–147) 52 (9–106)

Total LOS discharged, Median (IQR)

Retrospective 4 (2–6) 5 (3–62) 5 (3–11) 4 (3–6) 3 (1–5)

Prospective visible 5 (3–7) 5 (3–7) 5 (3–8) 5 (4–7) 4 (3–6)

ED emergency department, ICU intensive care unit, LOS length of stay.
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for adverse COVID-19 outcomes14,15, also carried relatively little
weight in our models. While these findings may seem counter-
intuitive, they likely reflect the reality that in acute care
environments, physiologic manifestations of disease may be even
more important indicators of near-term clinical trajectory than
epidemiologic risk factors16,17. Indeed, most predictors with high
importance across both our models were either direct (e.g.,
respiratory rate and blood pressure) or indirect (eg, shortness of
breath and creatinine level) measures of pathophysiologic state at
the time of prediction. Our findings are aligned with those of
others, including Wongvibulsin et al who reported that markers of
respiratory status comprised the five most important predictors in
an ML model designed to estimate 1-day risk of severe COVID-19
or death in inpatients18. Similarly, Haimovich et al found
supplemental oxygen needs and SpO2 were the most important
predictors in an ML model designed to identify ED patients at risk
of progression to critical COVID-19 respiratory illness within 24 h
and reported that reliable risk estimates for this outcome could be
made using respiratory rate, supplemental oxygen flow rate and
SpO2 alone19.
This study does have limitations. First, ML models were derived

and validated using data from a single health system. This
weakness was minimized via use of large training and testing
datasets, the inclusion of ED encounters from a variety of practice
settings (community and academic, urban, and suburban) and the
use of two prospectively collected datasets for secondary
validation. Translation of our work to other settings would require
re-training and re-validation of models using locally derived
datasets. This limitation must be considered for all ML-assisted
technology applied to data from the EHR, as algorithms developed
and validated in one clinical context are unlikely to be
immediately transportable to another20. In addition, our CDS
system was deployed system-wide to optimize clinical care and
healthcare resource utilization under pandemic conditions. To
mitigate untoward effects that could have been caused by
degradation of model performance in the face of an evolving virus
and rapidly changing approaches to combating COVID-19 (e.g.,
antivirals, steroids, vaccination), we performed extensive post-
implementation surveillance including frequent checks of model
performance and found them to be stable over time and across
vaccinated and unvaccinated populations. We believe this was
due to the large-scale data available for model building, the ML
approaches deployed to minimize over-fitting, and our direct
measurement of physiologic state (predictor variables) that are
known to relate to demands for care regardless of underlying
mechanisms. Finally, the lack of a controlled study design and
confounding pandemic-related changes in ED and hospital
operations also limited our ability to systematically assess the
impact of our intervention. We did monitor clinician behaviors and
several patient-oriented outcomes closely throughout the study
and observed a general trend toward improvement but cannot
conclude reliably that this was due to our CDS system alone.

METHODS
Setting and selection of participants
This study was performed at five EDs within a university-based health
system between 3-1-2020 and 7-20-2021. Study sites included two urban
academic EDs (Johns Hopkins Hospital (JHH) and Bayview Medical Center
(BMC)) and three suburban community EDs (Howard County General
Hospital (HCGH), Suburban Hospital (SH), and Sibley Memorial Hospital
(SMH)) with a combined patient volume of 270,000 visits per year. All adult
patients (≥18 years old) designated as PUIs for COVID-19 were included in
the study; COVID-19 infection status was not used as an inclusion criterium
because ED disposition decisions are often made before infection status is
known and because others who have tested negative continue to be
treated as PUIs based on elevated clinical suspicion and presumption of a
false negative result21. PUI status was operationally defined as having
active isolation orders in the EHR at the time of ED disposition. Patients

who were not under suspicion for COVID-19, including those who
underwent asymptomatic testing for SARS-CoV-2, were excluded.
Our retrospective model building cohort (i.e., derivation cohort) was

comprised of ED visits that occurred between 3-1-2020 and 11-15-2020 at
all five sites. Models were prospectively validated using data collected
between 11-25-2020 and 7-20-2021, with performance measured and
reported separately for periods when model-driven CDS was silent (not
visible) and available for use by treating ED clinicians.

Methods of measurement
Outcome and predictor data were extracted from the EHR (Epic, Verona,
WI). Candidate predictor variables were identified by comprehensive
review of preprint and peer-reviewed literature on COVID-19 and were
evaluated by clinicians and data scientists for face validity and collection
reliability; variables were incorporated into final models based on
univariate assessment of their relationship to outcomes (e.g., descriptive
statistics and graphical plots) and their additive value to ML model
predictive performance (differences in AUC)22–28. The objective was to
achieve high predictive performance with a parsimonious ML model that
also considered the constraints and reliability of real-time data feeds. To
ensure model output was optimized to the decision we aimed to support,
ML prediction time-points were set as the time of first disposition order
entry (e.g., discharge or hospitalization orders) for each patient.

Outcome and predictor measures
The primary outcomes predicted were critical care needs and inpatient
care needs within 24 and 72 h of ED disposition, respectively. Outcome
definitions were developed by consensus among a committee of
attending physicians in emergency medicine (JH and GK), internal
medicine (TD and AS), and critical care medicine (DH and RSS). Criteria
for critical care were met if a patient died, was admitted to an intermediate
or intensive care unit, or developed cardiovascular or respiratory failure
within 24 h of ED disposition. Cardiovascular failure was defined by
hypotension requiring intravenous vasopressor support (dopamine,
epinephrine, norepinephrine, phenylephrine or vasopressin). Respiratory
failure was defined by hypoxia or hypercarbia requiring high-flow oxygen
(>10 liters/minute), high-flow nasal canula, noninvasive positive pressure
ventilation or invasive mechanical ventilation19. Criteria for inpatient care
needs were met if patients exhibited at least moderate cardiovascular
dysfunction (systolic blood pressure <80mmHg, heart rate ≥125 for
≥30min or any troponin measurement >99th percentile), respiratory
dysfunction (respiratory rate ≥24, hypoxia with documented SpO2 < 88%
or administration of supplemental oxygen at a rate >2 liters/minute
sustained for ≥30min) or were discharged at initial ED visit and had a
return ED visit and hospitalization within 72 h. Prediction horizons (24 h for
critical care needs and 72 h for inpatient care needs) were selected to
guide decision-making related to disposition and level of care determina-
tions. Patients discharged without meeting outcome criteria before
reaching 24 or 72 h were assumed to be outcome negative.
Data used for prediction were limited to those routinely stored in the

EHR during ED care. To be included in analysis, predictor data had to be
recorded and available in the EHR prior to the time of prediction. Data
elements included patient demographics (age, sex), chief complaint(s),
active medical problems (identified based on ICD-10 codes), vital signs,
routine laboratory results, markers of inflammation (c-reactive protein
[CRP], d-dimer, ferritin), SARS-CoV-2 status, and respiratory support
requirements.
Predictor data were prepared as categorical variables. Continuous

variables (e.g., lab results, vital signs) were transformed to discrete
categories to enable representation of predictor missingness. The pre-
model fit processing for each type of data was performed as follows.
Demographics (age, gender) were input as categories with age grouped in
10-year increments29. Chief complaint(s) were limited to a structured pick-
list (819 complaints) and grouped into clinically meaningful categories as
described previously30–33. Active medical problems (ICD-10 codes) were
grouped as binary features (present vs. not present) for atrial fibrillation,
coronary artery disease, cancer, cerebrovascular disease, diabetes, heart
failure, hypertension, immunocompromised, kidney disease, liver disease,
pregnancy, prior respiratory failure, and smoking. Vital signs were
discretized as normal or gradations of abnormal based on physiology-
based criteria34,35. The latest vital signs recorded prior to ED disposition
were included as predictors along with a comparison to the initial triage
vitals (prior to ED interventions) to characterize vital trends (e.g., stable,
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trending normal, trending abnormal). Laboratory data were characterized
as not resulted (0), resulted within the normal range (1) and resulted with
relevant gradations of abnormal (e.g., 2–4). The SARS-CoV-2 status
predictor was classified as unknown or SARS-CoV-2 positive. Respiratory
support was categorized as no oxygen, low-flow (≤2 L/min), mid-flow (>2
and <10 L/min) or high-flow (see above) prior to disposition decision19. The
exact form of each predictor variable, including discretization of
continuous variables and the treating of missingness, is detailed in
Supplementary Table 1.

Model derivation
The retrospective derivation cohort was randomly divided into training
(two-thirds) and testing (one-third) datasets. Separate ensemble-based
decision tree learning algorithms (random forest36) were trained to predict
each outcome (critical care needs within 24 h, inpatient care needs within
72 h). During training, the random forest algorithm (number of estimators
= 50, minimum leaf size = 10) executed a randomized sampling process to
train a set of individual decision trees and aggregated output to produce a
single probabilistic prediction for each outcome37. To maximize opportu-
nity for algorithmic learning, all encounters by PUIs were included in
training datasets, including those where patients met criteria for the
outcome of interest prior to the point of prediction. Performance of each
model was evaluated in test sets using the subset of patients for whom
model-driven decision support was relevant at the point of decision-
making. This subset was termed the ‘decision group’ and was defined
separately for each outcome. For the critical care outcome, the decision
group included all patients who had not met any outcome criteria
(cardiopulmonary failure or death) prior to the time of ED disposition
decision (identified by time of order entry). For the inpatient care outcome
within 72 h, the decision group included patients who did not meet any
outcome criteria at the time of ED disposition decision; patients who met
pre-specified criteria for cardiopulmonary dysfunction early in their ED visit
but whose dysfunction had resolved by the time of ED disposition decision
were included in this group. Patients not belonging to decision groups
were excluded from testing datasets. Multiple model performance
measures were applied during model derivation and prospective evalua-
tion. Receiver operating characteric (ROC) curve analysis was performed,
which included measuring the Area Under the ROC Curve (AUC) with 95%
confidence interval estimates calculated using Delong’s method38,39.
Meausurements of COVID-19 Deterioration Risk Level distribution and
associated outcome probability were reported. Overall goodness-of-fit
(Brier Score) and calibration curves (plots of observed versus predicted risk)
were evaluated40. Model interpretation was perfomed using feature
importance measures including SHapley Additive exPlanations (SHAP)
values to assess predictor impact and directionality41.

Model validation
Models underwent prospective validation using a similar approach.
Prospective model performance was measured and reported separately
for a cohort of ED visits that occurred while our CDS system operated
silently and had no impact on clinical care delivery and for visits that
occurred after CDS was made visible to ED clinicians. As described for the
testing dataset of our retrospective cohort, prospective performance was
measured and reported for patients belonging to the decision only (those
not already meeting outcome criteria at the time of disposition).

Clinical decision support system development
A system to generate patient-level risk estimates and deliver EHR-
embedded CDS to emergency clinicians in real-time was developed with
software engineers and end-users under a human-centered design
framework. ML models were triggered to generate new outcome risk
estimates each time new predictor data (e.g., vital signs, laboratory results)
were filed to the EHR. To facilitate rapid interpretation at the point-of-care,
model-generated outcome probabilities were translated to one of ten
COVID-19 Deterioration Risk Levels using risk thresholding; thresholds
were determined by consensus between technical and clinical team
members using graphical plots, calibration curves, and outcome frequency
tables. Thresholds were designed based on the objective to distribute
COVID-19 Deterioration Risk Levels over a 1 (low risk) to 10 (high risk) scale
using the observed probability of each outcome. Brief non-interruptive
CDS that contained risk levels was populated within existing EHR workflow
(i.e., disposition module) for eligible patients only, with more elaborate
CDS made available via an EHR-embedded hyperlink. CDS content and

appearance was developed iteratively, guided by direct feedback from
prospective end-users.

Clinical implementation and ongoing quality assurance
Our CDS system was activated to operate silently, suppressed from ED
clinician view, beginning on 11-25-2020. COVID-19 Deterioration Risk
Levels and associated CDS became viewable in each participating ED
serially between 12-8-2020 and 2-23-2021 (JHH 12-8-2020; BMC 12-22-
2020; HCGH 1-13-2021; SH 2-17-2021; SMH 2-23-2021) and remained
viewable until 7-20-2021. Prospective model performance, patient
distribution across risk levels and patient-oriented outcomes including
rates of hospital admission, ICU admission (direct and secondary due to
escalation of care within 24 h), 24-h mortality and 72-h ED return for
discharged patients were monitored regularly during the pre- and post-
implementation periods. CDS performance and patient outcome
reports were made available to clinical and hospital IT leadership
teams at each site. All measures were reported separately for silent and
visible periods.
Before CDS was made viewable, all ED clinicians at each site received live

training on the purpose and function of the system by an ED clinician
study team member (JH or AM). They were also provided recorded
materials for asynchronous study and review via email and EHR-embedded
hyperlinks. Training sessions included detailed explanations of ML model
function (outcomes, predictors and algorithmic processing), model
performance, and emphasis of the continued importance of clinician
judgement in individual patient assessment.
Data infrastructure, ML prediction models and CDS software were

developed and evaluated under the approval of the Johns Hopkins
Medicine Institutional Review Board (IRB00185078).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The clinical data used in this study are from the Johns Hopkins Health System (JHHS).
These individual-level patient data are protected for privacy. Qualified researchers
affiliated with Johns Hopkins University (JHU) may apply for access through the Johns
Hopkins Institutional Review Board (IRB) (https://www.hopkinsmedicine.org/
institutional_review_board/). Those not affiliated with JHU seeking to collaborate
may contact the corresponding author. Access to these data for research
collaboration with JHU must ultimately comply with IRB and data sharing protocols
(https://ictrweb.johnshopkins.edu/ictr/dmig/Best_Practice/c8058e22-0a7e-4888-aecc-
16e06aabc052.pdf).

CODE AVAILABILITY
All analyses were performed using Python 3.6. The code used to develop and
evaluate prediction models and generate risk-levels is available in a public repository
(https://github.com/CDEM-JHU/COVID19-ADMIT-CDS). This code relies on open-
source libraries, most notably scikit-learn (https://scikit-learn.org/stable/) and shap
(https://shap.readthedocs.io/en/latest/index.html). The code that supports data
collection, cleaning, normalization and quality control made use of proprietary data
structures and libraries, so we are not releasing this code. However, details of the
precise implementation are available in the methods section, supplementary
material, and public repository to allow for independent replication.
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