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Cell labeling technologies are required to monitor the fate of transplanted cells in vivo and to select target cells for 
the observation of certain changes in vitro. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) 
have been transplanted for the treatment of heart injuries or used in vitro for preclinical cardiac safety assessments. 
Cardiomyocyte (CM) labeling has been used in these processes to facilitate target cell monitoring. However, the func-
tional effect of the labeling agent on hiPSC-CMs has not been studied. Therefore, we investigated the effects of labeling 
agents on CM cellular functions. 3’-Dioctadecyloxacarbocyanine perchlorate (DiO), quantum dots (QDs), and a DNA 
plasmid expressing EGFP using Lipo2K were used to label hiPSC-CMs. We conclude that the hiPSC-CM labeling 
with DiO and QDs does not induce arrhythmogenic effects but rather improves the mRNA expression of cardiac ion 
channels and Ca2＋ influx by L-type Ca2＋ channels. Thus, DiO and QD labeling agents may be useful tools to monitor 
transplanted CMs, and further in vivo influences of the labeling agents should be investigated in the future.
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Introduction 

  Cell labeling knowledge has significantly increased, re-
sulting in the development of numerous labeling agents, 
including fluorescent probes, superparamagnetic iron ox-
ide, radiotracers, and genetic modifications (1). Indeed, a 
wide variety of labeling agents have been used to dis-
tinguish target cells from neighboring cells and monitor 
the functional effects of target cells. Several studies have 
reported that the labeling mechanism typically involves 
the adherence and diffusion of a lipophilic cyanine-based 
dye across the phospholipid cell membrane bilayer. Other 
modes include transporters, endocytosis, and phagocytosis 
(2, 3).
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  The transportation of labeling agents into the cells 
could change the biological responses of cells, such as me-
tabolism, proliferation, and migration (4-6). Labeling agent- 
rich regions cause changes in the physical properties of 
the cell surface and thereby determine cellular character-
istics, i.e., the cell surface, repulsion between cells, sub-
sequent migration, and the uptake of ion (7-9). Ideal label-
ing agents should have high labeling efficiency and not 
have harmful effects on cellular function. In previous 
studies, various labeling agents have been used to effi-
ciently label cardiomyocytes (CMs) for in vivo tracking 
(10-13). However, these studies did not focus on the func-
tional effects on CMs. In particular, the influence of label-
ing on the physiological functions of human induced plu-
ripotent stem cell-derived cardiomyocytes (hiPSC-CMs) 
should be verified. hiPSC-CMs are considered a promising 
option for future applications in various fields (14-16). 
The electrophysiological dysfunction of hiPSC-CMs can 
lead to negative application consequences, such as abnor-
mal drug reactions when assessing cardiac toxicity or le-
thal arrhythmia in heart failure treatment with injected 
CMs (17-19). In addition, low cell retention and engraft-
ment rates are another safety risk for stem cell-based ther-
apies, so the labeling of CMs is required for long-term 
monitoring (20-22). Despite the importance of hiPSC-CM 
function and labeling, no studies have evaluated the effect 
of labeling agents on hiPSC-CMs.
  Therefore, the purpose of this study was to investigate 
the effects of three different labeling agents on the cel-
lular functions of CMs. Thus, CMs were labeled with 3’- 
dioctadecyloxacarbocyanine perchlorate (DiO), quantum 
dots (QDs), and plasmid DNA expressing EGFP using 
Lipo2K. The labeled cells were subsequently characterized 
at the cellular functional and molecular levels. The results 
of this study may provide useful tools to expand the po-
tential applications of CM labeling.

Materials and Methods

Human iPSC-derived cardiomyocyte culture
  hiPSC-derived CMs (iCellⓇ) and cell culture medium 
(iCell Cardiomyocyte Maintenance Medium) were pur-
chased from Cellular Dynamics International (CDI, Madison, 
WI, USA). Cells were thawed and handled according to 
the manufacturer’s guidelines. The cells were plated at 
2×104 cells/well and maintained at 37℃ with 5% CO2 
and 95% humidity. Cells began to beat spontaneously 
within one or two days of plating. Cell labeling was per-
formed at 7 days after plating.

Cell labeling and the measurement of labeling efficacy
  The CMs were labeled with DiO (Vybrant cell labeling 
solution, Molecular Probes, Eugene, OR), QD 525 (Thermo 
Fisher Scientific, Rockford, IL, USA), and pcDNA3-EGFP 
using Lipofectamine 2000 (Lipo2K; Invitrogen, Carlsbad, 
CA, USA). For labeling, cells were treated with DiO, 5 μM 
dye working solution for 10 min. After treatment, the dye 
working solution was removed, and the cells were washed 
three times with growth medium. For EGFP labeling us-
ing Lipo2K, CMs were transfected with 100 ng of pcDNA3- 
EGFP using Lipo2K according to the manufacturer’s in-
structions. Branched polyethyleneimine (BPEI: 25 kDa) 
was prepared at an N/P ratio of 20/1. The cells were seed-
ed on well plates, the culture medium was replaced with 
transfection medium containing Lipo2K complexes, and 
the plate was incubated for 6 h at 37℃. Then, the trans-
fection medium was replaced with fresh growth medium, 
and the cells were maintained for 2 days. After incubation, 
the cells were washed twice with DPBS (pH 7.4). For QD 
labeling, cells were incubated in medium containing 1 μM 
QD 525 for 6 h at 37℃, and cells were washed three times 
with DPBS. Then, the samples were analyzed using la-
ser-scanning confocal microscopy (LSM 710, Carl Zeiss, 
Thornwood, NY, USA).

Cell viability assay
  To measure cell viability after labeling, CMs were seed-
ed on 96-well plates (5×103 cells/well) and incubated for 
1 day. After labeling, cell counting kit-8 solution (10 μl; 
Dojindo Molecular Technologies Inc., Kumamoto, Japan) 
was added to each well. After further incubation for 2 h 
at 37℃, the absorbance of each well was measured at 450 
nm using a microplate reader (iMmark, Microplate Absor-
bance Reader, Bio-Rad, CA, USA). 

Real-time quantitative PCR
  Total RNA was extracted from heart tissue with TRIzol 
(Invitrogen, Carlsbad, CA, USA) and reverse-transcribed 
using a complementary DNA reverse transcription kit 
(Invitrogen, Carlsbad, CA, USA). Reactions were performed 
in a real-time PCR thermocycler (Applied Biosystem, 
Foster City, CA, USA) using SYBR green as the fluo-
rescence dye. The mRNA expression of the target genes 
was normalized to that of the control glyceraldehyde-3- 
phosphate dehydrogenase (GAPDH) using the comparative 
threshold cycle method. Quantitative PCR was performed 
using SYBR Green PCR Master Mix (2×; Promega, Madison, 
WI, USA) and 0.2 μM of the following gene-specific pri-
mers: forward primer, 5’-TTCCTATTACCTCGGGGCAC- 
3’ and reverse primer, 5’-TGCCATAGAGATCTGGCAGC- 
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Fig. 1. Analysis of the labeling efficiency and cell viability of three 
labeling agents: DiO, QD, and GFP using Lipo2K. (A, B) The effi-
ciency of the three agents was analyzed by green fluorescence at 
1 day, 7 days, and 14 days after labeling. (C) Cell viability after 
labeling was analyzed on the same days. 

3’ for SCN5A; forward primer, 5’-ATACCAGCCGCTCTC 
CAGTT-3’ and reverse primer, 5’-ACTGCCCATTAACTT 
GGCCT-3’ for CACNA1c; forward primer, 5’-ACTACAT 
CATCCGGGAAGGC-3’ and reverse primer, 5’-CAGCAG 
GCAGATCTCTCCAA-3’ for HCNA4; forward primer, 
5’-TCCTCTGTGTGGGTTCCAAA-3’ and reverse primer, 
5’-CCGGACTCATTCACTGCATC-3’ for KCNQ1; forward 
primer, 5’-CATCTACTGCAACGACGGCT-3’ and reverse 
primer, 5’-GACAGCCCCATCCTCATTCT-3’ for KCNH2; 
forward primer, 5’-CCCAATTGCTGTTTTCATGG-3’ and 
reverse primer, 5’-GTCTCTCATGGCAATCACGG-3’ for 
KCNJ2; and forward primer, 5’-CCCATGTTCGTCATGG 
GTGT-3’ and reverse primer, 5’-TGGTCATGAGTCCTTC 
CACGATA-3’ for GAPDH. The cycle conditions were as 
follows: primary denaturation at 95℃ for 3 min, 40 cycles 
of 6 s at 95℃, 60 s at 60℃, and 60 s at 72℃, followed 
by fluorescence measurement. The expression of target 
genes was normalized using GAPDH as a reference gene. 

Electrophysiological recording
  Conventional whole-cell patch-clamp was performed to 
record the action potential (AP) and currents. The signals 
were amplified and digitized with an Axopatch 200B am-
plifier (Axon Instruments, Foster, CA, USA) and a Digidata 
1440B AD-DA converter (Axon Instruments). pClamp 
10.1 (Axon Instruments) and Origin 8.0 (Microcal, 
Northampton, MA, USA) were used for the analysis of AP 
parameters and current amplitudes. Microglass pipettes 
(World Precision Instruments, Sarasota, FL, USA) were 
pulled to the resistance of 2∼3 MΩ with a PP-830 puller 
(Narishige, Tokyo, Japan). The extracellular buffer sol-
ution for recording AP activity contained (in mM) 145 
NaCl, 5.4 KCl, 10 HEPES, 1 MgCl2, 1.8 CaCl2, and 5 glu-
cose adjusted to pH 7.4 with NaOH. The intracellular sol-
ution contained (in mM) 120 K-aspartate, 20 KCl, 5 NaCl, 
2 CaCl2, 5 EGTA, 10 HEPES, and 5 MgATP adjusted to 
pH 7.25 with KOH. The extracellular buffer solution for 
ICa,L contained (in mM) 145 CsCl, 10 HEPES, 1 MgCl2, 
1.8 CaCl2 and 5 glucose adjusted to pH 7.4 with CsOH. 
The intracellular solution for ICa,L contained (in mM) 106 
CsCl, 5 NaCl, 20 TEA-Cl, 10 HEPES, 5 MgATP, and 1 
EGTA adjusted to pH 7.25 with CsOH. ICa,L was re-
corded using a stepwise protocol with a holding potential 
of −50 mV and depolarization from −40 to 40 mV in 
10-mV increments. The extracellular buffer solution for 
INav contained (in mM) 135 CsCl, 20 NaCl, 10 HEPES, 
1 MgCl2, 1.8 CaCl2, 0.1 CdCl2, and 5 glucose adjusted to 
pH 7.4 with CsOH. The intracellular solution for INav con-
tained (in mM) 135 CsCl, 5 NaCl, 10 HEPES, 5 MgATP, 
and 10 EGTA adjusted to pH 7.25 with CsOH. To assess 

the peak amplitude of the INav density, cells were held at 
−100 mV and depolarized to various test step voltages 
(from −80 to 40 mV in 10 mV steps). 

Statistical analysis
  Quantitative data were expressed as the mean±standard 
deviation. Statistical comparisons were carried out using 
ANOVA tests (SPSS Inc., Chicago, IL, USA). A proba-
bility level of less than 0.05 was considered statistically 
significant.

Results

  The hiPSC-CMs were thawed, plated in plating me-
dium, maintained in maintenance medium, and begin to 
beat spontaneously within 2 days of plating. After the cells 
were labeled with three different agents (DiO, QDs, and 
EGFP using Lipo2K), the fluorescence labeling efficiency 
was analyzed on days 1, 7, and 14. One day after culture, 
97.5 and 99.4% of the inoculated hiPSC-CMs were labeled 
with DiO and QDs, whereas only 33.7% expressed GFP 
(Fig. 1). The number of hiPSC-CMs labeled with DiO and 
QDs was maintained over the culture time. The labeling 
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Fig. 2. The effects of DiO and QD labeling on mRNA expression 
of cardiac ion channels. (A∼G) Changes in the expression of SCN5A,
CACNA1c, KCNA4, HCN4, KCNQ1, KCNH2, and KCNJ2 in 
hiPSC-CMs were observed at 7 and 14 days after DiO and QD 
labeling. All the data were analyzed using paired t-tests, where
p＜0.05 (*) and p＜0.01 (**) were considered statistically sig-
nificant.

Fig. 3. The AP activity of hiPSC-CMs was recorded after 7 days 
of DiO and QD labeling, and its characteristics were analyzed.
(A∼C) Spontaneous AP activity of control, DiO, and QD-labeled 
hiPSC-CMs. The action potentials were analyzed as the APA, MDP, 
Vmax, and APD90 (Table 1). All the data were analyzed using 
paired t-tests, where a p＜0.05 was considered statistically sig-
nificant.

efficacy of both DiO and the QDs remained similar over 
14 days. In contrast, the number of GFP-labeled cells and 
viability decreased significantly over the culture time. 
Cytotoxicity of Lipo2K has been reported for many cell 
lines, but EGFP-labeling using Lipo2K showed much low-
er viability in hiPSC-CMs compared to COS (CV-1 in 
Origin, and carrying SV40 genetic material) and other im-
mortal cell lines (23, 24). This result suggests that Lipo2K, 
a liposomal transfection reagent with exogenous DNA is 
not a suitable labeling method for hiPSC-CMs.
  Next, we examined whether DiO and QD labeling influ-
ences the mRNA expression of the essential cardiac ion 
channels (K＋ channel; KCNA4, KCNQ1, KCNH2, and 
KCNJ2, L-type Ca2＋ channel; CACNA1c, voltage-depend-
ent Na＋ channel; SCN5A, and hyperpolarization-activated 
cyclic nucleotide-gated channel; HCN4) of hiPSC-CMs 
(Fig. 2). There was no significant difference in the mRNA 

expression between the control cells and the labeled cells 
over the 14 days after labeling. When the mRNA ex-
pression of SCN5A, CACNA1c, and KCNJ2 in the control 
cells increased, that of the labeled cells also increased. At 
7 days after labeling, the mRNA expression of CACNA1c, 
KCNH2, KCNA4, and KCNQ1 in the labeled group was 
significantly different from that in the control group. Over 
time, the difference in KCNH2, KCNA4, and KCNQ1 
mRNA expression was reduced. Overall, there was no dif-
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Fig. 4. Effect of DiO and QD labeling on the voltage-dependent 
Na＋ current (INav) and L-type Ca2＋ current (ICa,L) in hiPSC-CMs. (A, 
B) Peak amplitudes of INav were analyzed after replacing Na＋ in 
the extracellular solution with NMDG＋. The peak inward current 
densities recorded in DiO- and QD-labeled CMs compared to un-
labeled control CMs at −50 mV. (C, D) Peak amplitudes of ICa,L

were analyzed after the application of a selective inhibitor, nifedi-
pine (1 μM). A significant increase in ICa,L was observed in QD-la-
beled CMs compared to control CMs. All the data were analyzed 
using paired t-tests, where *p＜0.05 was considered statistically 
significant.

Table 1. Analysis of action potential properties in control, DiO, QD-labeled hiPSC-CMs

Labeling probe APA (mV) MDP (mV) Vmax (V/s) APD90 (mV)

Control (n=5) 86.3±4.8 −59.2±4.1 8.1±2.3 447.3±37.8
DiO (n=5) 91.4±5.5 −52.0±5.1 13.1±6.9 473.5±49.0
QDs (n=5) 84.8±1.9 −51.0±1.9 7.76±1.4 457.9±67.3

Fig. 5. Illustration of labelling mechanism for DiO and QD.

ference in the mRNA expression between the DiO and 
QD labeled groups.
  Finally, we validated whether the action of DiO and 
QDs affect the CM electrophysiological profile. The ef-
fects of DiO and QDs on the APs and ion channel cur-
rents were evaluated in the hiPSC-CMs at day 7 after la-
beling because the change in ion channel gene expression 
was the greatest at day 7 after labeling. APs from non-
treated control or DiO- and QD-labeled hiPSC-CMs were 
recorded and analyzed (Fig. 3). DiO and QD labeling 
agents did not affect the AP amplitude (APA), maximum 
diastolic potential (MDP), maximum upstroke velocity 
(Vmax), and action potential duration 90% (APD90). The 
parameters are presented in Table 1. 
  The voltage-dependent Na＋ current (INav) and L-type 
Ca2＋ current (ICa,L) in hiPSC-CMs were recorded using 
the voltage-clamp patch-clamp method. The subtracted 
currents were obtained by substitution of extracellular Na＋ 
with NMDG＋ and by applying nifedipine, a specific in-
hibitor of ICa,L. The peak amplitude of INav at −50 mV 
was analyzed between control and DiO- or QD-labeled 
CMs. The amplitude of INav in DiO- and QD-labeled cells 
was not different from that in control cells (Fig. 4A and 
4B). The peak amplitude of ICa,L at 0 mV was analyzed. 
Compared to the control CMs, QD-labeled CMs had an 
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increased amplitude of ICa,L, but the DiO-labeled CM am-
plitude showed no conversion (Fig. 4C and 4D). 

Discussion

  Many hurdles remain to the widespread acceptance of 
labeling for cell tracking and labeling for stem cell-derived 
cardiomyocytes because the functional changes of labeling 
agents in cells are not fully understood. Although these 
materials have biocompatibility in the cells, many pre-
vious studies have shown that the carbocyanine dyes with 
highly lipophilic nature and nano-materials such as QD 
specifically led to changes in bio-physiological function, 
cellular signaling pathways and interference with cell-cell 
communication (4-6, 25, 26). Indeed, carbocyanine dyes 
showed at high concentrations in cancer cell lines (6). The 
QD negatively affected cell growth and migration func-
tions (25, 26). Thus, if these labeling agents are to be used 
for stem cell-derived cardiomyocytes, its effects on physio-
logical properties, biochemical properties of modified 
cells, and cellular function should be clearly defined.
  This study is the first to evaluate the functional effect 
of labeling agents on hiPSC-CMs. hiPSC-CMs were la-
beled with DiO and QDs with high efficiency and without 
cytotoxic effects. However, labeling with EGFP using 
Lipo2K, a transfection reagent, significantly reduced cell 
viability. Labeling with DiO and QDs did not have neg-
ative electrophysiological influences, such as arrhythmo-
genic effects, including the early and delayed after-
depolarizations of AP or prolongation of AP in hiPSC- 
CMs. Rather, QD labeling increased Ca2＋ influx through 
the enhancement of ICa,L.
  Direct labeling is more consistent and effective than in-
direct labeling in hiPSC-CMs. We selected DiO and QDs 
for the direct labeling method because DiO and QD label-
ing have proven to be sufficient for various cell labeling 
applications in vitro. Cells labeled with both types of la-
bels showed higher fluorescence intensities than untreated 
cells (Fig. 1). Generally, one of the disadvantages of direct 
labeling methods is that the labeling agent becomes di-
luted when cells proliferate, resulting in decreased fluo-
rescence intensity of the labeling agent per cell (27-30). 
This factor usually limits the time available for the ob-
servation of directly labeled cells. However, hiPSC-CMs 
exhibit very low levels of proliferation (31, 32). Thus, the 
dilution of the labeling agent in the cell by cell division 
does not occur. Indeed, the intensity of hiPSC-CMs la-
beled with DiO and QDs was similar on the first and the 
14th day after labeling (Fig. 1). These results indicate that 
direct labeling methods are suitable for hiPSC-CMs with 

low proliferative activity. The labeling efficacy of the in-
direct system was also tested with genetic modification us-
ing EGFP gene transfection by Lipo2K. It was difficult 
to transfect the hiPSC-CMs using a nonviral gene transfer 
delivery system because of the low transfection rates and 
cell toxicity.
  hiPSC-CMs possess similar contractibility, synchro-
nicity, and electrochemical properties as cardiac tissue 
(33, 34). Therefore, hiPSC-CMs are used for cellular car-
diomyoplasty to regenerate the myocardium (35, 36). In-
deed, recent studies reported that CMs from pluripotent 
stem cells were successfully transplanted and repaired the 
myocardium when injected into the damaged heart of im-
munosuppressed animals (17, 37-40). In addition, hiPSC- 
CMs have been developed to replace animal testing for 
cardiac safety assays (41, 42). For these developments, the 
functions of hiPSC-CMs, including the repolarization or 
depolarization of cardiac ion channels and calcium flux, 
should be maintained. Therefore, the ideal labeling meth-
od of hiPSC-CMs should be noncytotoxic and not have 
harmful effects on other cellular functions. Our results 
demonstrate the electrophysiological safety of DiO and 
QD labeling in hiPSC-CMs. Both labeling agents did not 
significantly change the AP.
  Functional immaturity is a well-known property of 
hiPSC-CMs. According to previous reports, hiPSC-CMs 
have an immature Ca2＋ handling ability and fewer con-
tractile proteins than mature CMs (43, 44). In mature 
CMs, the excitation-contraction (EC) coupling is mediated 
mainly by calcium-induced calcium release, whereas it is 
predominantly due to the trans-sarcolemmal influx of Ca2＋ 
in hiPSC-CMs (43). Our results demonstrate that QD la-
beling enhances Ca2＋ influx (Fig. 4C) and mRNA expres-
sion of CACNA1c (Fig. 2B). DiO and QD labelings pro-
moted mRNA expression of Ca2＋ and K＋ ion channels. 
In both control and labeled groups, mRNA expression of 
Ca2＋ and K＋ ion channels increased over 14 days. 
Interestingly, mRNA expression of Ca2＋ and K＋ ion chan-
nels, which was expressed in 14 days in control group, was 
expressed in 7 days in DiO and QD labeled groups (Fig. 
2B, 2C, 2E, and 2F). Increased Ca2＋ influx and enhanced 
ion channel expression may improve the Ca2＋ handling 
and electrophysiological properties of immature EC cou-
pling in hiPSC-CMs, although we do not present direct 
evidence of Ca2＋ and CM contraction.
  In conclusion, we demonstrated that DiO and QD label-
ing of hiPSC-CMs is stable, long-lasting, non-toxic, and 
may allow safe and long-term cell tracking to monitor 
CM-based therapies. Since this study was conducted in vi-
tro, it is necessary to confirm the safety and efficacy of 
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the labeled CMs in vivo in further studies.
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