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Leveraging deep learning to understand health beliefs about
the Human Papillomavirus Vaccine from social media
Jingcheng Du 1, Rachel M. Cunningham2, Yang Xiang1, Fang Li 1, Yuxi Jia 1,3, Julie A. Boom2,4, Sahiti Myneni1, Jiang Bian 5,
Chongliang Luo6, Yong Chen6,7,8 and Cui Tao1

Our aim was to characterize health beliefs about the human papillomavirus (HPV) vaccine in a large set of Twitter posts (tweets). We
collected a Twitter data set related to the HPV vaccine from 1 January 2014, to 31 December 2017. We proposed a deep-learning-
based framework to mine health beliefs on the HPV vaccine from Twitter. Deep learning achieved high performance in terms of
sensitivity, specificity, and accuracy. A retrospective analysis of health beliefs found that HPV vaccine beliefs may be evolving on
Twitter.
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INTRODUCTION
The human papillomavirus (HPV) is the most common sexually
transmitted disease and causes several types of cancers, including
cervical, vaginal, vulvar, penile, anal, and oropharyngeal. Although
the HPV vaccine is highly effective, vaccine refusal is common
among parents of adolescents.1 Understanding parental beliefs
about the HPV vaccine is an important step toward developing
effective and targeted vaccine promotion strategies.1,2 The Health
Belief Model (HBM) is the most widely used conceptual framework
in health behavior research to explain why people adopt
behaviors that lead to healthy lives.3 Studies have found that
HBM constructs are associated with HPV vaccine intention and
uptake.4–6

Traditional survey methods present significant limitations in
assessing public health beliefs, including difficulties in reaching a
large-scale population and tracking changes in real time.7–9 Social
media enables millions of people to voluntarily and continuously
share self-generated content, which allows access to the health
beliefs of a large-scale population. Understanding the large
amount of free text data on social media, however, requires
advanced algorithms. Previous efforts were focused on develop-
ing traditional machine learning-based approaches to understand
attitudes and health beliefs toward the HPV vaccine.10–12 Deep
learning is a set of advanced computational models that has
achieved state-of-the-art performance for various tasks in natural
language understanding.13–16 The efficacy of deep-learning-based
approaches to mining health beliefs about the HPV vaccine from
Twitter discussions is unknown.

RESULTS
We focus on four primary HBM constructs: perceived susceptibility,
perceived severity, perceived benefits, and perceived barriers. The
inter-annotator agreements for the four HBM constructs are 0.727,

0.807, 0.831, and 0.834, respectively. Our deep-learning models
achieved satisfactory results in terms of sensitivity, specificity, and
accuracy on testing sets. The models achieved a mean accuracy of
80.50% for identifying HBM-related tweets and between 80.33%
and 89.82% for the four HBM constructs. Table 1 shows the
constructs, definition, sample tweets, and performance (estimated
sensitivity, specificity, and accuracy, with their 95% confidence
intervals) of the proposed deep-learning model.
After applying the model to classify the 956,262 un-labeled

tweets, we classified 652,252 tweets, obtained from 216,864
unique Twitter user IDs, as HBM related. Among the related
tweets, 184,604, 243,206, 373,228, and 309,501 tweets were
categorized into the four primary HBM constructs, respectively. For
each month from 2014 to 2017, we calculated the number of
HBM-related tweets; we further defined the prevalence of each
HBM construct by calculating the ratio of the number of tweets
related to that construct to the total number of HBM-related
tweets. Temporal analysis of the overall data (Fig. 1) showed that
the prevalence of tweets in the perceived susceptibility/severity
constructs increased every year, while tweets categorized into
perceived benefits/barriers decreased.
A significant shift in health beliefs was seen in 2016. We

checked the Twitter discussion as well as historical news media
from 2016 and found that the significant shift was due largely to
promotional articles on the HPV vaccine from several influential
media sources, including the New York Times (“HPV Sharply
Reduced in Teenage Girls Following Vaccine, Study Says,” 23
February 2016) and Time (“The HPV Vaccine Is Lowering Infection
Rates,” 22 February 2016) as well as others. These articles led to a
large proportion of the discussion at that time.
As can be seen in Fig. 1, two spikes in barriers were found in

February and July in 2015. We reviewed the Twitter discussion
during these two time periods and identified corresponding
events that contributed to the high prevalence of barriers: The
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spike in February was due mainly to the Toronto Star’s story on
Gardasil, titled, “A Wonder Drug’s Dark Side” (February 5, 2015),
whereas the spike in that July was due mainly to the news that the
European Medicines Agency was conducting a review of the HPV
vaccine’s side effects.

DISCUSSION
We performed a retrospective analysis of HPV vaccine health
beliefs, using Twitter data pulled from a large population. Our
findings indicate that the number of tweets that correspond to
certain HBM-related constructs have undergone a substantial
temporal shift, which may indicate the evolving of HPV vaccine
beliefs on Twitter. The decrease in the number of tweets related to
perceived susceptibility/severity may reflect an improved under-
standing of the prevalence of HPV and HPV-related cancers as well
as an increased awareness of the severity of these cancers.
Likewise, the decrease in tweets related to perceived barriers may
reflect a shift in parental assessment of the risk/benefit ratio in
accepting the HPV vaccine for their teen. Specific events that may
contribute to the changes in health beliefs were identified. Further
analysis of the impact of these events could benefit the promotion
of HPV vaccination. There are, however, certain limitations of our
study. For example, our study did not consider information about
the users and classified tweets independently. In the future, we
plan to develop novel computational algorithms to understand
health beliefs on the user level by analyzing the historical tweets
for each user.
This study demonstrates the potential for utilizing social media

to better understand HPV vaccine health beliefs. With deep-
learning approaches, our study was able to map large-scale
Twitter discussions on HPV vaccines to HBM constructs in a high
accurate manner. Such deep-learning approaches can comple-
ment traditional surveys with real-time surveillance on the Twitter
population.

METHODS
Data collection and annotation
A combination of HPV vaccine-related keywords (i.e., HPV, human
papillomavirus, Gardasil, and Cervarix) was used to collect 956,262
English-language tweets from 1 January 2014, to 31 December 2017,
using Twitter streaming API (~1% of the entire stream volume). Three
reviewers categorized a subset of 6000 tweets based on their relevance to
the HBM constructs. Each tweet was assigned to none (not related to
HBM), one, or multiple HBM constructs. The reviewers first annotated the
same 500 tweets and resolved disagreements by discussion. Then, the
reviewers categorized the remaining 5500 tweets independently. This
manually categorized data set served as the gold-standard data for
training and evaluation of the deep-learning model.

Deep-learning model
We frame the automatic categorization of tweets to the HBM constructs to
text classification tasks. We propose an attentive recurrent neural network
(RNN)-based deep-learning model for these tasks. The architecture of the
proposed model can be seen in Fig. 2. Our model consists of four
computation layers: (1) a token-embedding layer that maps each token
(i.e., word) in the text to a 200-dimension vector; pre-trained Global Vectors
for Word Representation (GloVe) Twitter (trained on 2 billion tweets)17 is
used to initialize the token-embedding layer; (2) a bidirectional RNN (Bi-
RNN) layer18 that takes the output of the token-embedding layer as the
input and outputs a high-dimensional vector (length: 50) that represents
the tweet content by capturing both forward and backward information
from the text; (3) an attention layer19 that augments the bidirectional RNN
layer by capturing salient information from the RNN output; and (4) a
Softmax layer that normalizes the attention output into a probability
distribution for classification.
We split the task into two steps: (1) categorize the tweet based on

whether it is relevant to any of the HBM constructs (one classification task)
and (2) categorize the relevant tweets into the four primary HBMTa
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constructs (four independent classification tasks). For Step 1, we divided all
gold-standard tweets (6000 in total) into training, validation, and testing
sets with a proportion of 7:1:2. For Step 2, we divided all HBM-related
tweets (3264 in total) in the gold standard into training, validation, and
testing sets with the same proportion. We performed hyper-parameter
tuning on the validation set and evaluated the models on the testing sets.
We repeated random sampling of the tweets 30 times with same
proportion and calculated the sensitivity, specificity, and accuracy for each
model at each time. We further calculated the mean and confidence
interval of these values for each model. After the evaluation, we then
applied one set of trained models to categorize the remaining un-labeled
tweets into the four primary HBM constructs.
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Fig. 1 Retrospective analysis of health beliefs about the HPV vaccination, measured in each month. The shadowed area represents the total
number of HBM-related tweets for each month, and the colored lines represent the prevalence of each HBM construct (defined by the ratio of
the specific construct-related tweets to total HBM-related tweets)

Fig. 2 The architecture of the attentive recurrent neural network
(RNN) for Twitter text classification
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