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Purpose: To identify MRI-based radiomics signature (Rad-score) as a biomarker of risk 
stratification for disease-free survival (DFS) in patients with HER2-positive invasive breast 
cancer treated with trastuzumab-based neoadjuvant chemotherapy (NAC) and establish a 
radiomics-clinicoradiologic-based nomogram that combines Rad-score, MRI findings, and 
clinicopathological variables for DFS estimation.
Patients and Methods: A total of 127 patients were divided into a training set and testing set 
according to the ratio of 7:3. Radiomic features were extracted from multiphase CE-MRI (CEm). 
Rad-score was calculated using the LASSO (least absolute shrinkage and selection operator) 
regression analysis. The cutoff point of Rad-score to divide the patients into high- and low-risk 
groups was determined by receiver operating characteristic curve analysis. A Kaplan–Meier 
survival curves and the Log rank test were used to investigate the association of the Rad-score 
with DFS. Univariate and multivariate Cox proportional hazards model were used to determine 
the association of Rad-score, MRI features, and clinicopathological variables with DFS. A 
radiomics-clinicoradiologic-based nomogram combining the Rad-score, MRI features, and 
clinicopathological findings was plotted to validate the radiomic signatures for DFS estimation.
Results: The Rad-score stratified patients into high- and low-risk groups for DFS in the 
training set (P<0.0001) and was validated in the testing set (P=0.002). The radiomics- 
clinicoradiologic-based nomogram estimated DFS (training set: C-index=0.974, 95% con-
fidence interval (CI)=0.954–0.994; testing set: C-index=0.917, 95% CI=0.842–0.991) better 
than the clinicoradiologic-based nomogram (training set: C-index=0.855, 95% CI=0.739– 
0.971; testing set: C-index=0.831, 95% CI=0.643–0.999).
Conclusion: The Rad-score is an independent biomarker for the estimation of DFS in 
invasive HER2-positive breast cancer with NAC and the radiomics-clinicoradiologic-based 
nomogram improved individualized DFS estimation.
Keywords: radiomics, breast cancer, prognosis, magnetic resonance imaging

Introduction
HER2-positive breast cancer (HER2-positive and hormone receptor negative) usually 
has higher histological grade, more recurrence, and poor prognosis.1,2 However, the 
pathological complete response (pCR) to trastuzumab-based NAC of HER2-positive 
breast cancer has achieved an outstanding effect. Although the pCR rate was able to 
assess the sensitivity of the tumor to NAC in a short period of time, it is not a 
substitute for long-term survival. To achieve personalized prognostication, an efficient 
prognostic biomarker is urgently needed for risk stratification in patients with HER2- 
positive breast cancer.
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Breast magnetic resonance imaging (MRI) was con-
firmed as the most reliable imaging tool for providing 
insights related to tumor detection, subtype classification, 
assessment of treatment response and survival analysis.3–6 

While clinical MRI images depend on naked eyes, radio-
mics can translate medical images into high-dimensional 
data which reflect not only macroscopic but also the cellular 
and molecular properties of tissues.7,8 The purpose of radio-
mics analysis is to generate image-driven biomarkers which 
can provide a deeper understanding of the microenviron-
ment and spatial heterogeneity in tumors noninvasively.9,10

Some studies involving survival analysis of tumors had 
reported that radiomic features can be used as a biomarker for 
risk stratification.11–14 However, studies evaluating Rad- 
score for DFS prediction in HRE2 positive breast cancer 
treated with NAC are scarce. In addition, previous studies 
demonstrated the feasibility and potential benefits of radio-
mics in survival analysis only using the first phase of CE- 
MRI, which only reflects the spatial heterogeneity of the 
tumor. Nevertheless, radiomic features derived from multi-
phases of contrast enhanced MRI images can imply more 
information changing over time points.15

In the present study, we utilized all phases of CE-MRI 
images calculating new sequential texture features chan-
ging over time points. The aim of our study was to identify 
MRI-based Rad-score as a biomarker of risk stratification 
for DFS and compare the radiomics-clinicoradiologic- 
based model and the clinicoradiologic-based model for 
their abilities in predicting DFS in patients with locally 
advanced HER2-positive breast cancer treated with NAC.

Patients and Methods
Patient Population
This retrospective study was approved by the medical 
ethics committee of Fudan university cancer center, 
which waived informed consent. In total, 127 female 
patients who underwent conserving breast surgery or radi-
cal mastectomy between January 2012 and December 
2018 were consecutively enrolled in the study.

Inclusion criteria were as follows: 1) patients had primary 
invasive HER2-positive breast cancers (≥T2, and/or positive 
nodal status) confirmed by biopsy; 2) patients received com-
plete standard treatment (4~6 cycles of PCH) with no prior 
treatment before NAC; 3) pretreatment MRI data obtained 
using the same scanner (1.5-T, Aurora Dedicated Breast 
MRI System; USA); 4) the course of NAC need to be mon-
itored with MRI; 5) underwent modified radical mastectomy 

or breast conservation within 1 month after completion of 
NAC; 6) available clinicopathologic data (age, menopausal 
status, tumor size, Ki-67 index, MRI-reported T stage, N stage, 
surgery type, FGT(fibroglandular tissue), BPE(background 
parenchymal enhancement), numbers of lesion, enhancement 
pattern). Exclusion criteria were as follows: 1) Metastasis 
elsewhere in the body; 2) not complete standard treatment; 
3) cancelled surgery or did not undergo surgery at our hospital; 
4) poor MR image quality resulting from poor contrast injec-
tion or motion artifacts; (5) Occult breast cancer. Finally, 127 
patients were enrolled in the study (Figure 1). We have com-
plied with the World Medical Association Declaration of 
Helsinki regarding the ethical conduct of research involving 
human subjects. Written informed consents were waived due 
to the study design. The medical ethics committee of Fudan 
university cancer hospital approved this retrospective study 
and confirmed that the data was anonymized and maintained 
with confidentiality.

Treatment regimen: All patients received 4~6 cycles of 
PCH regimen (paclitaxel+carboplatin+trastuzumab; pacli-
taxel: 80 mg/m2, carboplatin: AUC=2, herceptin was initi-
ally measured at 4 mg/kg and maintained at 2 mg/kg; Once 
a week, 3-times is a cycle of treatment) and then under-
went radical mastectomy or breast conservation.

Magnetic Resonance Imaging and Imaging 
Analysis
For all patients, axial breast CE-MR were performed before 
NAT on a 1.5-T MR scan (Aurora Dedicated Breast MRI 
System; USA) using a breast unique transmit/receive coil in 
the prone position. The CE-MRI protocol included: a) T1- 
weighted fat-saturated precontrast sequence, b) multiple (3 
phases) T1-weighted fat-saturated postcontrast sequences 
that were acquired after intravenous administration of a 0.1 
mmol/kg dose of Gd-DTPA (Magnevist; Bayer-Schering 
Pharma, Berlin, Germany). Scan parameters were TR/ 
TE=29.0/4.8 ms; FOV=36 cm×36 cm; matrix=360×360; 
108 slices; slice thickness=1.5 mm. The number of single- 
phase scanning layers was 108.

MRI and Clinicopathological Evaluations
According to the American College of Radiology Breast 
Imaging Reporting and Data System (BI-RADS) MR lex-
icon, the MR images of all cases were retrospectively 
evaluated by two radiologists (QL and QX, with 8 and 
15 years of experience in breast MRI, respectively) in 
consensus.
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The histopathological results of core needle biopsies and 
surgical specimens were reviewed by immunochemistry 
(IHC), including quantitative assays for estrogen receptor 
(ER), progesterone receptor (PR), human epidermal growth 
factor receptor 2 (HER2), and Ki-67 expression status. 
HER2-positive were defined as ER negative, PR negative, 
and HER2 positive.16 The ER and PR status were assessed as 
positive only when at least 1% of tumor cells showed nuclear 
staining, respectively10. Tumors with HER2 scores of 3+ 
based on IHC studies were considered positive. In the cases 
of 2+ scores, HER2 gene amplification was determined by 
fluorescent in situ hybridization (FISH).

Pathological response was determined by pathologist. pCR 
was defined as surgical specimens having no invasive tumor 
cells in the breast and axillary lymph nodes (ypT0/is+ypN0).

The survival endpoint of this study was disease-free 
survival (DFS). DFS was the time from surgery to events, 
including tumor recurrence in ipsilateral breast, the diagnosis 
of a second primary cancer, or death from any reason. In the 
analysis, patients having no recurrence at the last follow-up 
or lost to follow-up were recorded as censored.

Tumor Masking and Inter-Observer 
Reproducibility Evaluation
When drawing the outline of the tumor, we obey the 
following principles. First, regardless of whether the lesion 
presented mass or non-mass enhancement, tumor regions 

of interest (ROI) were drawn manually on each slice along 
the contour of the tumor on the first postcontrast CE-MRI 
scan (the peak enhanced phase of the multiphase CE-MRI 
where the border of the lesion was the most obvious) to 
get the 3D segmentation of the whole tumor. Second, if the 
tumor is a unilateral multifocal lesion, the largest one will 
be selected as the object. And then the 3D ROI contour 
based on the first postcontrast phase were propagated to 
the pre-contrast and the other two postcontrast phases of 
CE images. The contour line of the whole tumor was 
performed on the 3D-Slicer software (version 4.10.2, 
https://www.slicer.org).

Inter-observer reproducibility of ROI detection and radio-
mic feature extraction were measured using 30 randomly 
chosen samples. Two experienced radiologists (QL and QX) 
performed the ROI delineation independently, and then radio-
mic features extracted from the above two ROIs were com-
pared to get the inter-class correlation coefficient. An ICC 
score greater than 0.8 was interpreted to reach satisfactory 
agreement. ICC for radiomic features was defined as high 
(ICC≥0.8), medium (0.8>ICC≥0.5), or low (ICC<0.5).

Feature Extraction and Selection
Radiomic features were calculated with PyRadiomics pack-
age in the Python software (v. 3.7, Python Software 
Foundation, https://www.python.org/). In total, three groups 
of imaging features (Supplementary material 1） for each 

Figure 1 Flow chart of patient recruitment.
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patient were extracted from normalized pretreatment CE- 
MRI scans: Group 1 (CEshape) consisted of 14 shape-based 
features derived from the first postcontrast CE-MRI images; 
Group 2 (CEtexture) comprised 93 texture features based on 
each phase CE-MRI independently, yielding 372 features; 
Group 3 (CEsequential) was comprised of 930 sequential fea-
tures, which were calculated from 93 texture features to 
characterize the textural changes over time points. In group 
3, 10 new sequential features from each texture feature were 
calculated (Algorithms for the 10 new sequential features are 
shown in Supplementary material 2). Six (mean, variance, 
kurtosis, skewness, energy, and entropy) out of the above 10 
sequential features were extracted from each individual sub-
ject, and the other four (including Kendall-tau-b, conserva-
tion, stability, and dispersion) of the 10 ones were calculated 
from the interactive information between one subject and the 
remainder of the subjects. All these features have been 
applied in previous radiomic studies.15

Correlation analysis and LASSO Cox regression analysis 
were performed to select the features. In correlation analysis, 
cutoff 0.75 was adopted to exclude the redundancy features 

with high correlation with each others. LASSO Cox regres-
sion was conducted to choose the optimized predictive fea-
ture subcohort. The LASSO is shown in Figure 2.

Radiomics Signature Building and 
Validation of Rad-Score
We split the patients into two cohorts according to a 7:3 
ratio using stratified random sampling method, one was 
the training set (n=89), the other was the testing set 
(n=38). The training set were used to construct the pre-
dictive model, and the testing set to validate the model. 
Patients’ characteristics were compared between the train-
ing set and the testing set. Continuous variables were 
compared using an analysis of variance (ANOVA), and 
categorical variables using chi-squared test or Fisher’s 
exact test. In the training set, the most useful predictive 
radiomics features were selected by using the LASSO. 
Next, the Rad-score was calculated for each patient by 
summing the remaining features multiplying their corre-
sponding coefficients.

Figure 2 The least absolute shrinkage and selection operator (LASSO) method was used for feature selection.
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The potential association of the Rad-score with DFS 
was assessed in the training set and validated in the testing 
set. The optimal thresholds of the Rad-score were identi-
fied using receiver-operating characteristic (ROC) curve 
analysis. Patients were classified into high-risk or low- 
risk groups according to the threshold of Rad-score. 
Youden’s J Index with the maximum value (sensitivities 
+specificities) was used to calculate the optimal thresh-
olds. Survival between the high- and low-risk groups were 
analyzed using the Kaplan–Meier curves and differences 
in the survival between the two sets were compared with 
Log rank tests.

Development and Validation of the 
Radiomics Nomogram
In the training set, the effects of clinicopathological vari-
ables (age, menopausal status, T stage, N stage, and Ki-67 
status), morphologic factors obtained via MRI (enhance-
ment pattern, multifocal or multicenter, mass shape, mass 
margin, internal enhancement pattern, type of surgery and 
PCR), and Rad-score on DFS were analyzed using the 
univariate and multivariates Cox proportional hazards 
model. Significant variables in the univariate Cox propor-
tional hazard model (P<0.1) were included in the multi-
variates analysis. To overcome the multicollinearity, 
stepwise selection based on the Akaike information criter-
ion (AIC) were performed.

The clinicoradiologic-based model incorporated inde-
pendent MRI features and clinicopathological variables 
based on univariate and multivariate Cox analysis with 
stepwise selection.

To demonstrate the value of the radiomics features, we 
combined the Radscore, MRI features, and clinicopathologi-
cal variables into Cox regression analysis to choose the final 
feature subset. After that, the radiomics-clinicoradiologic- 
based nomogram was built. At last, the clinicoradiologic- 
based and the radiomics-clinicoradiologic-based nomogram 
were assessed in the training set, and then validated in the 
testing set. The predictive ability and discrimination of the 
model was evaluated using a C-index (index of probability of 
concordance). The value of the C-index ranges from 0.5–1.0, 
with 1.0 indicating a perfectly accurate discrimination 
between the predicted probability and actual outcome, and 
0.5 indicating no discriminative ability. The nomograms 
were subjected to bootstrapping validation (1000 bootstrap 
resamples) to obtain a relatively corrected C-index. When 
dividing patients, the same procedures were performed 

additional three times to improve statistical robustness. The 
mean C-index of the clinicoradiologic-based and the radio-
mics-clinicoradiologic-based nomogram in the additional 
divisions were calculated.

Statistical Analysis
All descriptive statistics were summarized with mean 
±standard deviation (SD). Categorical variables between 
the training set and testing set were compared with the Χ2 

test or Fisher’s test, and quantitative variables with the t 
test or Mann–Whitney U-test. All statistical analysis and 
statistical drawing were performed by R (version 3.6.1 
www.r-project.org). p less than 0.05 was considered sta-
tistically significant. The “glmnet” package was used to 
perform Cox regression model analysis. The “rms” and 
“hdnom” packages were used to analyze Kaplan–Meier 
curve, nomogram construction, and calibration plot. 
Some R functions were modified to apply to the data.

Results
Clinical Characteristics
A total of 127 lesions from 127 patients (age range=26–85 
years; mean age=51.2 years) were ultimately analyzed. 
After a mean follow-up period of 39.31 months 
(range=3–78 months), there were 18 recurrences (three 
locoregional recurrence, five lung and lymph node metas-
tases, four bone and lymph node metastases, three brain 
metastases, and three liver metastases). The mean time to 
recurrence was 16.78 months (range=3–35 months). There 
was no significant difference in clinical features and MRI 
morphology between the training set and testing set 
(shown in Table 1).

Selected Features and Rad-Score Building
ICC for radiomic features was from 0.9522–0.9762 
between the two radiologists QL and QX. Two radiologists 
generally agreed on the delineations.

The final features and their coefficients are shown in 
Figure 3. Rad-score was calculated by summing the remained 
features and multiplying their corresponding coefficients. The 
median Rad-score was 0.0000 (range=−1.5546~1.9443). The 
optimum threshold generated by the ROC curve was −0.2523 
(95% CI=0.474~0.864), and the AUC was 0.880 (95% 
CI=0.794~0.965). According to the optimum threshold, 
patients were classified into high-risk groups (Rad-score≥- 
0.2523) and low-risk groups (Rad-score<-0.2523). Rad-score 
was shown to be associated with the DFS in the training set 
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(P<0.001) by Kaplan–Meier curves and this finding was con-
firmed in the testing set (P=0.002) (Figure 4). Univariate 
analysis suggested that Rad-score had a strong predictive 
value for DFS (DFS: hazard ratio [HR]=43.97, 95% 
CI=12.16~159.00, P<0.0001) and was validated in the testing 
set (DFS: hazard ratio [HR]=16.97, 95% CI=3.14~91.54, 
P=0.002) successfully, and then it was confirmed by multi-
variates analysis in the training set (DFS: HR=10.276, 95% 
CI=2.511~42.048, P=0.001) and in the testing set (DFS: 
HR=10.953, 95% CI=1.168~51.64, P=0.036).

Clinicopathologic and MRI features were taken into 
univariate and multivariate analysis, respectively. The uni-
variate analysis revealed that Rad-score, N stage, tumor 
margin, tumor size, and the enhancement type of tumor 
were significant biomarkers (Table 2). In the multivariate 
Cox proportional hazards model, Rad-score, N stage, and 
the enhancement type of tumor remained independent 
prognostic factors (Table 3).

Performance and Validation of the 
Radiomics Nomogram
The C-index of the two kinds of model for the prediction 
of poorer recurrence outcome in training set is shown in 
Table 4. A radiomics-clinicoradiologic-based nomogram 
that incorporated the significant factors and Radscore 
was established (Figure 5). The calibration curve of the 
radiomics-clinicoradiologic-based nomogram for estimat-
ing DFS outcome showed accurate discrimination between 
prediction and observation both in the training set and 
testing set (Figure 6).

Discussion
In this study, we demonstrated the prognostic value of 
radiomic features derived from multiphases CE-MRI 
on patients with HER2-positive breast cancer treated 
with NAC. Compared with the clinicoradiologic-based 
nomogram, the radiomics-clinicoradiologic-based 
nomogram had superior prognostic performance in 
DFS estimation. A visualized nomogram identified the 
significant contribution of Radscore to the prediction 
of DFS.

Previous studies11,12,17,18 have confirmed the value of 
radiomic signatures for DFS prediction in patients with 
tumors of various organs. In our study, the LASSO Cox 
model identified 12 potential features obtained from 
CEsequential, which were calculated by textural changes 

Table 1 Clinical Characteristics Between Training Set and 
Testing Set

Characteristics Training Set 
(n=89)

Testing Set 
(n=38)

P- 
value

Age, mean (SD), 
years

51.57±10.88 51.47±9.40 0.959

Tumor size 4.01±1.80 3.95±1.70 0.856

Rad-score −0.02±0.65 0.06±0.65 0.499

Menopausal status 0.473

Premenopausal 27 (27.78%) 14 (35.61%)

Postmenopausal 62 (72.22%) 24 (64.39%)

Enhancement 
pattern

0.411

Mass 65 (73.03%) 25 (65.79%)

Non-mass 24 (26.97%) 13 (34.21%)

Multifocal or 
multicenter

0.940

Present 24 (26.97%) 10 (26.32%)

Absent 65 (73.03%) 28 (73.68%)

Mass shape 0.841

Round/oval 8 (8.99%) 3 (7.89%)

Irregular 81 (91.01%) 35 (92.11%)

Tum margin 0.598

Circumscribed 42 (47.19%) 16 (72.73%)

Not 
circumscribed

47 (52.81%) 22 (27.27%)

Internal 
enhancement

0.227

Homogeneous 11 (12.36%) 2 (5.26%)

Heterogeneous 78 (87.64%) 36 (94.74%)

Pre-NAC T stage 0.740

T2 63 (70.79%) 28 (73.68%)

T3 26 (29.21%) 10 (26.32%)

Pre-NAC N stage 0.400

N0 30 (33.71%) 9 (23.68%)

N1 44 (49.44%) 23 (60.52%)

N2 5 (5.62%) 2 (5.26%)

N3 10 (11.23%) 4 (10.54%)

Ki67 0.220

High 72 (80.89%) 27 (71.05%)

Low 17 (19.11%) 11 (28.95%)

Type of surgery 0.234

Conservation 17 (19.10%) 4 (10.53%)

Radical surgery 72 (80.90%) 34 (89.47%)

PCR 0.22

Yes 32 (35.95%) 22 (57.89%)

No 57 (64.05%) 16 (42.11%)

Abbreviations: NAC, neoadjuvant chemotherapy; PCR, pathological complete 
response; SD, standard deviation.
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based on the four phases of DCE images over time points. 
The 12 selected radiomic features comprised of four fea-
tures calculated from Entropy, three from Dispersion, two 
from Kurtosis, two from Conservation, and one from 

Energy. Among them, the importance of Kurtosis and 
Entropy in reflecting textural heterogeneity within the 
tumor had been emphasized in other studies.5,19–21 In 
addition, seven of 12 potential features were calculated 
from GLCM (cluster tendency of gray level co-occurrence 
matrix) which may take into more account the interaction 
between neighboring pixels and time points than a single 
pixel value. GLCM had also been confirmed in assessing 
the tumor heterogeneity.22 Our result revealed that Rad- 
score had a high value in predicting DFS which was 
confirmed by Kaplan–Meier survival curves and the Log 
rank test in the training set (P<0.0001) and in the testing 
set (P=0.002) respectively. One possible interpretation of 
our result is that sequential texture features derived from 
multiphaseS CE-MRI may capture information of both 
spatial heterogeneity and tumor perfusion. Furthermore, 
the sequential texture features changing over time points 
had been identified to be useful in the subtype classifica-
tion of breast cancer.15

Our study found that the radiomics-clinicoradiologic- 
based combined nomogram achieved higher prognostic per-
formance than the clinicoradiologic-based nomogram with a 
higher C-index and better calibration. Therefore, the radio-
mics-clinicoradiologic-based nomogram could serve as an 
effective noninvasive biomarker for predicting DFS in 
patients with HER2-positive breast cancer treated with 
NAC. Of the clinicopathologic risk factors, Nstage and the 
enhancement type of tumor contributed to predicting DFS. 

Figure 3 The potential features and their coefficients after LASSO.

Figure 4 Kaplan–Meier survival curves according to the Rad-score for patients in 
the training set (A) and testing set (B).
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In clinical practice, the Nstage that is prognostically signifi-
cant for overall survival and DFS23 is indicated by the 
regional lymph node burden, size, and location. There is 
no evidence that non-mass enhancement (NME) breast can-
cer has a worse prognosis than mass enhancement (ME) 
type. However, previous literature24 confirmed that HER2- 
positive breast cancer is more likely to be accompanied by 
malignant NME lesions. In our study, the rates of non-mass 
enhancement lesions achieved 28.35% (38/127), and the 
result indicated that the mortality rate of patients with 

NME is 3.83-times higher than that of patients with ME 
type in the training set (P=0.09). Another study25 suggested 
that HER2 positivity was significantly more common in 
NME type than that in the ME type. Our study identified 
that the type of enhancement may be beneficial for risk 
stratification in HER2-positive breast cancer treated with 
NAC. Although the mechanism is unclear, N stage and 
enhancement type on pretreatment MRI might provide 
meaningful information for predicting prognosis of HER2- 
positive invasive breast cancer in our model.

Besides, radiomics-clinicoradiologic-based model 
appears to be very robust. Most studies used mass lesions 
only, which might not reflect the true characteristics of 
HER2-positive invasive breast cancer. Several reports26,27 

suggested that non-mass enhancement and multifocal or 
multicentric tumors were more frequently seen in HER2- 
positive subtype. In our study, the rates of non-mass 
enhancement and multifocal lesions were 28.35% (38/ 
127) and 25.20% (32/127), respectively. So it is scientific 

Table 2 Univariate Analysis of Disease-Free Survival in the 
Training Set

Characteristics Log Rank Test

X2 P-value

Age >47 37.821 0.386
≤47

Tumor size >2.7 5.706 0.017
≤2.7

Enhancement type Mass 2.848 0.091
Non-mass

Multifocal or multicenter Present 1.030 0.310
Absent

Mass shape Round/oval 0.998 0.318
Irregular

Tumor margin Circumscribed 2.768 0.096
Not circumscribed

Internal enhancement Homogeneous 1.742 0.187
Heterogeneous

Site of tumor Right 1.118 0.29
Left

Pre-NAC Tstage 2 1.024 0.312
3

Pre-NAC Nstage 0 57.583 <0.001
1

2
3

Menopausal status Premenopausal 0.028 0.868
Postmenopausal

Ki67 High 1.928 0.165
Low

PCR Yes 0.700 0.403
No

Abbreviations: NAC, neoadjuvant chemotherapy; PCR, pathological complete 
response.

Table 3 Multivariate Analysis of Disease-Free Survival in the 
Training Set

Characteristics HR 95.0% CI P-value

Radscore 10.276 2.511~42.048 0.001

Nstage 0 Ref
1 0.65 0.058~7.256 0.727

2 25.327 2.449~261.877 0.007
3 16.304 2.229~119.269 0.006

Enhancement type 0.126 0.021~0.739 0.022

Tumor margin 0.514 0.098~2.691 0.431

Size 0.000 0.000~3.090E+209 0.961

Abbreviations: HR, hazard ratio; CI, confidence interval.

Table 4 Performance of the Two Nomogram for Prediction of 
Outcomes

Nomogram Training Testing

C- 
Index

95% CI C- 
Index

95% CI

Radiomics- 

clinicoradiologic 

based

0.974 0.954~0.994 0.917 0.842~0.991

Clinicoradiologic 

based

0.855 0.739~971 0.831 0.643~0.999

Note: C-index, index of probability of concordance.
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Figure 5 The radiomics-clinicoradiologic-based nomogram was developed in the training set. The Rad-score was determined by drawing a vertical line to the points’ axis to 
determine how many points towards the probability of DFS for the patient. The process was repeated for Nstage and enhancement type. The points of the three risk factors 
were summed, and then the final points located on the Total Point axis.
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Figure 6 Calibration curves of radiomics-clinicoradiologic-based nomogram in the training set (Training) and testing set (Testing). The dashed line indicates a perfect match 
between the actual probability (y-axis) and the nomogram-predicted probability (x-axis).
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to include non-mass enhancement and multifocal cases in 
the study. While, in some studies,6,28 non-mass enhance-
ment and unilateral multifocal cases were excluded, our 
model performed well without regard to tumor morphol-
ogy and number.

Our study had several limitations to be acknowledged. 
First, previous studies29,30 have shown that radiological 
characteristics may be affected by differences in MRI 
magnetic intensity. In our research, all patients underwent 
MRI examination with the same scanner and treated with 
consistent regimens. Second, all patients of this retrospec-
tive study were recruited from a single center. Third, 
although inter-reader reliability was almost perfect and 
the readers made decisions in consensus finally, selection 
bias in the classification of enhancement type was inevi-
table. Last, the study lacked an independent validation 
cohort. In the future work, adequate patient follow-up 
will be entailed to externally validate our results.

Conclusion
In conclusion, our studies showed that MRI-based Rad- 
score can be used as the potential biomarker for risk 
stratification for DFS in patients with HER2-positive inva-
sive breast cancer treated by NAC. The radiomics-clini-
coradiologic-based nomogram may potentially be useful 
for personalized treatment strategies.
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