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The ratio of initiaUresidual DNA damage predicts
intrinsic radiosensitivity in seven cervix carcinoma
cell lines
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Summary The single-cell gel electrophoresis (comet) assay was used to measure radiation-produced DNA double-strand breaks (dsbs) in a
series of seven cervical tumour cell lines (ME180, HT3, C33A, C41, SiHa, MS751 and CaSki). The proportion of DNA dsbs was measured
immediately after radiation treatment (initial damage) and 16 h later after incubation at 370C (residual damage). Linear dose-response curves
were seen for initial (slopes 0.23-0.66) and residual (slopes 0.16-0.87) DNA dsbs. Neither of the slopes of the linear regression analysis on
the initial and on the residual DNA dsbs dose-response curves (range 0-80 Gy) correlated with SF2 (surviving fraction at 2 Gy) measured
after high- (HDR) or low-dose-rate (LDR) irradiation. An association was evident between SF2 after HDR and LDR irradiation and the ratio of
the absolute level of initial and residual damage after a single dose of 60 Gy. However, a significant correlation was found between HDR (r=
-0.78, P = 0.04) and LDR (r = -0.86, P = 0.03) SF2 values and the ratio of the slopes of the initial and residual DNA dsbs dose-response
curves (range 0.47-0.99), representing the fraction of DNA damage remaining. These results indicate that the neutral comet assay can be
used to predict radiosensitivity of cervical tumour cell lines by assessing the ratio of initial and residual DNA dsbs.
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The variation in cellular radiosensitivity of human fibroblasts
measured in vitro can be explained largely by the extent of DNA
double-strand break (dsb) repair (Wurm et al, 1994; Kiltie et al,
1997). However, for tumour cells, no firm consensus exists for a
correlation between in vitro radiosensitivity and the magnitude of
radiation-induced DNA dsb damage or repair. A number of reports
indicate that tumour cell radiosensitivity is positively correlated
with the levels of initial radiation-induced DNA dsbs (Kelland
et al, 1988; Peacock et al, 1989; McMillan et al, 1990; Ruiz de
Almodovar et al, 1994), while others have shown no correlation
(Smeets et al, 1993; Olive et al, 1994; McKay and Kefford, 1995).
Positive correlations between tumour cell radiosensitivity and the
extent of residual DNA dsbs (Giaccia et al, 1992; Zaffaroni et al,
1994), the rate of DNA dsb repair (Schwartz et al, 1988) and the
misrepair of radiation-induced DNA damage (Powell et al, 1992;
Powell and McMillan, 1994) have also been reported.
The aim of this study was to measure the level of initial and

residual radiation-induced DNA dsbs in seven cervical carcinoma
cell lines of differing radiosensitivity, as assessed by clonogenic
survival after high- (HDR) and low-dose-rate (LDR) irradiation to
evaluate the potential of the neutral comet assay as a predictor of
radiosensitivity. This method of measuring DNA dsbs was used
as it is rapid (Olive et al, 1991; Fairbaim et al, 1995), is less
technically demanding than other assays (e.g. neutral filter elution
and pulse field gel electrophoresis) and does not require the use
of pretreatment radiolabelling to quantify DNA dsb damage,
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attributes that make the assay an attractive surrogate measure for
radiosensitivity for routine measurements of DNA dsb repair
capacity on clinical material.

MATERIALS AND METHODS

Cell culture

The seven cervical carcinoma cell lines used in these studies
(CaSki, SiHa, ME180, HT3, C41, C33 and MS751) were obtained
originally from the American Type Culture Collection (ATCC).
All cells were grown in minimum essential medium (MEM),
supplemented with L-glutamine (2 mM), penicillin (100 IU ml-'),
streptomycin (0.1 mg ml-') and 10% fetal calf serum (Biological
Industries, kibbutz beth haemek, Israel; batch 501104 and
785225). All media and supplements were obtained from Gibco,
Paisley, UK. Cells were grown in sealed T25 tissue culture flasks
containing 5 ml of medium and gassed with a mixture of 95%
air-5% carbon dioxide when reseeded. Subculturing occurred
weekly (seeded at 5 x 105 cells ml-1) with twice-weekly feeding
with complete fresh culture medium.

Survival after ionizing radiation

Cell survival was assessed using a conventional clonogenic
survival assay after high- (3.1 Gy min-') or low- (0.112 Gy min-')
dose-rate irradiation using a 6OCo-y source (Wilks et al, 1996).
Briefly, cells were irradiated either as single-cell suspensions at
room temperature (high dose rate) or cell monolayers in tissue
culture flasks at 37°C (low dose rate). In all cases, control (unirra-
diated) cells were sham irradiated and treated identically to
the irradiated cells. After radiation treatment, the cells were
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trypsinized (low dose rate only), and cell suspensions were diluted
in complete tissue culture medium to an appropriate density and
plated to ensure 100 surviving colonies per 50-mm Petri dish, irre-
spective of the radiation dose given. Separate plates were set up at
two or three cell densities for unirradiated cells to obtain a precise
estimate of plating efficiency. The dishes were incubated at 37°C
in an atmosphere of 95% air-5% carbon dioxide for 3 weeks.
Plates were then stained with Gentian violet, and colonies assessed
as containing more than 50 cells were scored as survivors.

Survival curve analysis
Surviving fractions were calculated as described previously
(Marples and Joiner, 1993). Briefly, for each individual experi-
ment, the plating efficiencies (PE) of the replicate control (unirra-
diated) plates were determined and a mean value calculated, this
was then used to determine the surviving fraction of irradiated
cells in that experiment. The plating efficiencies of the seven
tumour cell lines ranged from a mean value of 15% for C41 cells
to 67% for SiHa cells. For each individual experiment, surviving
fraction was calculated using a minimum of three replicate Petri
dishes per dose point. The values calculated from the independent
experiments (n = 3-12) were averaged to give an overall mean

value of survival for the complete data for each cell line. These
data were plotted and fitted using a linear quadratic model
[surviving fraction = exp(ad + Pd2)]; a mathematically derived
estimate of the surviving fraction at 2 Gy (SF2) was then calcu-
lated from the fitted survival curves.

Treatment of samples for comet analysis
Two treatment regimens were used to measure initial and residual
DNA dsbs. For assessment of initial damage, a confluent mono-

layer of cells was trypsinized and resuspended in bijou tubes at
8 x 104 cells ml-' in 2 ml of-ice-cold complete medium and placed
on ice. For each experiment, a cell cycle profile of the cell popula-
tion was measured using flow cytometry (see below) (Ormerod,
1990). The ice-cold cell suspension (8 x 104 cells ml-') was irradi-
ated at room temperature and returned immediately to ice to mini-
mize enzymatic DNA dsb repair. A 1-ml aliquot of the ice-cold
treated cell suspension was mixed with 2.5 ml of pre-warmed
(45°C) 1% agarose (low-gelling-point type VII, Sigma Chemical),
then 1 ml of the cell-agarose mixture was rapidly applied to a
standard microscope slide, precoated 24 h previously with 400 ,ul
of 1% agarose. The slides were placed immediately onto an ice-
cold metal surface to hasten the solidification of the agarose and
reduce the time for DNA repair to occur. Once the agarose had set,
the slides were carefully submerged in 500 ml of a freshly
prepared 50°C lysis solution of 0.5% sodium dodecyl sulphate
(SDS) and 30 mm EDTA, pH 8, for 4 h. Subsequently, the slides
were rinsed in a solution of TBE buffer (45 mnim Tris base, 45 mM
boric acid, 2 mm EDTA, pH 8.2) overnight followed by four
15-min washes in fresh TBE buffer. The slides were then trans-
ferred to an electrophoresis tank containing 1150 ml ofTBE buffer
at room temperature. The electrophoresis and washing tanks are
made of black perspex, ensuring all light was excluded. Electro-
phoresis was carried out at room temperature for 25 minat 20 V (-
0.6 V cm-'). Subsequently, the slides were rinsed by submerging in
double-distilled water and stained with 2.5 ,ug ml-' of PI in 0.1 M
sodium chloride for 60 minfollowed by a 30-min rinse in double-
distilled water to remove unbound propidium iodide. Slides were

dried at room temperature for storage and rehydrated by placing in
double-distilled water for 45 min to score. In order to measure

residual damage, monolayers of cells in T25 flasks containing
S ml of culture medium were irradiated at room temperature and
immediately returned to a 37°C incubator. After 16 h, the cells
were trypsinized, suspended at 8 x 104 cells ml' and processed for
comet analysis as described above. Experiments measuring the
kinetics of DNA dsb rejoining using the most radiosensitive
(ME180) and radioresistant cell line (MS75 1) indicated that small
differences were evident in the rate of break rejoining at times
< 4 h, however no differences were detected after a 12-h repair
period. Consequently, to ensure sufficient time for all the 'rejoin-
able' breaks to rejoin, a 16-h repair period was used in experi-
ments measuring the absolute proportion of residual DNA dsbs. In
addition, 16 h is experimentally appropriate for the development
of a routine predictive radiosensitivity test using the neutral comet
assay, as it represents an overnight time interval.

Analysis of initial and residual damage
A minimum of three independent experiments were carried out per
cell line. Comets were analysed using a Leitz Diaplan fluorescent
microscope at 200x magnification using a Kinetic Imaging Komet
system (Liverpool, UK) (Ashby et al, 1995). Tail moment was

used as an index of DNA damage, which combines a measure of
the length of the comet tail and the proportion of DNA to migrate
into the tail (Olive and Banaith, 1993). Before comet scoring, the
control sample slide (unirradiated) was examined manually and
the brightest comet used to calibrate the CCD camera by ensuring
the fluorescence of the comet head did not exceed 255 grey scales.
This procedure ensured that subsequent measurements of other
comet images did not saturate the CCD camera preventing incor-
rect head to tail ratios being scored. Comets were measured by
randomly selecting images from the microscope field of view and
a defined sequence of searching guaranteed that the same image
was not scored twice. The mean tail moment value was calculated
from 100 comets on two replicate slides per dose point in each of
the three individual experiments using the Kinetic Imaging
analysis software. To obtain an overall mean tail moment value
from the repeat experiments, the mean values from the individual
experiments were averaged and standard error on the mean calcu-
lated and plotted.

Flow cytometry

Immediately before each experiment an aliquot of the cell popula-
tion was washed twice in phosphate-buffered saline (PBS) and
resuspended in 0.5 ml of PBS and fixed with 4.5 ml of ice-cold
70% ethanol (in PBS) for a minimum of 24 h at 4°C.
Subsequently, the cells were washed twice in PBS, pelleted and
resuspended in 800 gl of PBS, 100 ,l of RNAase (1 mg ml')
and 100 ,l of propidium iodide (1 mg ml-') for 30 min at 37°C
(Ormerod, 1990). Analysis of cell cycle phase distributions were
carried out on a Becton Dickinson FACScan flow cytometer at
488 nm using a long-pass filter.

RESULTS

The radiation survival curve parameters after high- (HDR) and
low-dose-rate (LDR) irradiation for the seven cell lines used are
given in Table 1, and the data are illustrated in Figure 1. The data
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Table 1 Parameters from the linear quadratic model fitted to the survival data in Figure 1 and the mathematically derived SF2 values

High-dose-rate survival parameters Low-dose-rate survival parameters

Cell line SF2 ± (95% CL) a ± (95% CL) f ± (95% CL) SF2 ± (95% CL) a ± (95% CL) ± (95% CL)

MS751 0.78 ± 0.09 0.07 ± 0.03 0.03 ± 0.01 0.87 ± 0.18 0.06 ± 0.05 0.01 ± 0.01
ME180 0.31 ± 0.06 0.56 ± 0.05 0.01 ± 0.02 0.38 ± 0.07 0.42 ± 0.01 0.03 ± 0.01
C33A 0.55 ± 0.16 0.25 ± 0.05 0.03 ± 0.01 ND ND ND
C41 0.61 ±0.02 0.15±0.03 0.05±0.01 0.74±0.03 0.12±0.08 0.04±0.02
HT3 0.38 ± 0.10 0.41 ± 0.04 0.03 ± 0.01 0.72 ± 0.23 0.12 ± 0.03 0.03 ± 0.01
SiHa 0.75±0.05 0.13±0.12 0.02±0.05 0.60±0.14 0.25±0.11 0.01 ±0.02
CaSki 0.87 ± 0.06 0.09 ± 0.06 0.08 ± 0.02 0.73 ± 0.08 0.08 ± 0.02 0.04 ± 0.01
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Figure 1 Radiation survival curves for the cervical tumour cell lines after HDR (right panel) and LDR (left panel) irradiation. The lines are a linear quadratic fit
to the data

points for HDR irradiation represent the mean survival (± standard
deviation) calculated from a minimum of three independent exper-
iments (n = 3-12) with three to six replicate dose measurements;
survival after LDR irradiation was calculated from two or three
independent experiments. A range of cellular radiosensitivity was
seen, with the SF2 values differing by a factor of 2.8 (range
0.31-0.87) after HDR irradiation and by a factor of 2.3 (range
0.38-0.87) after LDR radiation treatment.

Figure 2 shows the initial and residual DNA dsb dose-response
curves obtained from the three individual experiments for two of
the tumour cell lines used. Linear dose-response curves were
evident in each experiment for initial and residual damage. A
linear relationship between dose and initial and residual DNA dsbs
was also seen in the majority of the individual experiments for the

other five cell lines, albeit with greater variability (correlation
coefficients >0.74) (data not shown). In all experiments, the
influence of cell age on assay variability was minimized by using
confluent cultures to reduce the proportion of cells in S-phase, as
the presence of replication forks in DNA can restrict migration
under electrophoresis (Olive et al, 1992; 1993). In each experi-
ment, flow cytometry analysis indicated that the proportion of
cells in the S-phase of the cell cycle was always below 18% (range
7-17%, mean 12%), irrespective of the cell line used.
The combined initial and residual DNA dsb dose-response

curves compiled from the data of the individual experiments for all
seven cell lines are shown in Figure 3. For each cell line, the data
points represent the mean (± s.e.m.) tail moment (TM) value calcu-
lated from the average TM values from the individual experiments
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Figure 2 Dose-response curves for initial (--- -) and residual (-) DNA dsbs measured using the neutral comet assay in the three individual experiments for
the HT3 (upper panels) and SiHa (lower panels) cervical tumour cell lines. Each point represents the mean (± s.d.) tail moment value calculated from two
replicate slides per dose point per individual experiment
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Figure 3 Dose-response curves for initial (--- -) and residual (-) DNA dsbs measured using the neutral comet assay. Each point represents the mean
(± s.e.m.) calculated from replicate independent experiments. The lines are fitted by linear regression

and are fitted by linear regression. The combined data shown in The slopes of the fitted linear regression to the initial DNA dsb
Figure 3 were all well described by a linear fit, with correlation dose-response data varied by a factor of 2.9 (range 0.23-0.66) and
coefficients of 0.96 or higher. were steeper than those for residual damage. The shallower residual
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Table 2 Slopes (± 95% CL) from linear regression analysis of the initial and
residual dose-response curves in Figure 3. Ratio of damage is calculated as
residual damage/initial damage

Cell line Initial damage Residual damage Ratio

MS751 0.66 ± 0.04 0.31 ± 0.04 0.47
ME180 0.58 ± 0.02 0.58 ± 0.05 0.99
C33A 0.23 ± 0.02 0.16 ± 0.03 0.72
C41 0.32 ± 0.02 0.22 ± 0.01 0.68
HT3 0.30 ± 0.01 0.18 ± 0.01 0.61
SiHa 0.36 ± 0.02 0.21 ± 0.02 0.58
CaSki 0.29 ± 0.03 0.87 ± 0.01 0.53

damage slopes indicate that there were fewer DNA dsbs after a
16-h incubation at 37°C (Table 2). The slopes of the fitted linear
regression to the residual DNA dsb dose-response curves varied by a
factor of 3.6 (range 0.16-0.58). The ratio of the slopes of the initial
and the residual dose-response curves, representing the fraction of
DNA damage unrepaired, varied by a factor of 2.1 (range 0.47-0.99).
A comparison was made of the relationship between clonogenic

survival after HDR and LDR irradiation and the level of radiation-
induced DNA dsbs measured using the neutral comet assay. No rela-
tionship was found between HDR SF2 and the slopes of initial (P =
0.91) or residual (P = 0.23) DNA dsb dose-response curves fitted by
linear regression. In contrast, an association was evident between
HDR SF2 and the ratio of the number of initial and residual DNA
dsbs (i.e. the fraction ofDNA damage unrepaired) after a 60-Gy dose
of radiation (r = 0.58; P = 0.17) (Figure 4B). Moreover, a statistically
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significant correlation was found between HDR SF2 and the ratio of
initial and residual DNA dsbs over the complete dose range exam-
ined, as represented by the slope parameters calculated from Figure 3
(r = -0.78; P = 0.04) (Figure 4A). Stronger correlations were found
between SF2 after low-dose-rate irradiation and the fraction of DNA
damage unrepaired (ratio of initial and residual damage) at 60 Gy
(r = 0.78; P = 0.09) and over the complete dose range studied
(r = -0.86; P = 0.03) (Figure 4C and D).

DISCUSSION

Evidence that the radiosensitivity of a tumour is an important
factor involved in determining patient response to radiotherapy has
been gained from work carried out using clonogenic assays (West,
1995; West et al, 1997). These assays are however too laborious
for routine clinical application, and this has stimulated an interest
in the development of more rapid measures of radiosensitivity. The
comet assay is attractive as a potential clinical test of tumour
radiosensitivity as it requires few cells and generates results
rapidly compared with standard clonogenic and other electro-
phoresis assays.
The linear relationship between the production of radiation-

induced DNA dsbs and dose shown in Figures 2 and 3 is in good
agreement with previous studies using a variety of DNA dsb
assays (reviewed by Nuniiez, 1996) and the neutral comet assay
(Olive et al, 1994). In the present study, a comparison of the slopes
obtained from the linear regression analysis of the initial DNA dsb
dose-response curves for the seven tumour lines showed signifi-
cant variation, indicating different levels of initial damage between
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Figure 4 Relationship between ratio of damage (initial/residual) at 60 Gy (B and D) or ratio of slopes of the initial and residual DNA dsb dose-response curves

and radiosensitivity expressed as SF2 for HDR (A and B) and LDR (C and D) irradiation for the series of cervical tumour cell lines. The solid lines represent the

regression fit to the data and the dashed lines the 95% confidence on the fit
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Table 3 Correlation coefficients and P-values calculated from either HDR or
LDR SF2 plotted against the slopes of the initial and residual damage
dose-response curves, the ratio of slopes of residual and initial damage
dose-response curves or the ratio of the absolute level of initial residual level
of DNA dsbs at 60 Gy (as determined from Figure 3)

Initial slope Residual slope Ratio of slopes Ratio at 60 Gy

r P r P r P r P

HDR SF2 -0.05 0.91 -0.51 0.23 -0.78 0.04* 0.58 0.17
LDR SF2 -0.07 0.89 -0.59 0.21 -0.86 0.03* 0.78 0.09**

*Correlation is significant at the level 0.05. "Correlation is significant at the
level 0.10.

the different cell lines (Figure 3 and Table 2). The present finding
agrees with other studies that have shown significant differences
in DNA dsb induction between human tumour cells lines using
neutral elution (Kelland et al, 1988) or pulsed-field gel electro-
phoresis (Whitaker et al, 1995). However, the results from Figure
3 contrast with the data of Olive et al (1994) using the neutral
comet assay which showed no significant differences in radiation-
induced DNA dsb in a range of six histologically distinct human
tumour cell lines (melanoma, prostate carcinoma, glioma, colon
adenocarcinoma and cervical carcinoma).

In order to have confidence in the potential use of a rapid assay
of tumour radiosensitivity, correlations must be shown with clono-
genic measures of radiosensitivity. A significant correlation has
been reported previously between clonogenic radiosensitivity and
the levels of initial radiation-induced damage in human tumour
cells (Kelland et al, 1988; Nuniiez et al, 1996). It was postulated
that this might reflect differences in the number of lesions incurred
by the radiosensitive cells compared with the resistant cells, as
shown by Peacock et al (1989), or possibly differences in chro-
matin conformation that affect the accessibility of scavenging
molecules to damaged DNA or radical attack (Oleinick et al, 1984;
Olive et al, 1992) or the 'presentation' of DNA damage sites
(Woudstra et al, 1996). However, the results from this study indi-
cate that in the cervical tumour lines studied here the level of
initial DNA damage does not correspond with clonogenic
radiosensitivity after HDR and LDR irradiation (Table 3).

In contrast, Ward (1990) argued that the yield of molecular
lesions (initial damage) is independent of tumour cell type and that
radiation-sensitive cells are repair deficient, resulting in different
levels of residual damage. However, in our work, there were no
significant differences in the slopes of the residual DNA dsb
dose-response curves fitted by linear regression and SF2 after
HDR and LDR irradiation. Nevertheless other human tumour
studies measuring DNA dsbs by asymmetric field-inversion gel
electrophoresis (Giaccia et al, 1992) and neutral filter elution
(Zaffaroni et al, 1994) have indeed shown significant correlations
between the level of residual dsbs and radiosensitivity.
A new finding in the present studies was the significant correla-

tion with the extent of dsb repair (ratio of initial and residual
slopes) after 16 h of post-irradiation incubation and radiosensi-
tivity after HDR (r = -0.78, P = 0.04) or LDR (r = -0.86, P = 0.03)
irradiation (Figure 4). DNA dsb repair measured using the neutral
comet assay and cellular radiosensitivity were found not to corre-
late in a study by Olive et al (1992), however one possible expla-
nation for the difference between the present study and that of
Olive et al (1992) may reflect the time interval allowed for repair:

4 h in the previous study and 16 h in the present study. It has been
noted that measuring residual DNA dsbs using the neutral comet
assay at 4 h may underestimate the level of DNA damage as a
result of the increase in the percentage of S-phase cells after irradi-
ation, as S-phase DNA migrates inefficiently. This would not be
expected in the present study using a 16 h period of repair (Olive
et al, 1994).

In support of the correlation between SF2 and repair capacity
reported here, a non-significant trend was evident between LDR
SF2 and the absolute difference in residual and initial DNA dsbs
assessed from a single dose of 60 Gy (P = 0.09) and a significant
trend over the complete dose range studied (P = 0.03) (Figure 4B
and D). The stronger relationship between the level of DNA dsbs
and SF2 measured after LDR irradiation is not unexpected and
reflects the potential of each cell line to repair radiation-induced
DNA dsbs during exposure. A correlation between radiosensitivity
and level of dsbs in four histologically related tumour cell lines
has been reported previously after low-dose-rate but not at high-
dose-rate irradiation using PGFE (Cassoni et al, 1992).
The approach of examining the unrepaired DNA dsb fraction by

taking a ratio of dose-response curve slopes (thereby assessing
damage from a range of multiple dose points) minimizes vari-
ability between experiments on the different cell lines and
suggests that it is only by doing so that a significant correlation can
be seen between HDR SF2 and DNA dsb repair capacity as
measured by the neutral comet assay. Recently, we have also found
a strong correlation between the ratio of slopes of initial/residual
DNA dsb dose-response curves and radiosensitivity after HDR
irradiation for nine normal fibroblast strains derived from vaginal
biopsies from pretreatment cancer patients (r = 0.80, P = 0.01)
(Marples et al, 1997). It is not clear yet whether the importance of
the unrepaired fraction of DNA dsbs is related to, for example,
DNA ploidy, possible influence of chromatin structure/DNA orga-
nization on the translation of residual DNA damage into poten-
tially lethal events or on the tolerance of cells to genetic injury.
Alternatively, assessing repair capacity by the ratio of damage
(initial/residual) may relate to misrepair of radiation-induced DNA
dsbs. Such possibilities will require further investigation.
A review of the literature (see Introduction) illustrates the

disparate findings over the possible relationship between DNA dsb
damage and clonogenic measures of radiosensitivity. There is
clearly some relationship but the question of interest is which
parameter is the most important component (initial or residual
damage, ratio of damage, rate of repair, time at which repair is
assayed, etc.). The balance of evidence suggests that residual
damage is likely to be the most critical aspect but, in view of the
published data, the significance of initial damage cannot yet be
discounted. The divergent results may relate to differences in the
assays used to score DNA dsb damage and/or experimental design
(e.g. selection and number of cell lines, doses used, time allowed
for repair). In an attempt to overcome some of the limitations of
other studies, we have selected a large series of cell lines of the
same histological origin (seven human cervical carcinoma cell
lines) and have assessed both initial and residual DNA damage
over a range of radiation doses. In doing so, we have demonstrated
a significant relationship between the ratio of initial and residual
radiation-induced DNA dsbs, measured using the neutral comet
assay, and cellular radiosensitivity measured using a clonogenic
assay. It is likely that the continued improvements of assay condi-
tions may improve this further, e.g. more sensitive DNA-binding
dyes, more optimal lysing conditions. The work supports the
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continued use of the neutral comet assay as a potential rapid
predictive test for tumour radiosensitivity in radiotherapy.
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