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Simple Summary: Syncope is a medical condition triggered by short-lived interruption of the
oxygen supply to the brain, which may result in free fall or accidents. The diagnosis of syncope is a
challenging task, as various other states of altered consciousness present with the same symptoms as
syncope. This work uses historical medical data for the diagnosis of syncope using sophisticated
computing solutions. The experimental results prove the effectiveness of the approach, leading to the
proactive prediction of syncope.

Abstract: Syncope is the medical condition of loss of consciousness triggered by the momentary
cessation of blood flow to the brain. Machine learning techniques have been established to be very
effective way to address such problems, where a class label is predicted for given input data. This
work presents a Support Vector Machine (SVM) based classification of neuro-mediated syncope
evaluated using train–test–split and K-fold cross-validation methods using the patient’s physiological
data collected through the Head-up Tilt Test in pure clinical settings. The performance of the model
has been analyzed over standard statistical performance indices. The experimental results prove the
effectiveness of using SVM-based classification for the proactive diagnosis of syncope.

Keywords: support vector machine; neuro-mediated syncope; classification; machine learning;
head-up tilt (HUT) test

1. Introduction

Syncope is a medical condition resulting in a transient loss of consciousness (LOC) or
postural tone with spontaneous recovery. A short-lived interruption of the oxygen supply
to the brain is the most fundamental aspect of the induction of syncope [1]. Depending
on various underlying conditions of its occurrence, syncope is primarily classified into
three categories: vasovagal, cardiovascular and orthostatic hypotension (OH) [2]. The
cardiovascular and OH forms of syncope, found among older adults, primarily happen due
to the various health conditions involving the circulatory system and cardiac dysfunction.
The occurrence of these episodes of syncope is life-threatening and thus requires serious
medical attention. Vasovagal or neurally mediated syncope, found in young adults, is
most common form of syncope, which primarily happens due to a quick transient drop in
the systemic arterial Blood Pressure (BP) required for the sustenance of cerebral perfusion.
Usually the drop in Heart Rate (HR) is the triggering phenomenon leading to the drop in
systemic arterial BP and syncope. The product of cardiac output (CO) and total peripheral
resistance (TPR) provides the measure of systemic arterial BP. Any significant decline in CO
or TPR has the potential to create cessation in the cerebral blood flow and, consequently,
global cerebral hypoperfusion [3]. Though not life-threatening in nature, this form of
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syncope has a great impact on the quality of life and handling of other health conditions
alongside. Besides, it prompts the loss of postural tone, which sometimes leads to falls or
accidents causing serious harm to the body. The diagnosis of vasovagal syncope in itself is
a challenging task as various other states of altered consciousness require a different path
of treatment and expertise. Thus, evaluating patients with loss of consciousness (LOC) or
near LOC and establishing a true form syncope is a crucial step in the treatment process [4].

The use of high-end computing solutions at this crucial stage of diagnosis is anticipated
to add great benefits for resource-constrained healthcare organizations. Healthcare 4.0,
by the usage of Artificial Intelligence (AI) and Machine Learning (ML) coupled with the
Internet of Things (IoT) and Big Data, is facilitating a refined diagnostic and treatment
procedure and thus provides a significant gain in the efficiency of and cost-saving for
healthcare services [5–7]. Machine learning is the process whereby a computer manipulates
a suitable statistical model utilizing observed data to generate an outcome or classify
observations about new data. The objective of ML is to develop capabilities into data
driven machines by enabling advanced algorithms and statistical methods to achieve more
powerful predictions compared to a rule-based system. ML models are extensively being
used to compute valuable predictions in various domains including robotics, finance, retail,
transport and healthcare, etc. Depending on the desired outcome and the characteristics of
the data in question, ML models are broadly classified into three categories viz. supervised,
unsupervised and reinforced ML. Supervised ML trains the models involving labelled
data and make predictions about new data using the same information. Unsupervised ML
trains models involving data whose labels are not known and make clusters of similar data
based on the hidden patterns in them. Similarly, reinforced ML iteratively improves its
performance by getting feedback from environments in the forms of rewards or penalties
for the actions it performs. The availability of an enormous quantity of patient-related
data in the form of Electronic Health Records (EHR) has created new opportunities for
researchers, enabling high-grade classifications, predictions and pattern recognitions using
large volumes of high dimensional data and fueling advances in both the science and
practice of medicine [8,9].

The objective of this paper is to classify syncope and non-syncope events of patients
using the supervised machine learning algorithm Support Vector Machine (SVM) applied
to the patients’ true physiological data, which were collected through HUT tests, to provide
the differentiation between instances of syncope and non-syncope. Considering the volume
and dimension of the collected data, SVM qualifies as a suitable classifier because it can
efficiently discriminate entities containing n-dimensional vectors. The raw data recorded
using the HUT test are first refined by some basic statistical methods before being consumed
by the SVM classification model. The results derived by the model are compared with the
results of the k-nearest neighbors (KNN) and stochastic gradient descent (SGD) models
employed to the same dataset and in similar computing environments. The models are
adjudicated over various performance measures of accuracy, precision, recall, F1-Score and
area under the curve of Receiver Operating Characteristics (AUC-ROC).

The remainder of the paper is organized as follows: Section 2 discusses the limitations
and inadequacies of the existing work reported in the literature. Section 3 presents the
details of the working of the model in its various phases, including procedures of data
collection, data organization and data preparation leading to an SVM-based classification
of syncope and its performance in comparison with KNN and SGD-based models. Section
4 presents the limitations of the work while stating possible future directions. This is
followed by Section 5, which concludes the work.

2. Related Work

The classification between syncope and non-syncopal events based on true physio-
logical data has scarcely been touched upon. This section touches upon some of the work,
though limited, relating to syncope. The use of a Random Forest Classifier (RFC) to classify
events of syncope and non-syncope was reported in [10]. However, the work does not
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address the very important issue of handling the imbalance of data for the considered
cases of syncope and non-syncope, which becomes a limiting factor. Various classification
works based on the observations of individual physicians have been reported [11–14].
Since the works are based on the laboratory findings of individual physicians, the findings
become phenomenological and lack objectivity. The work in [15] differentiates the cases of
syncope from other forms of loss of consciousness, but the dataset generated for the work
is based on responses to a questionnaire instead of on the analysis of true physiological
data, e.g., heart rate and beat-to-beat recording of blood pressure. The early prediction of
syncope using the HUT test was reported in [16]. However, the work only considers the
amplitude of systolic BP and dynamic interaction between two successive R-waves of the
QRS signal on the electrocardiogram (RR-interval) as the differentiating parameters.

The work presented in this paper gains significance due to the fact that it is based on
the true physiological data collected through the HUT test. The dataset utilized for the
work has been balanced with an equal number of instances of syncope and non-syncope,
which results in better training and hence better classification. The results of the analysis
presented in the work are therefore more reliable, as they have been adjudicated through
the statistical indices of various measures of performance.

3. Syncope Classification Model

The foundations of this work are based on two central hypotheses:

Hypothesis 1 (H1). Etiology of syncope can be derived by beat-to-beat examination of BP along
with continuous analysis of HR variability, and;

Hypothesis 2 (H2). Mathematical modeling and machine learning algorithms can provide a near-
accurate diagnosis for patients having syncopal episodes correlated with autonomic dysfunction.

The workings of the model can be summarized with the help of a diagram, as shown
in Figure 1, which presents the various steps followed by the model.
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Figure 1. Flow Diagram of the Working of Model.

The process has been divided into four stages. The first stage corresponds to the data
collection which is the input dataset for the model. The input data generated are observed
to be skewed, with only some cases reported with syncope. If such data are used as is,
this may result in a scenario in which the training data will have very few minority class
instances (syncope) and a very large number of majority class instances (non-syncope). This
results in the machine being trained inefficiently, leading to poor predictive performance.
Accordingly, in the data preparation stage, the imbalance in the input data is addressed
by converting the data into a balanced set, which is an essential step for any machine
learning classifier (including SVM) to work properly. The output of this stage results in a
class-balanced dataset which is employed by the Support Vector Machine (SVM) algorithm
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for processing to generate the classified data which are used for predicting syncope. These
stages are elaborated on in the following sections.

3.1. Data Collection

The data utilized for this research were obtained from patients undergoing routine tilt
table testing at the Syncope Clinic, General Hospital (LKH), Knittelfeld, Austria. The data
were collected from a total of 687 patients in a purely clinical setting. All these patients
had histories of syncope or dizziness upon standing up. Accordingly, the patients having
recurrent syncope, or who were supposed to be high-risk patients having experienced at
least a single episode of syncope, were considered for the study. All participants provided
their written informed consent.

After arriving at the hospital, the patients were equipped with BP and electrocardio-
graphic sensors. Data recorded through the sensors were saved digitally with the help of
analog-to-digital converters communicating with computers. Specifically, hemodynamic
responses. such as Heart Rate (HR) and mean arterial pressure responses at baseline and
at the development of orthostatic intolerance during tilt table testing, were measured.
The inclusion and exclusion criteria for patients undergoing tilt table testing were strictly
followed. Further, in this exploratory study, continuous and non-invasive beat-to-beat HR
and BP measurements were recorded.

The tests for this study found three main underlying mechanisms responsible for the
triggering of the induction of syncope:

(1) A sudden drop in BP, as shown in Figure 2;
(2) A drop in HR, and thus drop in BP, as shown in Figure 3, and;
(3) A continual drop in BP, as shown in Figure 4.
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3.1.1. Head-Up Tilt (HUT) Test

A footplate-supported table equipped with an automatic tilting mechanism was used
for the HUT test. Before the tilting of the table, patients were observed in a supine position
for ten minutes. The flat-top bedding surface containing safety straps was then tilted to the
angles of 60◦ to 80◦ in a quick span of time. The rationale behind the whole action is that a
sudden change in posture sometimes induces vasovagal syncope, which is characterized
by a sudden drop in HR and BP [17]. Constant monitoring of electrocardiographic signals,
along with continuous beat-to-beat checking of BP, was performed during the test.

The data were collected using the Task Force Monitor (CNSystems, Graz, Austria). All
data obtained were obtained from each of the 3 positions: supine–HUT–return to supine
and then the data were averaged. Systolic blood pressure and diastolic blood pressure
were measured at the right brachial artery using the oscillometric method. Hemodynamic
parameters such as stroke volume (SV), cardiac output, total peripheral resistance were
recorded beat-to-beat using impedance cardiography [18–20]. Total peripheral resistance
was calculated from the CO and BP values measured with a finger sensor; automatic
calibration was performed using the oscillometric method. Heart rate measurements were
carried out using RR-interval.

Presyncope is the state immediately preceding a syncopal event, defined as a sudden,
brief, transient loss of consciousness [21–23]. ‘Physiological’ syncope during orthostatic
loading develops as the result of critically diminished cardiac preload due to low venous
return. Once the brain perfusion is reduced to below a critical level, a “vasovagal attack” is
triggered, which leads to decreases in heart rate and blood pressure and sudden dilation of
the arterial vessels, leading to the loss of consciousness. The following criteria were used
for presyncope: heart rate decreases by ≥15 bpm or blood pressure decreases to less than
systolic 80 mmHg or by ≥25 mmHg/min; diastolic decreases by ≥15 mmHg/min; and/or
nausea, cold-clammy skin or dizziness [24,25].

Tests concluded with the finding that out of 687 patients, 96 were recognized to have
an induction of syncope while remaining 591 patients were able to keep control of their
BP and HR, falling in the category of non-syncope. Table 1 presents the distribution of the
patients having syncope in terms of age group and gender.

3.1.2. Data Organization

The BP and HR data recorded in the test were grouped as Beatstats, Cardiacbeatstats,
HRVstats, dBPVstats and sBPVstats, as shown in Table 2. A total of 48 different physio-
logical conditions against each subject were recorded in the proper format. It is beyond
the scope of this work to provide a complete description of all the physiological indicators;
however, a summary of each parameter, along with their quantifying mechanisms and
their units of measurement, has been presented.
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Table 1. Age Group and Gender Distribution of Patients having Syncope.

Age Group Gender Numbers Age Group Gender Numbers

0–15
M 01

55–65
M 07

F 02 F 13

15–25
M 01

65–75
M 14

F 04 F 09

25–35
M 02

75–85
M 03

F 02 F 11

35–45
M 06

85–95
M 02

F 03 F 01

45–55
M 07

Total
M 43

F 08 F 53

Table 2. Physiological Indicators of Patients Collected Using HUT Test.

Beatstats

Acronym Definition Equations Units

HR Heart Rate Primitive Beats/ min

SV Stroke Volume Primitive Litre/beat

CO Cardiac Output SV[l/beat] × HR[bpm] Litre/min

CI Cardiac Input CO[l/min]/Body Surface Area[m2] Litre/min/m2

SI Stroke Index SV[l/beat]/Body Surface Area[m
2

] × 1000 Ml/beat/m2

RRI RR-Interval Primitive Seconds

TPR Total Peripheral Resistance Primitive Pa·sec/m3

TPRI Total Peripheral Resistance Index Primitive Pa·sec/m5

dBP Diastolic Blood Pressure Primitive mmHg

mBp Mean Blood Pressure (2/3) × dBP[mmHg] +
(1/3) × sBP[mmHg]

mmHg

sBP Systolic Blood Pressure Primitive mmHg

Cardiacbeatstats

ACI Acceleration Index Primitive m/s2

CI Cardiac Input CO[l/min]/Body Surface Area[m2] Litre/min/m2

EDI End-Diastolic Index Primitive

HR Heart Rate Primitive Beats/ min

IC Index of Contractility Primitive Seconds

LVET Left VentricularPrimitiveEjection Time Primitive Milliseconds

LVWI Left Ventricular Stroke Work Index SI[ml/beat/m2] × (LVSP[mmHg]—LVEDP[mmHg]). Pa.ml/beat/m2

SI Stroke Index SV[l/beat]/Body Surface Area[m
2

] × 1000 Ml/beat/m2

TFC Thoracic Fluid Content Primitive Litre

TPRI Total Peripheral Resistance Index Primitive Pa·sec/m5

dBP Diastolic Blood Pressure Primitive mmHg

mBp Mean Blood Pressure (2/3) × dBP[mmHg] +
(1/3) × sBP[mmHg]

mmHg

sBP Systolic Blood Pressure Primitive mmHg
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Table 2. Cont.

Beatstats

HRVstats

HF_RRI High-Frequency RR Interval Primitive Hz

HFnu_RRI Normalized High-Frequency RR Interval HF_RRI/(HF_RRI +
LF_RRI + VLF_RRI)

LF_HF Difference Between Low and High
Frequency of RR Interval HF_RRI ~ LF_RRI Hz

LF_HF_RRI The ratio of Low and High Frequency of
RR Interval LF_RRI/HF_RRI

LF_RRI Low-Frequency RR Interval Primitive Hz

LFnu_RRI Normalized Low-Frequency RR Interval LF_RRI/(HF_RRI
+LF_RRI + VLF_RRI)

PSD_RRI Power Spectral Density of RR Interval Primitive W/Hz

VLF_RRI Very Low Frequency of RR Interval Primitive Hz

dBPVstats

HF_dBP High-Frequency dBP Primitive Hz

HFnu_dBP Normalised High-Frequency dBP HF_dBP/(HF_dBP+
LF_dBP + VLF_dBP)

LF_HF Difference Between Low and High
Frequency of dBP HF_dBP ~ LF_dBP Hz

LF_HF_dBP Ratio of Low and High Frequency of dBP LF_dBP/HF_dBP

LF_dBP Low-Frequency dBP Primitive Hz

LFnu_dBP Normalised Low-Frequency dBP LF_dBP/(HF_dBP + LF_dBP + VLF_dBP)

PSD_dBP Power Spectral Density of dBP Primitive W/Hz

VLF_dBP Very Low Frequency of dBP Primitive Hz

sBPVstats

HF_sBP High-Frequency sBP Primitive Hz

HFnu_sBP Normalised High-Frequency sBP HF_sBP/(HF_sBP
+LF_sBP + VLF_sBP)

LF_HF Difference Between Low and High
Frequency of sBP HF_sBP ~ LF_sBP Hz

LF_HF_sBP Ratio of Low and High Frequency of sBP LF_sBP/HF_sBP

LF_sBP Low-Frequency sBP Primitive Hz

LFnu_sBP Normalised Low-Frequency sBP LF_sBP/(HF_sBP+
LF_sBP + VLF_sBP)

PSD_sBP Power Spectral Density of sBP Primitive W/Hz

VLF_sBP Very Low Frequency of sBP Primitive Hz

3.2. Data Preparation

The raw data recorded during tests consists of the continuous observation of HR and
beat-to-beat checking of BP, which needs to be discretized for better applicability on ML
models. TFM employed during the tests facilitates the discrete values of the continuous
health indicators required for the classifications. To prepare the final dataset, the discrete
values of the health indicators are further preprocessed with basic statistical functions of
the maximum value (max), minimum value (min), mean (mean), standard deviation (sd),
variance (var), coefficient of variance (vc) and standard error of the mean (sem).
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It was observed that the data generated by the HUT test result in an imbalanced
dataset, as only 96 patients were found to have induction of syncope against a total of
687 patients in the study. This imbalance in the data could result in a bias towards the
majority class. The imbalance in the dataset can be resolved either by assigning different
class weights for the majority and minority classes, or by oversampling the minority class
with artificially created instances. The suitability of the method to be used depends on
the considered classification models and the dataset. Methods such as Synthetic Minority
Oversampling Techniques (SMOTE) [26] and Adaptive Synthetic (ADASYN) [27] have been
reported in the literature for the generation of synthetic data. This work uses SMOTE to
create the artificial instances of the minority class to address the data imbalance considering
that the use of SVM-based model supported by the fact that KNN model used in the
comparative analysis exhibits better suitability towards SMOTE.

Principal Components Analysis

To provide a view into the correlations and patterns between features of the dataset,
principal component analysis (PCA) was performed on it in line with the work reported
in [28]. Table 3 presents the variance explained by the significant principal components.
Accordingly, the progression of cumulative variance explained by the principal components
(PCs) is presented in Figure 5.

Table 3. Variance Explained by Cumulative PCs.

First PC 20.17%

First two PCs 31.95%

First three PCs 41.41%

First ten PCs 68.24%

First twenty PCs 83.51%

First thirty PCs 90.93%

First forty PCs 94.70%

First fifty PCs 96.71%
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It can be inferred from Table 3 and Figure 5 that first PC explains 20.17% of the variance
in the dataset, first two PCs explain 31.95% of the variance in the dataset, the first three
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PCs explain 41.41% of the variance and so on. As can be seen, the first fifty PCs contribute
almost 96.71% of the variance of the data, while remaining 182 PCs contribute only 03.29%
of it. Figure 6 depicts the individual contributions of the fifty PCs contributing towards the
96.71% of the overall variance of the data.
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The individual contributions of the first 50 PCs have been presented in Figure 6.
As can be seen, the first PC (PC-1) contributes 20.17% of the variance, the second PC
(PC-2) contributes 11.77% of the variance and the third PC (PC-3) contributes 09.45% of the
variance, and so on and so forth. The scatter plot shown in Figure 7 depicts the variance
explained by the first two PCs (PC-1 and PC-2) in a 2-dimensional space.
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Figure 7 shows that the classes of syncope and non-syncope are not well separated
from each other, as PC-1 and PC-2 together explain only 31.94% of the total variance.
Similarly, an instance of the scatter plot shown in Figure 8 depicts the variance contained
by first three PCs (PC-1, PC-2 and PC-3) in a 3-dimensional space.
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Again, it can be inferred from Figure 8 that the classes of syncope and non-syncope are
not well separated, as PC-1, PC-2 and PC-3 together explain only 41.40% of the variance.

3.3. Data Classification

This stage corresponds to the use of machine learning algorithm, which is SVM, in
this case, to be applied to the data collected which has been collected and pre-processed in
the previous stages. This is the most important stage of the process which determines the
utility of the work in meeting the classification objectives.

3.3.1. Support Vector Machine

Machine learning offers the use of many classification algorithms, each having its own
advantages and drawbacks. Which algorithm will work well in a given case depends on
the type of the problem and the dataset in question. In general, it has been established that
the performance of the machine learning algorithms can be ascertained only through trial
and error and through performance metrics.

In the context of this work, there were several factors which were taken into account
for considering SVM-based classification of syncope. SVM generally does not suffer from
the condition of overfitting and performs very well when there is a clear indication of
separation between classes. It shows better adaptability towards data that are not regularly
distributed and have an unknown distribution. The kernel of SVM provides non-parametric
functions that allow the choosing of non-linear functions depending on the data being
operated on and thus performs complex classifications with better results than the other
classifiers. Further, outliers have less influence over SVM compared to other classifiers,
providing fewer chances for the results to be skewed. Compared to other classifiers, SVM
derives better results in quicker span of time. In addition, using the kernel functions of SVM
the, input data can be converted into high dimensional data, avoiding the need for linearly
separable data, which are required by other classifiers. The data considered in this work
contain 231 attributes against each patient, which were derived from the 48 physiological
indicators listed in Table 2. These data can be considered high dimensional, thus making
the suitable for use with SVM. To summarize, the ability to deliver unique solutions makes
SVM a robust model for this task compared to other models where more than one solution
can be generated corresponding to each local minimum.

A support vector machine (SVM) is a linear classifier that works on margin opti-
mization principles [29]. It performs the classification task by creating a hyperplane in
a higher-dimensional space that optimally splits the data into two groups. For a dataset
having m given training examples {(x1, y1), . . . , (xm, ym) }, where xi∈ RN and ym∈ {−1, 1},
SVM training tries to create the optimal hyperplane by evaluating the weight w and bias b
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for the linear decision function f (x) = w·x + b. The closest distance from the datapoints to
the decision boundary is called the margin. For two oppositely margined data points x1,
x2 with f (x1) = 1 and f (x2) = −1, the margins can be evaluated as shown in Equation (1);

[f (x1) − f (x2)]/||w||
= 2/||w||

(1)

In order to find the optimal hyperplane, SVM solves the optimization problem which
is given in Equation (2);

min (||w||/2) (2)

s.t yi(wTxi + b) ≥ 1, where i = 1, 2, . . . , m and wT denotes the transpose of w.
As maximization of 2/||w|| is equivalent to minimization of ||w||/2, the optimiza-

tion problem can be transformed into its dual problem that gives the quadratic problem as
presented in Equation (3);

max ∑m
i=1 αi−

1
2 ∑m

i,j=1 αi αj yi yj(xi·xj) (3)

s.t ∑m
i=1 αi yi = 0; α ≥ 0 ∀i = 1, . . . , m.

While solving the problem for optimal hyperplane it gives the parameter w, which is
calculated as shown in Equation (4) as

w = ∑m
i=1 αi yi xi (4)

Thus, the linear decision function f (x) in dual space is evaluated as shown in Equations
(5) and (6);

f (x) = ∑m
i=1 yiαi(x i· x) + b, where bcan be evaluated as (5)

b = −
[
maxy=−1 (w · xi) + miny=1 (w · xi)] (6)

The Karush–Kuhn–Tucker theory demonstrates that the examples satisfying the con-
dition of yi(wxi + b) = 1, are the resultant non-zero instances.

3.3.2. Performance Metrics

Evaluating the performance of the classifier is an essential part of any machine learning
model, as it delineates the correctness of the classification. For a classification problem of
two or more output classes, the Confusion Matrix is one of the most intuitive metrics for
finding the correctness of the model [30]. A confusion matrix is a square matrix having Ci j
as the data elements, where i and j denote the true label and predicted label of the data
group, respectively. For a binary output classification problem, the confusion matrix is a
2x2 matrix of four elements viz. C00, C01, C10 and C11, as shown in Table 4.

Table 4. Confusion Matrix.

C00 C01

C10 C11
C00 denotes the count of true negative data points; C01 denotes the count of false-positive data points; C10 denotes
the count of false-negative data points; C11 denotes the count of true positive data points.

Using the above confusion matrix, any classification algorithm can be compared based
on five performance measures viz. accuracy, Precision, Recall, F-1 Score and AUC-ROC. In
general, accuracy is a simple and effective measure to judge the performance of a ML
model. However, it is not a reliable metric for an imbalanced dataset. To address the
concern of biasness towards the majority class in an imbalanced dataset, which can result
in possible false accuracy, other performance metrics such as precision, recall, F1-Score and
AUC-ROC are used. These parameters are briefly discussed below [31,32].
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Accuracy: This is defined as the ratio of correct predictions to the total predictions
made by the model. It is evaluated using the elements of the confusion matrix as shown in
Equation (7);

Accuracy =
C00+C11

C00+C01+C10 +C11
(7)

Accuracy is a measure of the effectiveness of the machine learning model in establishing
the relationship between the parameters and making correct classifications.

Precision: This is defined as the ratio of true positive predictions to the total number of
positive predictions. Precision is a measure of the relevancy of the results and is calculated
as shown in Equation (8);

Precision =
C11

C01+C11
(8)

Recall: This is evaluated as the ratio of true positive predictions to actual positive
samples. Recall is a measure of the total number of predictive instances correctly classified
by the model, which is calculated as shown in Equation (9).

Recall =
C11

C10 + C11
(9)

For binary classifications, Recall is also referred to as the sensitivity of the model.
F1-Score: This is the harmonic mean of precision and recall that is used to create the

balance between the false positives and false negatives of the samples. It is evaluated as
shown in Equation (10);

F− Score = 2 × Precision × Recall
Precision + Recall

.

(10)

A good F1-Score proves the effectiveness of the model and indicates that the model is
exhibiting low false positives and low false negatives.

AUC-ROC: The receiver operating characteristics (ROC) curve is a technique to depicts
the visualization, organization and selection of classifiers for all the classification thresholds.
The ROC curve is plotted between the true positive rate on the y-axis and the false-positive
rate on the x-axis. The area under the ROC curve (AUC-ROC) is the significant measure of
the performance of binary classifiers.

3.4. Classified Output

A simulation was carried out for using the SVM model and evaluating the results on
the basis of various performance indices. The hardware, software and API specifications
used in the study are listed in Table 5.

Table 5. System Specifications.

Hardware Specifications Software Specifications

Processor Core i5 OS 64-bit Windows 10

Processor Clock Speed 1.8 GHz Scikit learn 0.20.3

Number of Cores 4 Pandas 0.23.4

RAM 8GB Numpy 1.14.3

Cache Memory 6 MB Matplotlib 3.0.2

Processor Architecture 64 bit Seaborn 0.11.1

Processor Variant 8265U Imblearn 0.00

As mentioned in Section 2, in general, the reported works in the domain lack the following:
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The imbalance in classes of data has not been addressed;
The generated dataset is based on responses to a questionnaire instead of the true physio-
logical data;
The generated dataset is based on the observations made by individual physicians and not
on continuous observation of the heart rate and beat-to-beat recording of blood pressure.

In the light of the above, it was not possible to compare the results found here with
similar works. However, based on the application of the classification model to the dataset,
and to provide a better look into its consistency, the evaluation of the proposed model was
performed in two ways viz. The Train–Test–Split evaluation and K-fold cross-validation
evaluation. Additionally, the results of the SVM-based classification model were compared
with two models viz. k-Nearest Neighbor (KNN) [33] and Stochastic Gradient Descent
(SGD) learning [34] using the same dataset in the same computing environment.

The SVM model-related parameters considered for experimentation are: kernal, gamma
and C. The mathematical functions used by SVM algorithms are known as the kernel.
Parameter ‘C’ controls the tradeoff between margin maximization and error minimization
and is a measure used to avoid misclassification. The parameter gamma is used to address
the variance in the model. Using Scikit learn, kernel has been set as linear, C = 2 and
gamma = auto decided based on standard practices. The other considered parameters for
simulating the SVM, SGD and KNN algorithms are listed in Table 6.

Table 6. Model Parameters.

SVM Parameters

Parameter Value Parameter Value Parameter Value Parameter Value

C 2 kernal linear degree 3 gamma auto

coef0 0.0 shrinking True probability False tol 0.001

cache_
size 200 class_

weight None verbose False max_iter −1

decision_
function_

shape
ovr break_ties False random_

state None

SGD Parameters

Parameter Value Parameter Value Parameter Value Parameter Value

loss log penalty elasticnet Alpha 0.0001 l1_ratio 0.15

fit_
intercept true max_iter 75 Tol 0.001 shuffle True

verbose 0 epsilon 0.1 n_jobs None random_
state 0

learning_
rate optimal eta0 0.0 power_t 0.5 early_

stopping False

validation_
fraction 0.1 n_iter_

no_change 5 class_
weight None warm_start False

KNN Parameters

Parameter Value Parameter Value Parameter Value Parameter Value

n_neighbor 5 weight uniform algorithm auto leaf_
size 30

p 2 metric minkowski metric_
param None n_jobs None

3.4.1. Contributing Features

The dataset has 232 features for each instance of syncope and non-syncope with
different contributions to the classification task. A bar graph depicting the contribution
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of each feature for first twenty features is shown in Figure 9. It can be inferred from
Figure 9 that the maximal value of normalized low frequency diastolic blood pressure
(dBPS_LFnu_max) is the feature that contributes the most, followed by the maximal
normalized low-frequency RR Interval of HRStats (HRS_RRI_LFnu_max) and the mean
of the normalized high-frequency diastolic blood pressure (dBPS_HFnu_mean) in the
same order.
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3.4.2. Train–Test–Split Evaluation

In the train–test–split evaluation method, the entire dataset is separated into two
segments for the purpose of training and then testing the model. This is an important step
in which the training set data correspond to the known values of syncope and non-syncope
as an attribute, which are tested for the model’s predictions for the test set data. In this
work, the entire dataset of 687 patients was divided into the ratio of 80:20, respectively, for
training and testing, which is standard practice when using this method of evaluation and
has been validated experimentally. This means that 80 percent of the dataset is utilized for
training the models, while the remaining 20 percent is used for testing them. This ensures
that the test set is neither too small nor too big.

The results derived by the SVM, KNN and SGD-based classification models using
train–test–split evaluation in the form of a confusion matrix are shown in Table 7.

Table 7. Elements of Confusion Matrix.

Elements TP FP FN TN

SVM 111 02 01 24

KNN 97 08 14 19

SGD 101 09 08 20

Based on the elements of the confusion matrix, a measure of the performance indices
of accuracy, Precision, Recall, F1-Score and AUC-ROC is presented in Table 8.
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Table 8. Results of Train–Test–Split Evaluation.

Measures SVM KNN SGD

Accuracy 0.9782608 0.8405797 0.876812

Precision 0.9823008 0.923809 0.918182

Recall 0.9910714 0.8738738 0.926606

F1-Score 0.9866666 0.8981474 0.922375

AUC-ROC 0.987123 0.8366731 0.905619

It can be inferred from Table 8 that the SVM-based classification model is able to
classify the patients with syncope with 97.82% of accuracy which is much higher than the
SGD and KNN based classification reporting accuracy of 87.68% and 84.05%, respectively.
Similarly, the precision reported by SVM-based model is 98.23% which is again significantly
better than precision reported by KNN and SGD being 92.38% and 91.81%, respectively.
SVM-based model reports better recall at 99.10% in comparison with 92.66% and 87.38%
reported by SGD and KNN, respectively. The F1-Score reported by SVM-based model
is 98.66% which is again higher than 92.23% and 89.81% as reported by SGD and KNN.
Finally, SVM -based model reports much higher AUC-ROC of 98.71% in comparison with
90.56% and 83.66% as reported by SGD and KNN. Considering these results, it can be
concluded that the SVM-based model is able to perform classification reasonably well
reporting superior results for all the considered performance indices as compared to peers.

3.4.3. K-Fold Cross-Validation Evaluation

The K-fold cross-validation is an iterative method used to evaluate the performance
of the machine learning model especially when the data sample size is limited. The
method evaluates the generalizability of a machine learning model by estimating their
performance on unseen or new data with lower bias. Without the cross-validation we only
have the assessment of the model over training data that would not provide evaluation of
model over new dataset. Thus, after the model has been run using train–test–split, K-fold
cross-validation method validates the results.

In the present work, using K-fold cross-validation, the dataset is divided into K = 10
disjoint sets as shown in Figure 10. The value of K has been chosen carefully through
experimentation. The dotted bars represent the subsets of data that have been iteratively
used for training the model while the crisscross bar represents the data that have been used
for testing it. The process iteratively runs ten times with different sets of data for training
and testing purposes.
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Using K-fold cross-validation evaluation for ten runs, the performance indices of
accuracy, precision, recall, F1-Score and AUC-ROC were observed for the SVM, KNN and
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SGD-based models separately. To provide a comprehensive look into the performance
of the models, the statistical parameters of results viz. minimal values (Min), maximal
values (Max), the number of times the maximum value is attained (No. Of Max), mean
values (Mean) and standard deviation (SD) across the tenfold validation of the model were
observed and are presented in Table 9.

Table 9. Result Statistics of K-fold Cross-validation (K = 10).

Measures Min Max No. of
Max Mean SD

Accuracy

SVM 0.955882 1.00 1 0.975256 0.013813

KNN 0.855073 0.956521 0 0.908299 0.031193

SGD 0.594203 0.971014 0 0.83241 0.14894

Precision

SVM 0.75 1.00 4 0.912387 0.092426

KNN 0.50 1.00 6 0.917188 0.155584

SGD 0.5 0.857143 0 0.671813 0.125704

Recall

SVM 0.80 1.00 4 0.921715 0.081782

KNN 0.20 0.70 0 0.434395 0.174226

SGD 0.496410 1.00 2 0.778064 0.194074

F1-Score

SVM 0.80 1.00 2 0.913957 0.069245

KNN 0.333333 0.823529 0 0.565863 0.173928

SGD 0.503737 0.923077 0 0.715369 0.146808

AUC-ROC

SVM 0.891379 1.00 1 0.949 0.038459

KNN 0.60 0.85 0 0.713385 0.086626

SGD 0.366071 0.984127 0 0.667223 0.267143

From Table 9, considering the Mean of each performance indices across the running of
the tenfold validation, it can be seen that the SVM model classifies the instances of syncope
and non-syncope fairly well, with at least 97.52% accuracy, 91.23% precision, 92.17% recall,
91.39% F1-Score and 94.90% AUC-ROC. It can be inferred from Table 9 that the SVM-based
model is computing results with significantly better accuracy for all statistical parameters of
Min, Max, No of Max, Mean and SD in comparison with the SGD and KNN-based models.
The case for precision is similar, as the SVM-based model performs better in all categories
except for for No of Max, which is higher in KNN. For the remaining indices of recall,
F1-Score and AUC-ROC, it can be seen that SVM-based model is performing significantly
better than the SGD and KNN-based models for all the considered statistical parameters.
Therefore, it can be concluded that for the K-fold cross-validation evaluation of the models,
similarly to test–train–split evaluation, the SVM-based model again outperforms its peers
on all the performance indices of accuracy, precision, recall, F1-Score and AUC-ROC. It is to
be noted that for the SVM-based model, the maximal value of one for all the performance
indices has been attained at least once across the tenfold validation. Additionally, the model
computes the highest value four times for precision and recall, two times for F1-Score and
once each for accuracy and AUC-ROC. The reported SD for the SVM-based model proves
that the dispersion into the values of indices in relation to their Mean are significantly low,
which indicates that the SVM-based model is performing well even for unseen data.

4. Limitations and Future Work

In this paper we examined only the robustness of our model against all patients
who developed presyncope and those that did not. However, we are aware that different
disease conditions, along with polypharmacy, may contribute towards differences in the
data, including those related to the ECG. While this comparison was not the focus of the
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study, this important aspect should definitely be studied in the future, especially across
diseases [35] and in older persons [24,36–38]. We have previously reported that there
are indeed different cardiovascular patterns during graded orthostatic-loading-induced
presyncope, albeit in healthy participants [39].

The authors look forward to evaluating the performance of the model being assessed
over a significantly large dataset containing the records of thousands of patients. To take the
work forward, we intend to examine in detail the features of the ECG and BP to determine
whether they can have a predictive value on their own. In this work, the model was created
by the application of algorithms to the data, which does not provide much information
about the variables and their combinations used in reaching the decisions. To address the
same, we are separately working to add more understanding into the decision making of
the model by recalling comprehensibility or interpretability. While it is important to assess
the generalizability of the data, which is often difficult due to interindividual differences in
hemodynamic responses and time to collapse [18], future studies should be carried out to
assess the effects of sex [40–42], season [43] and/or across the races on the reproducibility
of the data obtained.

5. Conclusions

For patients having LOC or near LOC, establishing the true form of syncope forms
a crucial part for the treatment process. This work differentiates patients who do or do
not have induction of syncope and non-syncope based on their physiological indicators by
measuring continuous and non-invasive beat-to-beat BP and HR. The machine learning
algorithms of SVM, KNN and SGD were employed using the data collected in HUT tests
under clinical settings for syncope classification. The models were evaluated for their
performance using the train–test–split evaluation mechanism and further validated using
K-fold cross-validation. The statistical values-based performance indices observed in
the results using both train–test–split evaluation and K-fold cross-validation lead us to
the conclusion that the SVM-based model can differentiate between syncope and non-
syncope events in a significantly more efficient manner than the KNN and SGD-based
models. Therefore, the SVM-based model provides an alternative to the existing diagnostic
process and proves the efficiency of using machine learning methods over healthcare data,
paving the way for its applicability in the real diagnostic mechanisms used for proactive
syncope prediction.
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