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Small interfering RNAs (siRNAs) induce posttranscriptional gene silencing in various organisms. siRNAs targeted to different
positions of the same gene show different effectiveness; hence, predicting siRNA activity is a crucial step. In this paper, we developed
and evaluated a powerful tool named “siRNApred”with a newmixed feature set to predict siRNA activity. To improve the prediction
accuracy, we proposed 2-3NTs as our new features. A Random Forest siRNA activity prediction model was constructed using the
feature set selected by our proposed Binary Search Feature Selection (BSFS) algorithm. Experimental data demonstrated that the
binding site of the Argonaute protein correlates with siRNA activity. “siRNApred” is effective for selecting active siRNAs, and
the prediction results demonstrate that our method can outperform other current siRNA activity prediction methods in terms of
prediction accuracy.

1. Introduction

RNA interference (RNAi) is a cellular process whereby
double-stranded RNA (dsRNA) leads to posttranscriptional
gene silencing through base-pairing interactions and is found
in many eukaryotic systems, including plants, fungi, inverte-
brates, andmammals [1–4]. Inmammalian cells, long dsRNA
is processed into short 21–23 nucleotide (nt) dsRNAs known
as small interfering RNA (siRNA) and induces instant target
gene knockdown [3]. In functional genomic research, RNAi
has become very helpful in drug and therapeutic applications
[5]. Highly effective siRNAs can be synthesized to design
novel drugs for influenza virus [6], HIV virus [7], and cancer
[8]. However, Takayuki measured the RNAi activities of
siRNAs targeting all positions of a single mRNA in human
cells and found that few siRNAs show very high activities [9].
Therefore, predicting siRNA activity is a critical step for the
successful implementation of RNAi.

Numerous siRNA-designing algorithms, which can
be generally categorized as first-and second-generation

algorithms, have been reported to date. The first-generation
algorithms are based on small validated siRNA datasets and
exploit multiple siRNA features, including GC content [10],
base preferences at specific positions [11, 12], thermodynamic
stability [13], internal structure [14], and target mRNA
secondary structure [15–17]. However, a large majority of
siRNAs designed by the first-generation algorithms are not
very effective [18]. The reason may be that the early datasets
are too small to cover all the important features [19].

The second-generation algorithms were developed with
the accumulation of validated siRNAs. Huesken developed
“Biopredsi” [20] based on artificial neural network and built
a major siRNA dataset including 2431 siRNAs through high-
throughput analysis technology. A number of siRNA activity
prediction algorithms based on machine learning models
were built using Huesken’s dataset. The algorithms Thermo-
Composition21 [21], DSIR [22], 𝑖-score [23], and Biopredsi
were estimated as the best predictors [24]. In addition,
Takayuki et al. proposed a complete dataset including the
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siRNAs targeting all positions of a single mRNA in human
cells and developed an algorithm “siExplored.” They found
that specific residues at every third position of siRNAs greatly
influenced its RNAi activity [9].

The performance of second-generation algorithms heav-
ily depends on the selection of the included features [25].
Because the siRNA sequence is themost important factor that
determines RNAi activity, more potential features embedded
in siRNA sequences should be exploited to increase predic-
tion accuracy. Takahashi found that when the 2-3 bp RNA at
every position of a siRNA sequencewere substituted byDNA,
the RNAi activity changed [26].Thus, we consider that the di-
and trinucleotides at certain positions of siRNAmay correlate
with its RNAi activity.

In this paper, we developed a powerful siRNA activity
predictor by fusing multiple potential features. Our experi-
mental results demonstrate that siRNAactivity is significantly
affected by its di- and trinucleotides; thus, we proposed 2-
3NTs as our new features. In addition, a new mixed 230-
dimensional feature set was formed by combining 191 tra-
ditional features and 39 new features. To select the most
relevant features, we proposed a Binary Search Feature
Selection (BSFS) algorithm. Finally, a Random Forest pre-
dictor is constructed using the selected features. At the
same time, a user-friendly web server named siRNApred is
developed and is available for free at http://www.jlucomputer
.com:8080/RNA/. siRNApred showed better performance
compared with first-generation and second-generation algo-
rithms. The result suggests that the di- and trinucleotides of
siRNA can provide important information for prediction of
active siRNAs.

2. Materials and Methods

2.1. Dataset. Huesken’s dataset includes [20] 2431 siRNAs
targeted to 34 human and rodent mRNAs. The dataset is
divided into the 2182-sequence training set (Huesken train)
and 249-sequence testing set (Huesken test). Three indepen-
dent datasets fromVickers, Reynolds, andHaborth, including
368 siRNAs, are used for testing [11, 27, 28].

2.2. The Importance of the Di- and Trinucleotides of siRNA.
In this section, we first elucidated the importance of our
proposed di- and trinucleotides of siRNA on its activity. The
di- and trinucleotides of siRNA can be defined as follows:

The guide strand of siRNA 𝑆 = 𝑎1, 𝑎2, . . . , 𝑎𝑖, . . . , 𝑎21,
where 1 ≤ 𝑖 ≤ 21.
𝑎𝑑𝑎𝑑+1 represents the dinucleotide at position 𝑑,
where 1 ≤ 𝑑 ≤ 20.
𝑎𝑡𝑎𝑡+1𝑎𝑡+2 represents the trinucleotide at position 𝑡,
where 1 ≤ 𝑡 ≤ 19.

All di- and trinucleotides at all positions of siRNA are
obtained by a sliding window size of 2-3. Huesken’s dataset
is divided into two classes: 1218 potent siRNAs with activities
greater than 0.7 and 1213 nonpotent siRNAs with activities
less than 0.7.

There are 16 2-mer RNA subsequences, that is, AA, AU,
etc., and the frequencies of all 2-mer RNA subsequences
at positions 1 to 20 are calculated for the two classes. The
significance level is calculated by Student’s 𝑡-test and the 2-
mer RNA subsequences with minimal 𝑝 value are shown in
Table 1 (𝑝-value < 0.05).

Table 1 shows that the 2-mer RNA subsequences that
appeared most often as potent were different than those
that appeared most often as nonpotent siRNAs. We found
that “UU” occurred more often than other 2-mer RNA
subsequences in potent siRNAs, whereas “GG” and “CC”
appeared most often in nonpotent siRNAs. Most of the “UU”
2-mers were found at positions 1, 4, 6, and 7 of potent siRNAs.
In nonpotent siRNAs, “GG” often occurred at positions 1, 13,
14, 15, and 16 and “CC” often occurred at positions 3, 4, 5, 6,
and 20.

There are 64 3-mer RNA subsequences, that is, AAA,
AAU, etc. In addition, the frequencies of all 3-mer RNA
subsequences at positions 1 to 19 are calculated for the two
classes. The significance level is calculated by Student’s 𝑡-test
and the 3-mer RNA subsequences with minimal 𝑝 value are
shown in Table 2 (𝑝 value < 0.05).

The results demonstrate that di- and trinucleotides of
siRNAs at certain positions can be used as indicators to
distinguish between potent siRNAs and nonpotent siRNAs
and can possibly be used as a potential feature for siRNA
activity prediction.

2.3. Feature Extraction. A total of 230 features are extracted
in this section for siRNA activity prediction. These features
include 2-3NTs, thermodynamic stability, nucleotide repre-
sentation, and nucleotide compositions.

2.3.1. 2-3NTs. 2-3NTs are categorical features extracted from
the di- and trinucleotides of siRNAs.

We defined the feature vector 𝑋2NT including 20 cate-
gorical features extracted from the dinucleotides of siRNA as
follows:

𝑋2NT = [𝐶 (𝑎1𝑎2) , . . . , 𝐶 (𝑎position𝑎position+1) , . . . ,
𝐶 (𝑎20𝑎21)] ,

(1)

where 1 ≤ position ≤ 20.
The categorical feature 𝐶(𝑎position𝑎position+1) is calculated

using the following formula:

𝐶 (𝑎position𝑎position+1) = (𝑓 − 1) × 4 + 𝑠, (2)

where

𝑓 =

{{{{{{{{{{{{{{{{{{{{{

1 if 𝑎position = “𝐴”
2 if 𝑎position = “𝑈”

or 𝑎position = “𝑇”
3 if 𝑎position = “𝐺”
4 if 𝑎position = “𝐶”,

http://www.jlucomputer.com:8080/RNA/
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Table 1: Primary dinucleotides with minimal 𝑝 value.
Position Dinucleotide

motif
Freq
(𝑃) Freq

(𝑁) Type of corr. 𝑝 value
1 UU1 178/1218 25/1213 Positive 9.45𝑒 − 30

GG1 36/1218 159/1213 Negative 1.52𝑒 − 20
2 UA2 73/1218 32/1213 Positive 4.62𝑒 − 5

GC2 48/1218 96/1213 Negative 3.26𝑒 − 5
3 AA3 76/1218 53/1213 Positive 0.0397

CC3 57/1218 91/1213 Negative 0.0036
4 UU4 111/1218 69/1213 Positive 0.0013

CC4 60/1218 107/1213 Negative 0.0001
5 AU5 94/1218 56 /1213 Positive 0.0015

CC5 66/1218 102/1213 Negative 0.0036
6 UU6 117/1218 63/1213 Positive 3.19𝑒 − 5

CC6 47/1218 110/1213 Negative 1.63𝑒 − 7
7 UU7 104/1218 67/1213 Positive 0.0036

CA7 70/1218 120/1213 Negative 0.0001
8 CG8 32/1218 51/1213 Negative 0.0323
9 CA9 108/1218 66/1213 Positive 0.0010

GU9 56/1218 84/1213 Negative 0.0138
10 AU10 101/1218 62/1213 Positive 0.0017

CC10 63/1218 96/1213 Negative 0.0062
11 AA11 74/1218 46/1213 Positive 0.0094

GG11 78/1218 111/1213 Negative 0.0114
12 CG12 32/1218 56/1213 Negative 0.0086
13 AU13 108/1218 65/1213 Positive 0.0008

GG13 59/1218 114/1213 Negative 1.22𝑒 − 5
14 UU14 105/1218 72/1213 Positive 0.0108

GG14 60/1218 110/1213 Negative 6.10𝑒 − 5
15 CA15 113/1218 74/1213 Positive 0.0033

GG15 72/1218 108/1218 Negative 0.0048
16 AC16 82/1218 46/1213 Positive 0.0012

GG16 68/1218 137/1213 Negative 3.82𝑒 − 7
17 AC17 80/1218 45/1213 Positive 0.0014

GA17 51/1218 95/1213 Negative 0.0002
18 UC18 114/1218 69/1213 Positive 0.0006

AA18 29/1218 87/1213 Negative 2.76𝑒 − 8
19 CU19 124/1218 53/1213 Positive 3.23𝑒 − 8

AC19 30/1218 63/1213 Negative 0.0004
20 UG20 146/1218 67/1213 Positive 1.59𝑒 − 8

CC20 52/1218 101/1213 Negative 3.73𝑒 − 5
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Table 2: Primary trinucleotides with minimal 𝑝 value.
Position Trinucleotide

motif
Freq
(𝑃) Freq

(𝑁) Type of corr. 𝑝 value
1 UUG1 52/1218 5/1213 Positive 9.48𝐸 − 10

GGG1 4/1218 50/1213 Negative 1.90𝐸 − 10
2 UUA2 14/1218 4/1213 Positive 0.0184

GCC2 10/1218 33/1213 Negative 0.0004
3 AUU3 28/1218 9/1213 Positive 0.0009

CAC3 9/1218 29/1213 Negative 0.0005
4 UAU4 19/1218 5/1213 Positive 0.0021

CCA4 19/1218 41/1213 Negative 0.0019
5 AUU5 29/1218 11 /1213 Positive 0.0021

CCC5 6/1218 30/1213 Negative 2.59𝐸 − 05
6 UUU6 40/1218 12/1213 Positive 4.53𝐸 − 05

CCA6 10/1218 41/1213 Negative 5.20𝐸 − 06
7 UCU7 37/1218 18/1213 Positive 0.005

CGU7 3/1218 16/1213 Negative 0.0013
8 ACA8 29/1218 13/1213 Positive 0.0066

AAU8 8/1218 28/1213 Negative 0.0004
9 CAA9 26/1218 7/1213 Positive 0.0004

AUU9 12/1218 30/1213 Negative 0.0024
10 ACA10 35/1218 11/1213 Positive 0.0002

CGA10 2/1218 12/1213 Negative 0.0036
11 CUA11 32/1218 13/1213 Positive 0.0022

GCG11 6/1218 23/1213 Negative 0.0007
12 AUU12 30/1218 11/1213 Positive 0.0014

GGG12 9/1218 31/1213 Negative 0.0002
13 UUU13 33/1218 16/1213 Positive 0.0074

CCG13 6/1218 20/1213 Negative 0.0028
14 CCA14 36/1218 16/1213 Positive 0.0026

CCC14 6/1218 21/1213 Negative 0.0018
15 UAU15 16/1218 4/1213 Positive 0.0036

UGG15 19/1218 46/1218 Negative 0.0003
16 ACU16 31/1218 12/1213 Positive 0.0018

CGA16 1/1218 10/1213 Negative 0.0032
17 CUG17 49/1218 21/1213 Positive 0.0004

GUU17 9/1218 34/1213 Negative 5.57𝐸 − 05
18 UCU18 43/1218 11/1213 Positive 5.54𝐸 − 06

AAA18 8/1218 28/1213 Negative 0.0004
19 CUG19 61/1218 16/1213 Positive 9.70𝐸 − 08

AGA19 7/1218 31/1213 Negative 4.05𝐸 − 05
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𝑠 =

{{{{{{{{{{{{{{{{{{{{{

1 if 𝑎position+1 = “𝐴”
2 if 𝑎position+1 = “𝑈”

or 𝑎position+1 = “𝑇”
3 if 𝑎position+1 = “𝐺”
4 if 𝑎position+1 = “𝐶”.

(3)

Then, the feature vector𝑋3NT, which includes 19 categor-
ical features, is extracted from the trinucleotides of siRNA as
follows:

𝑋3NT = [𝐶 (𝑎1𝑎2𝑎3) , . . . , 𝐶 (𝑎position𝑎position+1𝑎position+2) ,
. . . , 𝐶 (𝑎19𝑎20𝑎21)] ,

(4)

where 1 ≤ position ≤ 19.
The categorical feature 𝐶(𝑎position𝑎position+1𝑎position+2) is

calculated using the following formula:

𝐶 (𝑎position𝑎position+1𝑎position+2)
= (𝑓 − 1) × 16 + (𝑠 − 1) × 4 + 𝑡, (5)

where

𝑓 =

{{{{{{{{{{{{{{{{{{{{{

1 if 𝑎position+1 = “𝐴”
2 if 𝑎position+1 = “𝑈”

or 𝑎position+1 = “𝑇”
3 if 𝑎position+1 = “𝐺”
4 if 𝑎position+1 = “𝐶”,

𝑠 =

{{{{{{{{{{{{{{{{{{{{{

1 if 𝑎position+1 = “𝐴”
2 if 𝑎position+1 = “𝑈”

or 𝑎position+1 = “𝑇”
3 if 𝑎position+1 = “𝐺”
4 if 𝑎position+1 = “𝐶”,

𝑡 =

{{{{{{{{{{{{{{{{{{{{{

1 if 𝑎position+1 = “𝐴”
2 if 𝑎position+1 = “𝑈”

or 𝑎position+1 = “𝑇”
3 if 𝑎position+1 = “𝐺”
4 if 𝑎position+1 = “𝐶”.

(6)

2.3.2.Thermodynamic Stability. Thethermodynamic stability
of siRNAmay influence the strand selection in the process of
RNAi; thus it would influence the RNAi activity [23].Δ𝐺duplex
is the sum of all the siRNA local duplex stability. The siRNA
local duplex stability is calculated for every two base pairs
along the siRNA duplex and the thermodynamic parameters

for calculations were supplied by Xia et al. [29]. The ΔΔ𝐺 is
the Δ𝐺 difference of duplex formation at the 5󸀠 and 3󸀠 ends of
siRNA for 5 terminal nucleotides.

2.3.3. Nucleotide Representation. Preferred nucleotides at
specific positions are important indicators for activity predic-
tion [21]. For example, the nucleotides at the first position
of potent siRNAs were most often 𝐴 or 𝑈, while 𝐶 often
appeared at positions 7 and 11 in nonpotent siRNAs [11,
20]. We defined the siRNA as a 21-dimensional vector and
indicated the nucleotides at all positions.𝐴,𝑈,𝐺, and𝐶were
digitized as 0.1, 0.2, 0.3, and 0.4.

2.3.4. Nucleotide Compositions. The compositions of short
motifs of 1–3 nt in siRNA and mRNA contained relevant
information for activity prediction [30, 31]. There are 4, 16,
and 64 possible subsequences for all 1-mer, 2-mer, and 3-
mer RNAs, respectively.Thus, there are 168 features extracted
from nucleotide compositions.

2.4. Model Construction. Random Forest (RF) [32] is an
ensemble learningmethod for classification and regression by
growing a collection of trees. In the process of regression, the
trees are constructed using a training set with 𝑀 variables.𝑚 variables from these𝑀 input variables are selected for the
construction of an individual tree. The mean prediction of
the individual tree will be output when the testing samples
are pushed down these trees. Because the RF algorithm can
randomly select features to build the ensemble of trees, it has
stronger robustness than other methods. In this paper, the
RF algorithm was used to develop siRNA activity prediction
model.

2.5. Feature Selection. We combined 39 2-3NTs, 2 ther-
modynamic stabilities, 21 nucleotide representations, and
168 nucleotide compositions to obtain a 230-dimensional
feature vector. Since the contributions of these features are
different, we proposed BSFS algorithm based on RF-variable
importance to select the optimal feature set. The process of
the algorithm is shown as follows.

Firstly, all features are ranked in descending order accord-
ing to its 𝑧-score. The 𝑧-score is calculated by the RF
algorithm to measure the feature importance [32]. To get the𝑧-score, Variable Importance (VI) should be first calculated.

VI of the 𝑗th variable was calculated according to the
mean decrease in classification accuracy after permuting
values of variable 𝑥𝑗 over all trees. The VI(𝑥𝑗) of each tree𝑡 is computed as follows:

VI(𝑡) (𝑥𝑗) =
∑
𝑖∈𝛽
(𝑡) 𝐼 (𝑦𝑖 = 𝑦̂(𝑡)𝑖 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽
(𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− ∑𝑖∈𝛽(𝑡) 𝐼 (𝑦𝑖 = 𝑦̂
(𝑡)
𝑖,𝜋𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽
(𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,
(7)
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Input: A data set 𝐿 = {(𝐹𝑙(𝑚), 𝑦𝑙)}𝑛1 , where 𝐹𝑙(𝑚) = {𝑓1, 𝑓2, . . . , 𝑓𝑚} is the feature set extracted from siRNA
sequence and 𝑦𝑙 is the experimentally determined siRNA activities. The features of 𝐹 are first sorted
by the variable importance 𝑧-score in descending order. The initial value of min and max are 1 and𝑚,
respectively.
Output: optimal features 𝑂(𝑘) = {𝑓1, 𝑓2, . . . , 𝑓𝑘}.

The dataset 𝐿 is divided into ten parts. Nine parts are used as the training set and the rest are used as
a testing set. We build a Random Forest model using the feature set 𝐹𝑙(𝑚) and the training set and then
predict the testing siRNAs using the model. The correlation coefficient between the observed and predicted
siRNA activities is Corr1.
𝑘 = (max +min)

2
whilemax > 𝑘 and min < 𝑘 do

Calculate the prediction accuracy Corr2 using 𝐿 = {(𝐹𝑙(𝑘), 𝑦𝑙)}𝑛1 according to the first step.
If Corr2 > Corr1 then

Corr2 = Corr1
max = 𝑘

elsemin = 𝑘
end if
𝑘 = (max +min)

2
end while𝑂(𝑘) = {𝑓1, 𝑓2, . . . , 𝑓𝑘}.

Algorithm 1: The calculation process of threshold 𝑘.

where 𝛽(𝑡) is OOB samples of tree 𝑡.
𝑦̂(𝑡)𝑖 = 𝑓(𝑡) (𝑥𝑖) , (8)

where 𝑥𝑖 is the variable value and 𝑦̂(𝑡)𝑖 is predicted class before
permutation.

𝑦̂(𝑡)𝑖,𝜋𝑗 = 𝑓(𝑡) (𝑥𝑖,𝜋𝑗) , (9)

where 𝑥𝑖,𝜋𝑗 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑗−1, 𝑥𝜋𝑗(𝑖),𝑗, 𝑥𝑖,𝑗+1, . . . , 𝑥𝑖,𝑝) is the
variable value after randomly permuting the 𝑗th variable and
𝑦̂(𝑡)𝑖,𝜋𝑗 is the predicted class after permutation.

Please note that if𝑋𝑗 is not in the tree 𝑡, thenVI(𝑡)(𝑥𝑗) = 0.
Over all trees, VI(𝑥𝑗) is defined as follows:

VI (𝑥𝑗) = ∑
𝑛 tree
𝑡=1 VI(𝑡) (𝑥𝑗)
𝑛 tree , (10)

where 𝑛 tree is the number of trees in the Random Forest.
Finally, the 𝑧-score of the 𝑗th feature is defined as follows:

𝑧-score𝑗 = VI (𝑥𝑗)
𝜎̂/√𝑛 tree , (11)

where 𝜎̂ is the standard deviation of the raw importance.
Secondly, the first 𝑘 features are selected as the optimal

features. Set 𝑘 < 𝑚 and the calculation process of threshold 𝑘
is summarized in Algorithm 1.

2.6. Model Performance Evaluation. As a validation step, we
used the Pearson Correlation Coefficient (PCC) to describe

the correlation between experimentally determined and pre-
dicted siRNA activity. It may be defined as follows:

PCC = 1
𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋𝜎𝑋 )(𝑌𝑖 − 𝑌𝜎𝑌 ) , (12)

where 𝑛 is the sample size and𝑋 and 𝜎𝑋 are the average value
and standard deviation, respectively.

In addition, the Receiver Operating Characteristic (ROC)
curve is applied to illustrate the performance of a binary
classifier system by plotting sensitivity (𝑌 axis) against 1 −
specificity (𝑋 axis) at various threshold settings.

Sensitivity = TP
(TP + FN) ,

Specificity = TN
(TN + FP) ,

(13)

where TN is the number of true negatives, FN is the number
of false negatives, TP is the number of true positives, and FP
is the number of false positives.

The area under the ROC curve (AUC) is a single mea-
surement of the algorithm’s overall performance, and AUC
of 1 and 0.5 represents perfect classification and random
classification, respectively.

3. Results and Discussion

3.1. Performance of the 2-3NTs Features. To investigate the
importance of di- and trinucleotides of siRNA, we learn
two RF regression models trained using Huesken train and
tested on Huesken test. “model 1” is constructed with 2
thermodynamic stabilities, 21 nucleotide representations, and
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Figure 1: Comparison between model 1 and model 2. Observed siRNA activities of the Huesken test are plotted against predicted siRNA
activities by model 1 (a) and model 2 (b).

168 nucleotide compositions, which are often used for siRNA
activity prediction [24]. Then, “model 2” which extended
“model 1” by considering 39 2-3NTs was constructed for
comparisons.

The experimental prediction results are shown in Figure 1,
and the PCC between the observed and predicted siRNA
activities formodel 1 andmodel 2 are 0.671 and 0.704, respec-
tively. The prediction efficacy achieved 4.92% improvement
after adding the new proposed features. It validates that 2-
3NTs are important features for the prediction of siRNA
activity.

3.2. Feature Selection Result. The optimal feature set is
obtained by our proposed BSFS algorithm.The details of this
algorithm are shown in Section 2.5.

Table 3 shows the threshold “𝑘” and the prediction accu-
racy “PCC” of our model with the top 𝑘 features for all steps.
The results show that, when 𝑘 = 57, the PCC of our model
reaches a maximum of 0.722. Thus, we choose 𝑘 = 57 as the
threshold of the feature selection algorithm.

As shown in Figure 2, 57 features are selected by the
BSFS algorithm and ranked in descending order according
to 𝑧-score.The higher the 𝑧-score, the stronger the predictive
ability of the feature. There are ten features proposed by our
paper in the selective feature set, including the trinucleotides
at positions 1, 2, 7, 18, and 19 and the dinucleotides at positions
1, 2, 8, and 19. Significantly, Takahashi noted the terminal bps
of RNA (positions 19–21) provide Argonaute protein binding
sites [26]. Our results show that “CUG” occurred most often
at this position in potent siRNAs. The Argonaute protein
is the endonuclease of RNA-induced silencing complexes
(RISC) and cleaves the target mRNA whose sequence is
complementary to the guide strand of siRNA [26]. We
consider that, because the trinucleotide at position 19 is the
binding site of the Argonaute protein, it will influence siRNA
activity. However, further experiments are needed to validate

Table 3: The performance of our model with the top 𝑘 features.
Number of features (𝑘) Pearson Correlation

Coefficient (PCC)
1 230 0.705
2 230/2 = 115 0.713
3 115/2 = 57 0.722
4 57/2 = 28 0.712
5 28 + (57 − 28)/2 = 42 0.720
6 42 + (57 − 42)/2 = 49 0.721
7 49 + (57 − 49)/2 = 53 0.721
8 53 + (57 − 53)/2 = 55 0.719
9 55 + (57 − 55)/2 = 56 0.721

if theArgonaute protein prefers to bind to potent siRNAswith
specific trinucleotides at position 19.

Some other features previously proven to be associated
with silencing efficacy are selected, including the nucleotides
at positions 1, 2, 7 and 19; thermodynamic stability Δ𝐺duplex
and ΔΔ𝐺; and U%, GGG%, C%, G%, CC%, GG%, GGC%,
UGA%, CG%, GCC%, UC%, ACU%, UUC%, AA%, UU%,
CGG%,AUG%,AG%, andAGA%of siRNA; AAU%,UUG%,
GGG%, AAA%, ACA%, GU%, GCA%, CGU%, GCU%,
CU%, GC%, CCG%, AGU%, CGA%, UA%, AU%, UAU%,
UAA%, CUC%, GCG%, CUU%, AUU%, and CAU% of
mRNA. Graphical boxplots are shown in Figure 3 to display
the spread of potent and nonpotent siRNAs for the top 15
features.

3.3. Comparison of Algorithms. After finding the optimal
feature set, the final model, siRNApred, was created. The
parameters 𝑁 and𝑀𝑡𝑟𝑦 are the number of decision trees to
be grown in the forest and the number of variables to split
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Figure 2: The 57 features selected by the BSFS method.

at each node, respectively. The default 𝑁 and𝑀𝑡𝑟𝑦 are 500
and 𝐷/3. 𝐷 is the number of features. To find the optimal
parameters, we used a grid search method with the step size
of 100 and 1. The final results are 𝑁 = 1000 and 𝑀𝑡𝑟𝑦 =24. The PCC between the observed and predicted siRNA
activities of our model with these parameters is 0.722, which
is a 1.7% improvement compared to the model with default
parameters. However, the results are not sensitive to 𝑀𝑡𝑟𝑦
over the range 24–30 according to our experimental results.

To test the performance of siRNApred, we compared our
model with the most state-of-the-art methods for siRNA
activity prediction recently reported in the literature. Two
experiments were carried out in the same conditions and the
comparative evaluation is as follows.

First, our method was compared with Biopredsi [20],𝑖-score [23], ThermoComposition-21 [21], and DSIR [22].
All the algorithms were trained using Huesken train and
tested on Huesken test. Table 4 shows that the PCC between

Table 4: PCC between observed and predicted siRNA activities for
five algorithms.

Method PCC (𝑟)
Biopredsi 0.660
𝑖-score 0.654
ThermoComposition-21 0.659
DSIR 0.670
siRNApred 0.722

observed and predicted siRNA activities of our model tested
on Huesken test is 0.722, which is 9.39%, 10.39%, 9.56%, and
7.76% higher than the other four algorithms.

In addition, the ROC curves combining both sensitivity
and specificity of the five methods are plotted (Figure 4). For
ROC analysis, siRNAs that produce at least 70% target gene
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Figure 3: Boxplots of the top 15 features. For each plot, the left side represents potent siRNAs, and the right side represents nonpotent siRNAs.
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Figure 4: ROC curves of the five algorithms.

knockdown were accepted as active siRNAs, and those below
70% were considered inactive siRNA. We calculated an AUC
of 0.898 for our model, which is better than those obtained
from Biopredsi, 𝑖-score, ThermoComposition-21, and DSIR.

In siRNA design, more inactive siRNAs predicted as
active siRNAs will increase the experimental cost, so siRNA
design tools are expected to be capable of rejecting as many
false positives as possible and retain themaximumnumber of
true positives. Consequently, we should focus on the area that
has higher specificity and compare the sensitivities among
different algorithms in this area. Figure 4 shows that in
the higher specificity area, siRNApred outperforms all other
algorithms. Table 5 shows two group sensitivities of all the
algorithms. When the specificity of all algorithms is 96.5%,
the sensitivity of ourmethod is 51.9%.Thevalue is higher than
Biopredsi, 𝑖-score,ThermoComposition-21, and DSIR, which
is 16.3%, 24.4%, 28.9%, and 20%, respectively. Ourmodel also
performs best when the specificity of all the algorithms is
99.1%. The results demonstrate that our method had more
advantages than the other four algorithms for siRNA design.

A second experiment was conducted to compare our
model with the other nine models, including the first-
generation siRNA design algorithms Reynolds [11], Ui-Tei
[14], Amarzguioui [12], Katoh [9], Hsieh [33], and Takasaki
[34] and the second-generation algorithms Biopredsi, 𝑖-score,
ThermoComposition-21, and DSIR. All the algorithms were
trained on Huesken train and tested on the three indepen-
dent datasets of Vickers, Reynolds, and Harborth.

Figure 5 shows that siRNApred achieves the highest PCC
compared to all nine models on all three independent testing

Table 5:The five algorithms’ sensitivities in the high specificity area.

Method
Sensitivity
(96.5%

specificity)

Sensitivity
(99.1% specificity)

siRNApred 51.9% 29.6%
Biopredsi 16.3% 8.1%
𝑖-score 24.4% 6.7%
ThermoComposition-21 28.9% 18.5%
DSIR 20.0% 10.4%

datasets and obtained a higher AUC except when tested on
Vickers’ dataset. Otherwise, siRNApred producesmore stable
results across each of the independent siRNA datasets. In
addition, the results show that both the PCC and AUC of the
first-generation siRNA design algorithms are lower than the
second-generation algorithms.

It was found that siRNApred is more stable and effective
than other models in the two experiments. The reason may
be that our model takes account into the influence of di- and
trinucleotides and removes several redundant features. The
comparison results demonstrated that prediction accuracy
can be improved significantly when considering the 2-3NTs
of siRNA guide strand.

4. Conclusions

Activity prediction of siRNA is a critical step for the suc-
cessful implementation of RNAi. In this study, we introduced
2-3NTs as our new features. A new mixed 230-dimensional
feature set was formed by combining 191 traditional fea-
tures and our 39 proposed features. Since there were many
potential features, the BSFS method based on RF-variable
importance was proposed to select the optimal feature set. A
total of 57 features were selected as input vectors of the RF
model to predict siRNA activity, and nine of our proposed
features were included. Significantly, the trinucleotide motif
at position 19 was included in the selected feature set, which
is the binding site of the Argonaute protein. We found that
“CUG” occurred most often at position 19 of potent siRNAs.
Further experiments are needed to validate if the Argonaute
protein prefers to bind to potent siRNAs possessing a specific
trinucleotide at position 19. Finally, we describe a highly
accurate and reliable tool called “siRNApred.” It can design
effective siRNAs for an input mRNA using an optimal feature
set. The experimental comparative evaluation on commonly
used datasets showed that siRNApred produced better results
than first-generation and second-generation siRNA design
methods. Consequently, we consider siRNApred a worthy
tool for efficient siRNA design.
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