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Abstract: The study investigates the effect of the content and size of wheat bran grains on selected
properties of a lignocellulosic biocomposite on a polyethylene matrix. The biocomposite samples
were made by injection method of low-density polyethylene with 5%, 10% and 15% by weight of
wheat bran. Three bran fractions with grain sizes <0.4 mm, 0.4–0.6 mm and 0.6–0.8 mm were used.
The properties of the mouldings (after primary shrinkage) were examined after their 2.5-year natural
aging period. Processing properties, such as MFR (mass flow rate) and processing shrinkage, were
determined. Selected physical, mechanical and structural properties of the produced biocomposite
samples were tested. The results allowed the determination of the influence of both the content of
bran and the size of its grains on such properties of the biocomposite as: color, gloss, processing
shrinkage, tensile strength, MFR mass flow rate, chemical structure (FTIR), thermal properties (DSC,
TG), p-v-T relationship. The tests did not show any deterioration of the mechanical characteristics of
the tested composites after natural aging.

Keywords: injection moulding; biomass waste; wheat bran; mechanical properties; thermal properties;
agricultural waste; lignocellulosic materials; polymer processing

1. Introduction

The use of composite polymer materials is now a common practice that allows adaptation of
material properties to even most demanding requirements of the automotive, electrical, aviation and
household industries [1,2]. Modifications of properties are most often made by mixing polymers with
various types of fillers or fibers [3]. The most popular in mass applications are mineral fillers such as
mica, talc, kaolin, wollastonite, calcium carbonate, silica and montmorillonite [4–6]. There are many
reasons for the high popularity of mineral fillers. These include relatively low price, availability, a large
range of sizes from micro to nano and a predictable and reproducible effect on the properties of the
final product. The main advantages of their use are higher stiffness and the reduction in processing
shrinkage and flammability—the properties that were a significant limitation for the use of unmodified
thermoplastic polymers [1,7]. However, due to growing ecological awareness and the increasing level
of environmental pollution, an increased interest in biocomposites based on biodegradable polymers
and containing fillers of natural origin has been observed for several years [8–10]. The practical use of
biodegradable polymers, such as polylactide or thermoplastic starch, is still limited. The reason is the
rigorous and technically difficult process of their production and processing, which results in a much
higher price than that of petrochemical plastics [11–13]. Therefore, an intensively developed trend in
the field of polymer processing is the use of natural fillers, which, in addition to their unique properties,
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allows the reduction in the consumption of polymer materials. This gives measurable benefits both in
the processing of biopolymers, by significantly reducing the price of the composite and allowing for
their wider use, and petrochemical polymers, by reducing environmental pollution [14–17].

All kinds of natural fillers used in polymer composite production are called lignocellulosic
materials due to their chemical structure [18]. They contain mainly cellulose, hemicellulose and lignin
as well as small amounts of fats, proteins and other substances, which is directly related to the structure
of plant cells [19,20]. The individual components differ from each other in terms of both their structure
and chemical composition, and therefore, they have different effects on the functional and processing
properties of composite materials [21]. The three main components of lignocellulosic materials differ
significantly in their thermal stability. Cellulose has the highest decomposition temperature, followed
by lignin, whereas hemicellulose has the lowest heat resistance [22]. Thus, from the point of view of
processing polymer composites, it is advantageous to choose fillers with a predominant amount of
cellulose, as they will show better thermal stability [21–23]. However, cellulose chains can create both
crystalline and amorphous structures, which differ in properties [18,24]. As a rule, amorphous cellulose,
similar to hemicellulose, is characterized by a more intensive absorption of moisture and a lower
decomposition temperature, which in turn makes it more susceptible to degradation [25]. Moreover,
it has been proved that the share of individual lignocellulose components significantly influences its
mechanical characteristics and, consequently, the properties of composite materials [26,27].

The strong relationship between the properties and the chemical composition triggered an
intensive search for new natural fillers, which, apart from reducing production costs and limiting
the consumption of polymer materials, will enable the production of biocomposites with the desired
properties [28]. Initially, wood dust dominated in the production of polymer biocomposites with
natural fillers, but despite the possibility of a high degree of filling, the price of polymer-wood
composites is still relatively high [29,30]. This led to the emergence of a strongly developing
trend of producing lignocellulosic biocomposites with the use of various types of natural waste from
agriculture, which allows for solving some of the problems related to their disposal [13,31,32]. Currently,
technological wastes from wood, agricultural and food industries are considered a valuable source of
natural fillers in the production of polymer composites with unique properties [33]. According to the
literature data, the lignocellulosic materials used as fillers are classified according to their origin and
botanical functions, including bast, leaves, seeds, fruit, wood, stems and grasses [33,34]. Additionally,
technological waste from the food industry can also be used, for example, crushed walnut shells [35,36],
hazelnut [37] and peanut [36], coffee grounds [26], rice bran [36,38] and wheat [30,39] or sugar cane
bagasse [40].

The use of biofillers obtained from natural waste provides obvious benefits, such as reducing the
consumption of petrochemical polymers [41], rapid degradation in environmental conditions [42,43],
lower price [44], lower density [45], reduction in tribological wear of processing tools [45,46] and
higher availability [47] compared to mineral fillers. It also happens that the use of specific types
of biofillers provides unique properties, such as increasing the dielectric strength [48] or reducing
oxygen permeability [49]. The most commonly used methods of processing polymer composites with
a natural filler are extrusion and injection. By extrusion, both finished products from lignocellulosic
composites and composite granules, which are the input material for subsequent processing, are
produced [45,50]. The use of lignocellulosic fillers causes a number of limitations that hinder the
processing of composites with the above-mentioned methods. The most important are low thermal
stability and hygroscopicity [51,52].

Thermal stability determines the allowable processing temperature, as the thermal decomposition
of the filler has a negative impact on the mechanical and visual properties of the finished products.
Therefore, biofillers are not suitable for the production of composites based on polymers with a high
melting point [53]. One should also take into account autothermal phenomena caused by intense
shearing in the plasticizing systems of extruders and injection moulding machines, which increase
the temperature of the material above the set temperature [54]. Therefore, the most commonly used
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petrochemical material for the production of biocomposites is polyethylene, due to its very good
processing characteristics and the possibility of effective processing at low temperatures, even below
150 ◦C [55,56]. It is related to the temperature of hemicellulose decomposition, which runs in the range
of 150–350 ◦C [57]. On the other hand, from the group of biodegradable polymers, the most frequently
used is polylactic acid (PLA) [58], which requires appropriate preparation or selection of the filler
due to the higher processing temperature. The literature describes methods of increasing the thermal
stability of lignocellulose even up to 260 ◦C by separating the least thermally resistant components and
using acid hydrolysis to remove amorphous cellulose [23,59], but these are complex procedures that
eliminate the economic aspect of using cheap natural fillers.

The hydrophilic nature and the ability to intensively absorb moisture constitute further difficulties
in the design and production of biocomposites. Hydrophilicity limits the force of interactions at the
interface when filling hydrophobic materials [60,61]. This leads to difficulties in the proper distribution
of the filler in the matrix and the formation of agglomerates, deterioration of mechanical properties and
lack of repeatability in the final products [62,63]. The solution may be the use of compatibilizers and
chemical modifications of the filler [64,65], but these adversely affect the economy of production and are
not always proecological solutions [66–68]. In the case of most biodegradable polymers, the problem
of polarity does not occur, but most of these plastics are highly hygroscopic, similar to lignocellulosic
fillers [69]. The moisture content makes processing much more difficult, leading to the formation of
pores, surface collapses and dimensional deviations, an increase in pressure in the plasticizing systems
of processing machines, and may accelerate the wear of their working elements [18,52]. Research shows
that full soaking of biocomposites with a natural filler based on polyethylene, when fully immersed in
water, may take up to several dozen hours [70]. Thus, removing the moisture found in the structure
of such a composite requires a sufficiently long drying procedure. Composite granules produced by
extrusion and intended for further processing require storage in special bags, processing immediately
after opening, the use of containers with a drying function and plasticizing systems with degassing,
what may constitute additional difficulties [71,72].

From the processing point of view, several other disadvantages of lignocellulosic fillers can be
listed. One of them is the deterioration of the processability in relation to unfilled plastic [70], caused
by the increase in viscosity along with the increase in the filler content [73,74]. This results in a
reduction in the efficiency of the process and an increased load on drive systems or the need to use
additives facilitating processing [50,70]. Moreover, biofillers are characterized by variations in their
chemical composition and structure, depending on geographic and climatic factors, which in turn
causes variability in the mechanical and processing characteristics of biocomposites [13,33]. The quality
and composition of biofillers depend on the exposure of the lignocellulosic material to many factors,
which can be divided into four stages: plant growth, harvesting stage, obtaining the filler, transport
and storage [45,75]. An additional effect of the use of biofillers is their influence on the look of the
final product, its color and surface structure [70]. Sometimes this may be a desired characteristic effect,
but otherwise, it will require the use of dyes or pigments [55].

The production of polymer biocomposites with lignocellulosic fillers has many advantages, but at
the same time is technically difficult and requires the special design of both the composition and
processing. Ecological considerations support the idea of the constant search for new natural fillers
using the available natural waste resources. On the other hand, the study of processing aspects
allows the determination of the usefulness of new fillers and the development of a technology for
producing biocomposites with their use. Therefore, the aim of the presented study was to investigate
selected properties of biocomposites based on low-density polyethylene with the addition of wheat
bran. The presented research included the determination of the processing characteristics of the tested
biocomposites by injection method, determination of the influence of wheat bran on the thermal
properties and visual features of the tested composition, and the assessment of the influence of bran on
the mechanical characteristics of the composition over long periods of time.
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2. Experimental Conditions

2.1. Test Stand

Measurement samples in the form of spatulas were made using a CS-88/63 screw injection moulding
machine (Vihorlat Snina n.p., Snina, Słowacja), equipped with a mould with two cavities, shaped and
sized according to the EN ISO 294-1: 2017-07 [76] standard with pinpoint gates. The injection process
was carried out in accordance with the technological parameters presented in Table 1 by introducing a
premixed polyethylene (PE) powder with bran without adding any proadhesive. Due to the risk of
thermal decomposition of lignocellulose components, resulting in intense gas release, low temperatures
were used during the process.

Table 1. Technological parameters of the injection process.

Parameter Unit Value

Injection pressure MPa 100

Temperature of heating zones in plasticising system ◦C
I—105
II—130
III—140

Injection nozzle temperature ◦C 150

Mould temperature ◦C 40

Injection cycle time s 30

Cooling time in mould s 20

2.2. Materials

The test samples were made according to a low-density polyethylene injection method with a
wheat bran filler from a local mill near the city of Lublin (Poland). The polyethylene powder Dowlex
2631.10UE [77], manufactured by The DOW Chemical Company (Schkopau, Germany), was used.
This material is intended for the injection of elements which require high dimensional accuracy and for
the rotational casting of thin-walled elements.

The polyethylene was filled with wheat bran obtained from a local mill i.e., wheat grain shells,
which are separated as waste when the grains are ground into white wheat flour. They consist mainly
of crude fiber, which includes fibrous substances such as cellulose, lignin and hemicellulose. Other
ingredients of wheat bran are phytic acid, oligosaccharides, nonstarch polysaccharides as well as fats
and proteins [70,78].

2.3. Research Programme and Methodology

Before use, the bran was ground into a fine powder in a grinding mill, and then subjected to a
drying procedure in a laboratory drier for 24 h at 50 ◦C. Then, using a shaker equipped with a column
of sieves with a mesh size of 0.8, 0.6 and 0.4 mm, three fractions with grain sizes < 0.4 mm, 0.4–0.6 mm
and 0.6–0.8 mm were separated.

The experimental studies were carried out according to the complete plan, in which the following
variable factors were adopted:

(1) Content by weight of bran: 0%, 5%, 10%, 15%;
(2) The grain size of the bran fraction used <0.4mm, 0.4–0.6 mm and 0.6–0.8 mm.

In order to produce the measurement samples, polyethylene powder and individual fractions
of ground wheat bran in the amount of 5%, 10% and 15% by weight were mechanically mixed in a
planetary mixer and then injected under the conditions given in Table 1. As a result, nine measurement
series of biocomposite samples were obtained and one control series of unfilled polyethylene.
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Some of the samples were tested 24 h after their production, while the rest only after the natural
aging process. The samples were subjected to natural aging as a result of storage for 2.5 years in a dark
room at a temperature of 20–25 ◦C and a humidity of about 55%, where they were not exposed to UV
radiation or any chemicals.

The conducted experimental studies included:

• Observation of the sample surface with the optical microscope (Nikon, Tokyo, Japan), model
Eclipse LV100ND equipped with a DS-U3 camera using the NIS-Elements AR 4.20.00 software
(Nikon, Tokyo, Japan). The transmitted light method was used for observation. Observations
were made at three points of the sample, marked in Figure 1. All samples were observed in
identical magnification and illumination parameters.
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Figure 1. Scheme of sample measurement with marked points where microscopic observations as
well as color and gloss measurements were carried out: IP—injection point; A—gate side; M—middle;
B—opposite side of the gate.

• Measurement of the color of samples in accordance with ASTM E308 [79], for which the Ci4200
spectrophotometer (X-Rite, Grand Rapids, MI, USA) was used. The color is described in the
CIELab system, where it is defined in the L*, a*, b* area. Parameter a* describes the color from
green (negative values) to red (positive values); parameter b*, the color from blue (negative values)
to yellow (positive values); and parameter L* is luminance–brightness, representing the gray scale
from black to white (0 is black and 100 is white). The difference between the two colors—two
points in the three-dimensional space L*, a*, b* are described by the relationship:

∆E =
√

∆L2 + ∆a2 + ∆b2

where: ∆L, ∆a and ∆b, respectively, represent the difference in color parameters between the
compared samples. The measurements of the color of the injection mouldings were taken at points
A and B and marked in Figure 1;

• Measurement of the gloss of the surface of samples using the X - Rite Ci4200 spectrophotometer,
according to ISO 2813: 2001 [80] at an angle of 60◦ of the aperture of the image of the light source
and the receiver. Gloss of injection moulded parts was measured at points A and B, as marked in
Figure 1;

• Measurement of longitudinal processing shrinkage of samples according to ISO 294-4: 2005 [81];
• Determination of tensile strength σ (MPa), nominal elongation at maximum tensile stress ε (%)

and Young’s modulus (MPa) using Z010 testing machine (Zwick/Roell, Ulm, Germany) according
to ISO 527-2 [82] at a tensile speed of 50 mm/min;

• Determination of the mass melt flow rate MFR (150 ◦C/2.16 kg) in g/10 min. The measurement
was carried out using a load plastometer MeltFlow TQ6841 model (CEAST, Turin, Italy) based on
the recommendations of ISO 1133-1: 2011 using method A [83];

• Determination of the relationship between pressure p specific volume v and temperature T during
isobaric cooling in accordance with ISO 17744: 2004 [84]. The measurements were carried out with
the p-v-T 100 device from SWO Polymertechnik GmbH (Krefeld, Germany). The test samples
were heated to the maximum measurement temperature of 155 ◦C and compressed to the preset
pressure value (20, 40, 60, 80, 100 and 120 MPa). Then, the set pressure was kept constant and
the samples were cooled at a rate of 5 ◦C/min to a temperature of 35 ◦C while the changes in
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specific volume were measured, and the process was repeated for the next higher compression
pressure value.

• FTIR analysis of samples using a FTIR TENSOR 27 spectrophotometer (Bruker, Germany) equipped
with an attenuated total reflection (ATR) attachment with diamond crystal. Spectra were collected
in the range of 600–4000 cm−1 with 16 scans per sample with a resolution of 4 cm−1.

• Differential scanning calorimetry (DSC) tests of the obtained injection mouldings using the DSC
204 F1 Phoenix differential scanning calorimeter (NETZSCH, Günzbung, Germany) and the
NETZSCH Proteus data processing software (NETZSCH, Günzbung, Germany), according to ISO
11357-1: 2016 [85]. The DSC curves were recorded in the heating (I) cycle from −150 to 150 ◦C (at a
rate of 10 K/min), cooling from 150 to −150 ◦C (at a rate of 10 K/min) and heating (II) −150 to 150 ◦C
(at a rate of 10 K/min). The samples were tested in aluminium crucibles with a pierced lid. On the
basis of the DSC curves, the degree of crystallinity Xc, the enthalpy of melting ∆Hm, the melting
point Tm, the crystallization temperature and the glass transition temperature Tg of the injection
mouldings were determined. The degree of crystallinity was calculated from the relationship

Xc = (
∆H

(1− u) × ∆H100%
) × 100%

assuming that for PE ∆H100% = 293 J/g [86]. The inflection point of the DSC curve in the area of
the glass transition was taken as the glass transition temperature.

• Thermogravimetric analysis (TG), carried out using the STA 449 F1 Jupiter thermal analyzer
(NETZSCH, Günzbung, Germany). The tests were carried out at temperatures of 30–700 ◦C in an
atmosphere of synthetic air with a gas flow rate of 20 mL/min and the heating rate 10 ◦C/min.
The samples weighing about 10 mg were tested in crucibles made of Al2O3.

3. Results

The test results were statistically analyzed in the STATISTICA 13 program (StatSoft,
Tulsa, OK, USA). In order to determine whether there were significant differences between the
compared results, the ANOVA analysis of variance was used. Before that, the required assumptions,
such as the normality of the distribution of variables, were checked (W. Shapiro–Wilk test), and the
homogeneity of variance (Levene’s or Brown Forsythe’s tests). The Welch test was used in the few cases
where heterogeneity of variance was found. However, when the variables did not meet the condition
of normal distribution, the nonparametric Kruskal–Wallis test was used. When the above-mentioned
analyses confirmed the presence of statistically significant differences, the Tukey’s multiple comparison
test was performed. This test, called the posthoc test, enables the grouping of means and isolating
of homogeneous groups. The significance level p = 0.05 was adopted in the analyses. The obtained
results are presented in the form of graphs, in which the mean values and their standard deviations
were presented.

3.1. Visual Characteristics of Injection Mouldings

The results of the color and gloss measurements are shown in Figures 2–5. Color parameters L, a,
b of the injection mouldings are shown in Figures 2–4, grouped into the mass content and the grain size
of the introduced bran fraction. For comparative purposes, Figure 2 also shows the results obtained for
mouldings made of polyethylene alone. Measurements were carried out in two parts of the mouldings
marked at the measurement points (Figure 1), A—on the expansion of the mouldings on the side of
the plastic supply through the pinpoint gate and B—on the expansion of the mouldings on the side
opposite to the pinpoint gate, at the end of the moulding cavity. It was observed that introducing
5% bran content into polyethylene caused a distinct color change ∆E = 15.9–19.2. The color of the
samples changed towards the shades of yellow and red, and at the same time, the samples darken,
as evidenced by the decrease in the luminance L value. Differences in the color of the compacts related
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to the grain size of the introduced bran fraction were also observed. With the increase in the size of
the grains while maintaining the same mass content, the differences in color increased, starting from
the means 2 < ∆E < 3.5, recognizable by the inexperienced observer, through the clear differences
3.5 < ∆E < 5, and in some cases even large differences ∆E > 5. They are mainly caused by the darkening
of the samples, which is reflected in the decrease in luminance L. Within the individual bran fractions,
increasing their mass content from 5% to 10% caused a color change towards blue shades, and the
b parameter decreased. These changes can be classified from average ∆E = 2.2 for the smallest bran
fraction < 0.4 mm and ∆E = 3.6 for the 0.4–0.6 mm fraction, to large color changes ∆E = 6.9 at the
largest fraction 0.6–0.8 mm. A further increase in the content of bran from 10% to 15% had a much
smaller effect on the color change of the samples. In most cases, they fell within the range 1 < ∆E < 2,
which is recognizable only by an experienced observer.
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size of the bran fraction used, on the side of the material supply through the gate—A and on the side
opposite to the gate—B.

Large changes in color were found along the length of the mouldings—along the flow path of the
material (Figures 2–4), which was manifested by different values of the color parameters determined
for points A and B. The color of the mouldings became darker on the flow path, as evidenced by
the reduction in the luminance L, and changes towards shades of yellow, and parameter b increased.
The described differences were most pronounced in the case of the smallest fraction of bran with grain
size < 0.4 mm, where ∆E = 6 with 5% content and, respectively, ∆E = 8.9 and ∆E = 9.1 with 10% and
15% of bran content. In the case of the fractions with larger grains, the observed color differentiation
along the length of the mouldings was similar and amounted to approximately ∆E = 5.5—large color
differences. Most likely, it is related to the different position of the filler grains along the flow path of the
material. It is clearly seen in Figures 6–11 that with a growing distance from the injection point, more
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and more grains were located at the surface of the sample. Due to their structure, the bran can scatter
light rays, which is perceived as a decrease in the brightness at point B of the injection mouldings.
At this point, it should be noted that the influence of wheat bran on the color of biocomposites based
on polyethylene differs depending on their mass share. It is shown above that when filling with bran
up to 15% by mass, the color darkened with an increase in the bran content, which may be associated
with a gradual loss of transparency. On the other hand, with a much higher mass fraction of bran up to
50%, with the complete lack of transparency, increasing the mass fraction caused an increase in the
brightness of the color of biocomposites based on polyethylene [70].
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Figure 11. The appearance of individual parts of the injection moulding obtained with a 15% content
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points are marked in Figure 1).

Large changes in gloss were also observed along the length of the mouldings (Figure 5).
The addition of bran caused a significant reduction in the gloss of the mouldings on the side of
the plastic supply through the gate—point A. The gloss in this area from the value of 46 obtained for
PE alone decreased to an average of five for all tested fractions and bran content. This is largely due
to the presence of clear traces of the stream front of the material perpendicular to the direction of its
flow (photo A in Figures 6–11). These types of traces are most often caused by the pulsating flow of
the material, which occurs especially when processing multiphase mixtures of plastics. In this case,
the reason is the bran grains flowing through the pinpoint gate. For comparison, Figure 12 shows
the appearance of the moulding in point A, made of unfilled polyethylene. In the central part of
the mouldings (photo M in Figures 6–11), these marks take the form of longitudinal lines. At point
B of the part, the decrease in gloss value was much smaller. In this area (photo B in Figures 6–11),
the aforementioned traces were absent or barely visible. Posthoc analyses of the results of measurements
carried out in this area of mouldings showed that the smallest comparable decrease in gloss was caused
by a 5% addition of bran fractions with grain sizes of 0.4–0.6 mm and 0.6–0.8 mm. The largest decrease
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in gloss was observed for the fraction with the smallest grains < 0.4 mm in the range of 5%–15%.
Statistically comparable values were obtained for the highest 15% content of the bran fractions with
larger grains and 10% of the 0.4–0.6 mm fraction.
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3.2. Mass Melt Flow Rate

The results of the research on the mass flow rate MFR of samples taken from injection mouldings
are shown in Figure 13. Compared to polyethylene alone, for which MFR = 3.3 ± 0.1 g/10 min,
a statistically significant decrease in the index value occurred from 10% in the case of fractions
with grain size 0.4 mm and 0.4–0.6 mm, while for the 0.6–0.8 mm fraction from the content of 5%.
The decrease in the value of the mass melt flow rate with increasing the filler content is the obvious
effect of the increase in the viscosity of the composition due to the presence of fine particles dispersed
in the polymer matrix [50,73,87–89]. A clear proportional decrease in the MFR value was observed,
on average by 0.16 g/10 min with a 5% increase in the content of the two bran fractions 0.4 mm
and 0.4–0.6 mm. Statistical analysis showed that the results obtained with both of these fractions
are comparable. A greater decrease in the MFR value was observed for the fraction with a grain
size of 0.6–0.8 mm, which is 0.35 g/10 min with an increase in the content by 5%. With the highest
content of 15% of this fraction, the lowest MFR value was obtained and equalled 2.4 ± 0.07 g/10 min.
Compared to the remaining fractions with smaller grains with the same content, it was a decrease
by 0.48 g/10 min, while in relation to the lowest tested content of other fractions, it was a decrease
by as much as 0.8 g/10 min (25%). This proves a significantly limited composition flow by large bran
particles (0.6–0.8 mm) present in the fraction.Materials 2020, 13, x FOR PEER REVIEW 12 of 27 
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3.3. p-v-T Diagrams

The results of the research on the relationship between pressure p specific volume ν and
temperature T during isobaric cooling of the tested samples are shown in Figures 14–16.

Figure 14 shows the results for PE alone and with 5% bran content in the form of p-ν-T graphs,
while Figure 15 for polyethylene with 10% and 15% bran content.
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(continuous lines) content of the fraction < 0.4 mm of bran, at different pressure values.

The course of the curves obtained was similar, but it can be noticed that with increasing
pressure, a distinct shift towards higher temperature values underwent a phase change—crystallization
temperature, the curves of which corresponded to a rapid decrease in proper volume. The course of
the curves differed more for higher pressure values. In the case of polyethylene alone, the reduction in
the specific volume in the liquid state was from 0.002 cm3/g at the lowest pressure to 0.006 cm3/g at the
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highest pressure for each 10 ◦C during cooling. In the solid state, it was from 0.006 cm3/g at the highest
pressure to 0.011 cm3/g at the lowest pressure, for each 10 ◦C. For polyethylene with the highest content
of 15% bran, the reduction in the liquid specific volume was from 0.002 cm3/g at the lowest pressure to
0.0055 cm3/g at the highest pressure for each 10 ◦C reduction in temperature. However, in the solid
state, it was from 0.006 cm3/g at the highest pressure to 0.01 cm3/g at the lowest pressure, for each
10 ◦C. Therefore, it can be concluded that the rate of changes in the specific volume along with the
decrease in the temperature of PE itself and the examined content of bran is very similar. The specific
volume of all tested samples in the solid state decreased with the temperature decrease slightly faster
than in the liquid state.Materials 2020, 13, x FOR PEER REVIEW 14 of 27 
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Figure 16. Dependence of specific volume v on temperature T for PE with 15% content of bran
fraction < 0.4 mm (dashed lines), and 0.6–0.8 mm fraction (continuous lines) at different pressure values.

Due to the content of bran, the decrease in specific volume in the area of phase transformation
was clearly smaller, and due to the phase transformation taking place in a wider temperature range, it
became decreasingly clear. These changes increase with increasing pressure. The reduction in specific
volume as a result of cooling from 155 to 35 ◦C was at a pressure of 20 MPa for polyethylene 0.177 cm3/g
(decrease by 16.5%), and for polyethylene with 15%, bran 0.159 cm3/g (decrease by 15.4%), while at a
pressure of 120 MPa, 0.148 cm3/g (decrease by 14.2%) and 0.133 cm3/g (decrease by 13.3%).

The lower specific volume was that of polyethylene samples with the highest 15% bran content
of 0.996 cm3/g (at a temperature of 35 ◦C and a pressure of 120 MPa). Under the same conditions,
the specific volume of the samples with a content of 10% bran was 1.010 cm3/g, with a 5% hemline
content of 1.021 cm3/g, and polyethylene alone, 1.040 cm3/g.

There was no effect of the applied bran fraction in the studied range on the determined p-v-T
relationships. The obtained curves (Figure 16) with the highest 15% content of both fractions with
grain sizes < 0.4 mm and 0.6–0.8 mm had almost the same course, and small differences were included
in the measurement errors.

3.4. Chemical Structure

In order to verify the impact of the injection process and the addition of a different amount of
biofiller with different granulation on the chemical structure of polyethylene extrudate, an ATR-FTIR
analysis was performed. FTIR spectra made for brans (Figure 17) with different granulation were
identical. The presence of characteristic absorption bands on the spectra confirms that, regardless of
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their granulation, bran consists of polysaccharides, phenolic and lipid compounds and proteins, as well
as absorbed water [78]. The −OH groups present in polysaccharides, polyphenols and water gave an
absorption spectrum at 3311 cm−1. Vibrations of −OH groups from water absorbed by starch appeared
on the spectrum at 1648 cm−1 [90,91]; however, these broad absorption spectra may also come from
vibrations of carboxylate groups (present in the pectin structure), vibrations of phenyl rings (present in
polyphenols and lignin) and the amide C-N group present in proteins [91]. The absorption spectra at
1546 cm−1 resulting from the vibrations of the N-H amide group also indicate the presence of protein
in the bran composition [92]. The absorption spectra at 1743 cm−1 came from the vibration of the C=O
groups present in the carbonyl compounds building the structure of pectins and hemicellulose [91,93].
The presence of starch, cellulose, hemicellulose, pectin and lignin in the bran is confirmed by the
absorption spectra visible at 1150, 1078, 1017 and 999 cm−1, which came from the vibrations of the
C−O−C and C−O groups.
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On the other hand, the FTIR spectrum of polyethylene (Figure 17) showed characteristic absorption
spectra at 2916, 2849, 1471 and 1377 cm−1, resulting from stretching and deformation vibrations of
methylene groups. Additionally, the presence of the absorption spectra at 1377 cm−1 proves the
presence of branches in the structure of the linear PE. In the FTIR spectra of PE extrudate with bran
(Figure 17), absorption bands are observed in the spectra of both components. However, the absorption
bands were due to the vibrations of the C−O−C and C−O groups and were shifted slightly towards
higher wavenumbers.

3.5. Thermal Properties

In order to determine the effect of the amount of bran of various sizes on the glass transition
temperature, crystallization temperature, melting point and crystallinity of injection mouldings, tests
were carried out using differential scanning calorimetry. Table 2 presents numerical data characterizing
selected thermal properties and the level of crystallinity, calculated on the basis of DSC curves
(Figure 18). The glass transition temperatures of the samples determined from the first heating cycle
were noticeably higher than for pure PE. However, the Tg values determined for the samples from
the second heating cycle, after removing their thermal history, were almost identical for PE and for
samples filled with bran with the smallest granulation. Higher Tg values were maintained for samples
obtained from bran with higher granulation.
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Table 2. Glass transition, crystallization and melting temperatures and degree of crystallinity of
polyethylene and its composites with bran obtained on the basis of DSC tests.

Sample
Heating I Cooling Heating II

Tg
(◦C)

Tm
(◦C)

∆Hm
(J/g)

Xc
(%)

Tg
(◦C)

Tc
(◦C)

Tm
(◦C)

∆Hm
(J/g)

Xc
(%)

PE −109.1 126.5 161.6 55.2 −123.3 109.0 124.7 174.0 59.4

PE <04 5% −101.2 127.0 164.7 59.2 −123.9 108.0 124.8 168.7 60.6

PE <04 10% −102.1 128.2 157.4 59.7 −123.2 108.2 123.7 162.5 61.6

PE <04 15% −101.8 126.7 150.4 60.4 −123.3 108.3 123.8 153.0 61.4

PE 04–06 5% −97.8 128.3 161.1 57.9 −113.8 106.3 125.3 168.4 60.5

PE 04–06 10% −100.5 127.8 150.8 57.2 −112.5 106.3 124.7 155.8 59.1

PE 04–06 15% −100.9 128.6 146.8 59.0 −111.1 106.9 124.1 150.9 60.6

PE 06–08 5% −99.0 128.3 161.6 58.1 −115.0 106.7 126.4 172.6 62.0

PE 06–08 10% −97.8 126.9 164.6 62.4 −111.2 107.2 124.9 167.1 63.4

PE 06–08 15% −101.0 128.3 144.7 58.1 −112.0 107.9 124.7 153.6 61.7
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Compared to pure polyethylene, the melting point of the composites, determined from both the
first and second heating cycles, was slightly higher, whereas the crystallization temperature was lower.
More noticeable differences in Tm values were visible in the case of the first heating cycle. This increase
may indicate that the structure of the mouldings contains larger PE crystallites than in pure PE. On the
other hand, after cooling the samples and reheating, the internal structure was probably rearranged
and smaller PE crystallites formed, and thus the Tm of the extrudate is comparable to the Tm of pure
PE. On the other hand, the observed degree of crystallinity was clearly higher than for pure PE, and the
Xc values determined from the second heating cycle were greater than those from the first heating
cycle. In a previous work [70], the effect of bran addition on Xc of PE expeller was presented, and we
noticed that the Xc values were lower for the extrudate than for the initial PE. However, it should be
taken into account that the amount of biofiller used was much higher. Previously, it was as much as
50% of bran, whereas in this case, 5%–15% by weight was used. The hydrophilic structure of the bran,
mainly due to the presence of hydroxyl groups in their chemical structure, is not fully compatible
with the structure of PE chains, which probably hinders the formation of PE crystallites on the bran
surface [94]. However, when using up to 20% of bran, they act as a kind of separator. They separate
low-density polyethylene chains that have a significant amount of short-chain branching hindering
crystallization, allowing the formation of crystallites from long-chain PE fragments.

In the DSC curves (Figure 18), there was one more transition region in the temperature range
30–50 ◦C from the first heating cycle. The most visible phase transition in this temperature range was
shown by the extrudates containing the bran of the highest granulation. The lack of this transition in
the DSC curves from the second heating cycle may suggest that it is related to the local melting of
the smallest lamella areas, as postulated by the authors of the study [95]. A similar effect was also
observed for PE composites with halloysite nanotubes [96].
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The thermal stability of the obtained biocomposites was determined on the basis of a
thermogravimetric analysis carried out in an atmosphere of synthetic air. Figure 19 shows the
TG and DTG curves of bran with different granulation and PE and the samples obtained with 5% and
15% by mass of filler. On the basis of the TG curves, it can be concluded that the thermal resistance of
the bran is not influenced by its particle size. For all bran fractions, a 6% weight loss to the temperature
of about 150 ◦C was observed on the TG curves. This is related to water evaporation [70]. At the
temperature of about 170 ◦C, the TG curves of bran showed a loss in mass related to the processes of
their degradation. Under measurement conditions, polyethylene presented thermal stability up to
270 ◦C; therefore, when selecting the processing temperature, the thermal resistance of the biofiller
was of prime importance. Considering the TG curves of biocomposites containing bran with different
particle sizes, it can be concluded that both samples containing 5% by weight and 15% by weight of
bran are thermally stable up to about 250 ◦C. The first weight loss, whose maximum rate was observed
at about 290 ◦C, was related to the degradation of the biofiller. It was 5% for samples containing 5%
bran and 16% for samples containing 15% bran. Such a loss of mass was not observed on the TG
curve of pure PE, which was thermally more resistant than the tested composites. However, the course
of TG curves of pure PE and its composites is surprising. The rate of thermal decomposition of PE
was higher than for composites. An expression of this difference may be the temperature at which
50% of the sample decomposed (T50%). For PE, T50% was 406 ◦C, for composites containing 15%
bran with increasing particle size: 416, 421 and 424 ◦C, and for composites containing 5 bran: 421,
412 and 400 ◦C, respectively. Only the extrudate containing 5% bran with the largest grain diameter
had a lower T50% value than PE. The remaining extrudates decomposed slower than PE, which was
already explained by the slower diffusion of heat into the interior of the sample, especially at higher
temperatures, and on the other hand, by hindered diffusion from the interior of the sample by products
of gaseous decomposition [70].

3.6. Longitudinal Contraction

The influence of the mass content and grain size of the introduced bran fraction on the longitudinal
shrinkage of the mouldings is shown in Figure 20. The nonparametric statistical tests performed
showed that there were significant differences between the shrinkage values of the compared samples.
Subsequent posthoc tests showed that the longitudinal shrinkage of samples made of polyethylene alone
before aging was not significantly different from that occurring after aging, and that the introduction
of bran within the tested range did not significantly affect the shrinkage of the samples before aging.
However, there were significant differences in shrinkage between samples before aging with the content
of 5%–15% of the smallest bran fraction <0.4 mm and samples after aging with the highest content of
15% of the fraction 0.4–0.6 mm and the fraction 0.6–0.8 mm in the entire range of 5%–15%. The shrinkage
of samples before aging containing 15% bran of all types of fractions also differed significantly from
that occurring after aging in samples containing 5%–15% of the largest fraction 0.6–0.8 mm and the
highest 15% fraction content of 0.4–0.6 mm. The lowest shrinkage value of 2.15 ± 0.05% was observed
in samples before aging with 15% bran content of the smallest fraction < 0.4 mm, while the highest
value of 2.53% ± 0.01% in the samples after aging with 15% content of the largest fraction of bran,
0.6–0.8 mm.

If the filler used is not subject to the processing shrinkage to the same extent as the polymer matrix,
it leads to a shrinkage of the material on the filler grains by compressive stress, while the matrix by
tensile stresses. Long-term exposure to compressive stresses could lead to the collapse of the bran
particles, which at least partially explains the obtained results of the shrinkage of the mouldings [97].
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3.7. Static Tensile Test

The obtained results of the Young’s modulus measurements for the tested samples are shown in
Figure 21. The tests showed that a significant increase in the modulus of the tested samples, compared
to those made of PE alone, occurred after introducing at least 10% of bran. Before aging, a significant
increase in the modulus for all wheat bran particles sizes by an average of 34 MPa occurred between
the extreme contents of 5% and 15% of bran. Comparing the obtained results after the aging, it was
found that from 10% of the bran content, there was a significant increase in the Young’s modulus
in comparison to the samples before the aging. Aging caused a marked increase in the modulus
along with the content of all examined bran fractions. The maximum difference between the 5% and
15% samples was 71 MPa on average. On the other hand, no effect of the size of the bran grains on
Young’s modulus before and after aging was observed. The values of Young’s modulus of samples
from polyethylene alone before and after aging also showed no significant differences.Materials 2020, 13, x FOR PEER REVIEW 20 of 27 
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The conducted tests showed a statistically significant reduction in tensile strength of the samples
with the highest content of 15% with all the tested bran fractions compared to those made of polyethylene
alone (Figure 22), both before and after aging. This reduction was on average 1.46 MPa for samples
before aging and 1.11 MPa for samples after aging. However, the posthoc tests did not show any
significant differences in the strength of the samples made of polyethylene alone before and after aging,
or the aging effect on the strength of the compared samples with the same content and size of bran
grains. On the other hand, there were differences between the samples before aging with the lowest 5%
and the highest 15% content of all examined bran fractions. These samples, after aging, showed no
significant differences in strength. However, an increase in the dispersion of the obtained measurement
results was observed in their case.

A similar effect of the tested factors was observed on the elongation at break of the tested specimens
(Figure 23). The elongation values of polyethylene mouldings alone before and after aging did not
differ. A statistically significant reduction in the elongation at break of the samples as compared to PE
alone was observed after the introduction of 10% and 15% bran from all tested fractions. As the content
of the bran fraction with the smallest particles <0.4 mm increased, the elongation at break decreased
to the greatest extent from 360% to 52%. For the 0.4–0.6 mm fraction, the maximum reduction in
elongation before aging was 168%, while for the 0.6–0.8 mm fraction, it was only 49%. In most cases,
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there was no statistically significant effect of aging on the elongation at break of the compared samples
with the same content and size of the bran fraction.Materials 2020, 13, x FOR PEER REVIEW 21 of 27 
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Lignocellulose is characterized by better stiffness than most of the polymeric materials commonly
used for the production of biocomposites with natural fillers [98,99]. Therefore, increasing the filler
content increases the value of the modulus of elasticity. In the absence of modification of the adhesion
between the polymer matrix and the filler, despite the increase in stiffness, the brittleness increases,
which is manifested in a reduction in tensile strength and often a significant reduction in deformability.
The nature of the fracture itself also changes from plastic to brittle [32,46,55,67,99,100]. Significant
differences in the values of Young’s modulus before and after aging may be related to the observed
changes in the longitudinal contraction of mouldings in the analyzed period of time. The potential
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collapse of the filler grains during the aging period could lead to an increase in internal stresses [90],
which translates to the observed increase in stiffness.

4. Conclusions

The conducted research showed a significant influence of wheat bran on the appearance of the
obtained injection mouldings. There were both clear changes in the color towards shades of yellow
and red with an increase in the content of bran, and significant differences in the color and gloss of
injection mouldings along with the distance from the injection point. In the immediate vicinity of the
gate, clear traces of pulsating flow of the stream of the material were observed, affecting the visual
quality, which blurred with distance, affecting the gloss gradient along the length of the samples.
The intensity of the observed pulsating flow lines depended on both the content and the size of the
filler grains. Moreover, the farther away from the gate, the more filler grains accumulate at the surface
of the forming cavity, thus affecting the color perception. The obtained results of the research on
visual properties suggest that when designing moulds intended for injection of biocomposites with a
natural filler, it will be most advantageous to locate point gates at the bottom of the manufactured
elements. The lines formed during the pulsating flow of the material will not adversely affect the
visual perception of the finished products. Due to this, the dull and rougher area around the gate will
be located in a less visible place, and the flow lines will be blurred before reaching the places visible
during standard use. However, the color in the most visible places will be more uniform. The melt
flow rate, which is the primary index of processability, decreased with increasing bran content, due to
an obvious increase in the viscosity of the composition. Nevertheless, the composition can be easily
processed by injection moulding, and the obtained MFR values do not constitute a prerequisite for the
use of processing aids with the analyzed filler contents.

The p-v-T tests showed that the content of bran reduces the decrease in specific volume during
crystallization, which translates into lower processing shrinkage during injection. Measurements of
processing shrinkage after a long storage period show that shrinkage progresses over time, which in
turn may be the result of compressive stresses around the filler grains during the cooling of the compact.

The analysis of the chemical structure by means of FTIR spectroscopy shows the presence of
components typical of lignocellulosic materials, but also the presence of water in the filler structure
and branches in the polyethylene structure.

The obtained DSC results suggest the presence of changes in the polyethylene structure caused by
the presence of bran, as evidenced by the differences in the melting point and the degree of crystallinity
of the composites and unfilled PE during the 1st heating cycle, the absence of these differences during
the 2nd heating cycle and the reorganization of the composite structure. Considering the thermal
resistance of biocomposites under air atmosphere, it can be concluded that they are thermally stable up
to about 250 ◦C. The first weight loss observed at about 290 ◦C on TG curves relates to the degradation
of the biofiller; the second one at about 400 ◦C is connected with PE degradation.

The obtained values of tensile strength properties are typical for natural fillers, i.e., an increase in
stiffness and brittleness as well as a decrease in tensile strength and deformability. The tests showed
that for the tested contents, the deterioration of the tensile strength is on average about 1.4 MPa,
i.e., 10% of the value for the content of 15wt.% of filler. The use of such a wheat bran content will allow
the significant reduction in the production costs and polyethylene consumption while maintaining
comparable strength.

It is important, however, that no deterioration of the mechanical characteristics of the tested
composites after aging was observed. The tested materials are, therefore, suitable for use in mass
production and do not lose their properties during long-term storage. As a result, the tested
biocompositions may be suitable for the production of elements with seasonal use, which often require
several months of storage.
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