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Ketosis is a common metabolic disease in dairy cows during early lactation. However,
information about the metabolomic and proteomic profiles associated with the incidence
and progression of ketosis is still limited. In this study, an integrated metabolomics and
proteomics approach was performed on blood serum sampled from cows diagnosed
with clinical ketosis (case, ≥ 2.60 mmol/L plasma β-hydroxybutyrate; BHBA) and
healthy controls (control, < 1.0 mmol/L BHBA). Samples were taken 2 weeks before
parturition and 2 weeks after parturition from 19 animals (nine cases, 10 controls). All
serum samples (n = 38) were subjected to Liquid Chromatography-Mass Spectrometry
(LC-MS) based metabolomic analysis, and 20 samples underwent Data-Independent
Acquisition (DIA) LC-MS based proteomic analysis. A total of 97 metabolites and
540 proteins were successfully identified, and multivariate analysis revealed significant
differences in both metabolomic and proteomic profiles between cases and controls.
We investigated clinical ketosis-associated metabolomic and proteomic changes using
statistical analyses. Correlation analysis of statistically significant metabolites and
proteins showed 78 strong correlations (correlation coefficient, R ≥ 0.7) between 38
metabolites and 25 proteins, which were then mapped to pathways using IMPaLA.
Results showed that ketosis altered a wide range of metabolic pathways, such as
metabolism, metabolism of proteins, gene expression and post-translational protein
modification, vitamin metabolism, signaling, and disease related pathways. Findings
presented here are relevant for identifying molecular targets for ketosis and biomarkers
for ketosis detection during the transition period.

Keywords: dairy cow, clinical ketosis, serum, metabolomics, proteomics, integrated pathway analysis

INTRODUCTION

Dairy cows undergo both dramatic physiological and metabolic changes during the transition
period, during which a metabolic disorder known as negative energy balance commonly occurs
because the actual feed intake cannot meet the largely increased nutrient requirement for milk
production (Esposito et al., 2014). To compensate for the negative impact of negative energy
balance, a series of physiological adaptations, including enhanced fat mobilization, hepatic
gluconeogenesis, and bone resorption, were adopted to produce more energy (Reynolds et al.,
2003; Itle et al., 2015). Adipose tissue metabolism is an essential contributor to successful lactation
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(Khan et al., 2013), but massive fat mobilization accelerates
non-esterified fatty acids (NEFA) concentration in the blood.
NEFA can be either uptaken by the mammary gland for milk
fat synthesis or utilized by the liver for energy production (Sun
et al., 2016). Because the ruminant liver has a limited capacity
to completely oxidize NEFAs and synthesize very-low-density
lipoprotein, excessive fatty acids will be then metabolized into
ketones or esterification to form triglycerides (Bezerra et al., 2014;
White, 2015) and excess ketone accumulation that can ultimately
lead to ketosis (Duffield et al., 2009). In practice, ketosis is
one of the most common metabolic diseases in dairy herds,
with the prevalence ranging from 6.9 to 43% (Duffield, 2000;
McArt et al., 2012; Suthar et al., 2013). Importantly, ketosis has
a severe effect on the production performance and increases the
risk of developing displaced abomasum, lameness, and metritis
(McArt et al., 2012; Raboisson et al., 2014). In addition, cows
with ketosis could succumb to insulin resistance, oxidative stress
(Youssef and El-Ashker, 2017), hepatic apoptosis, and oxidative
and inflammatory response (Du et al., 2018). However, the
mechanism of the incidence and progression of ketosis is not
completely understood.

Metabolomic technique is a powerful tool for elucidating
disease etiologies and identifying biomarkers for disease
diagnosis, detection, and monitoring (Xia et al., 2013), and it
is also helpful to dissect the complex biological mechanisms
of ruminants (Sun et al., 2017; Guo et al., 2019). Recently, it
has been used to explore metabolic alterations and identify the
predictive and diagnostic biomarkers related to clinical mastitis
(Dervishi et al., 2017). Notably, metabolomics have become an
attractive analytical tool with high accurate predictive, diagnostic,
and prognostic abilities in studies related to cow ketosis (Zhang
et al., 2017). Nevertheless, metabolites involved in ketosis are
not completely clear, and effective predictive biomarkers for
ketosis are still lacking. Proteome represents the summative
effects of gene function and has emerged as an important tool to
explore complex biological processes. For example, a recent study
addressed plasma proteomic profile changes of heat-stressed
dairy cows (Min et al., 2016). Moyes et al. (2013) used isobaric
tags for relative and absolute quantitation based quantitative
profiling of cow liver tissue and found potential hepatic
biomarkers for different degrees of physiological imbalance
of dairy cows in early and mid-lactation. Using the same
method, Fan et, al (Fan et al., 2017) identified differentially
expressed proteins related to a metabolic disorder of subclinical
hypocalcemia. Moreover, proteomic analysis using liver tissues
(Xu and Wang, 2008) and adipose tissues (Xu et al., 2019) has
also been used in cow ketosis studies, which would provide novel
opportunities to unravel the complex biology of the disease.

Recent advances in multi-omics approaches have significantly
facilitated studies on the underlying mechanisms of complex
metabolic diseases such as obesity or diabetes in humans
(Oberbach et al., 2011). The combination of metabolomics and
proteomics is often preferred as a powerful tool for exploring
the network of interactions and regulatory events in diverse
biological systems. We hypothesized that cows diagnosed with
clinical ketosis would have altered metabolomic and proteomic
profiles in comparison with the healthy controls. Therefore,

a liquid chromatography-mass spectrometry (LC-MS) based
metabolomics method and a Capillary-Flow Data-Independent
Acquisition (DIA) LC-MS based proteomics method were used to
get a comprehensive and system-wide understanding of ruminant
ketosis. Through integration of metabolomic and proteomic
data, we could identify the key regulators and build critical
protein-metabolite networks responsible for the incidence and
progression of ketosis in dairy cows.

MATERIALS AND METHODS

Experimental Animals and Blood Serum
Samples
All experimental procedures involved in this study were approved
by the Institutional Animal Care and Use Committee of Sichuan
Agricultural University (DKY-B20171906). The current study
is a continuation of previous research, where the differentially
expressed genes and pathways associated with ketosis were
investigated using these animals (Wu et al., 2020). The animals
and experimental design were fully described in the original
article. In brief, a total of 74 multiparous Holstein cows at
third parity with similar age, body condition score, and due
dates (Supplementary Table 1) were enrolled at 3 weeks before
parturition and raised in the same environment. All animals
were fed regularly three times a day at 07:00, 13:00, and 19:00
with a total mixed ration, and the basal formulation may be
found in Supplementary Table 2. Feed and water were offered
ad libitum. Animals were managed by staff trained to identify
medical problems and ketosis. Ketosis was determined at both
prepartum (2 weeks before parturition) and postpartum (2 weeks
after parturition) by testing plasma β-hydroxybutyrate (BHBA).
A clinical ketosis case (case) was determined as a cow having
BHBA concentration of ≥ 2.60 mM and a healthy control
(control) with < 1.0 mM, respectively. Animals were excluded
from the herd if diagnosed with clinical ketosis at prepartum or
had other diseases during the whole experiment period. Among
these cows, a subset of 19 animals were enrolled, with nine
ultimately developing into clinical ketosis and 10 remaining
healthy controls at postpartum.

Blood samples (10 mL) at both prepartum and postpartum
were collected from coccygeal veins using vacutainer tubes before
the morning feeding. After 30 min at room temperature for
clot formation, samples were centrifuged at 3000 × g for 4◦C
for 15 min to obtain the corresponding blood serum sample.
Serums were then stored in liquid nitrogen until used for further
analysis. For these 19 finally enrolled animals, a total of 38
serum samples from two time points of both postpartum and
prepartum were obtained and then divided into four groups:
cases at postpartum (CK; BHBA = 2.79 ± 0.12 mM; n = 9), cases
at prepartum (PCK; BHBA = 0.36± 0.05 mM; n = 9), controls at
postpartum (HC; BHBA = 0.65 ± 0.22 mM; n = 10) and controls
at prepartum (PHC; BHBA = 0.42 ± 0.08 mM; n = 10). For each
group, all the serum samples were used for metabolomic analysis
and five randomly selected samples were further subjected to
proteomic analysis.
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Liquid Chromatography Mass
Spectrometry Metabolomics Analysis
The LC-MS based metabolomic analysis has been described
previously (Dunn et al., 2011; Luo et al., 2019). In brief, all
38 serum samples were slowly thawed at 4◦C, and 100 µl
of serum was mixed with 400 µl pre-cooled methanol. The
mixed liquor was centrifugated at 12,000 rpm and 4◦C for
10 min, and the supernatant was collected and blow-dried by
vacuum concentration. Subsequently, the dried samples were
dissolved with 150 µl of 2-chlorobenzylamine (4 ppm) methanol
aqueous solution (4:1, 4◦C). Finally, the supernatant was filtered
through a 0.22 µm membrane and the prepared sample
extracts were obtained for LC-MS analysis. For monitoring
deviations of the analytical results and system stability over
the entire experiment, 20 µl from each prepared sample
were extracted and mixed for the preparation of quality
control (QC) samples.

The liquid chromatographic separation was performed on a
Thermo Ultimate 3000 system (Thermo Fisher Scientific Inc.,
Waltham, MA, United States) equipped with a Waters ACQUITY
UPLC

R©

HSS T3 column (150 × 2.1 mm, 1.8 µm). The flow
rate was 0.25 mL min−1 and the column temperature was
maintained at 40◦C. The mobile phase consisted of 0.1% formic
acid in water (A) and 0.1% formic acid in acetonitrile (B) or
5 mM ammonium formate in water (C) and acetonitrile (D).
Injection of 2 µl of each sample was done after equilibration.
An increasing linear gradient of solvent B (v/v) was used as
follows: 0∼1 min, 2% B/D; 1∼9 min, 2%∼50% B/D; 9∼12 min,
50%∼98% B/D; 12∼13.5 min, 98% B/D; 13.5∼14 min, 98%∼2%
B/D; 14∼17 min, 2%B/D. In addition, the QC sample was used to
optimize the liquid chromatographic separation condition, as it
contained the most information of the whole serum samples. The
MS experiment was executed on the Thermo Q Exactive Focus
mass spectrometer (Thermo Fisher Scientific Inc., Waltham,
MA, United States) with the spray voltage of 3.8 kV and
−2.5 kV in positive ion mode (ESI+) and negative ion mode
(ESI−), respectively. Data-dependent acquisition (DDA) MS/MS
experiments were performed with HCD scan, and the normalized
collision energy was 30 eV. Dynamic exclusion was implemented
to remove some unnecessary information in MS/MS spectra.

Data-Independent Acquisition Liquid
Chromatography Mass Spectrometry
Proteomics Analysis
The DIA large-scale proteomic method was described in detail
previously (Bruderer et al., 2019). Briefly, all 20 serum samples
were slowly thawed at 4◦C, and then mixed with ammonium
bicarbonate solution. Samples were reduced at 37◦C for 1 h
followed by alkylation in the dark for 1 h. Then, 100 µg of
denatured serum were mixed with the ammonium bicarbonate
buffer and 2.5 µg of trypsin and digested for 16 h at 37◦C.
Thereafter, the protein extracts were lyophilizated by freeze
dryer according to the manufacture’s protocol. Desalting was
performed using Sep-Pak C18 1CC Vac Cartridge (Waters,
Milford, MA) following the manufacturer’s instructions. For
library generation, pooled samples were fractionated using high

pH reversed phase fraction chromatography (HPRP). 150 µl of
digest was adjusted to pH 10 using pure ammonium formate,
and then fractionated using HPRP separation on a H-Class
UHPLC (Waters, Milford, MA) with a 2.1 × 150 mm BEH
C18 1.7 µm column (Waters). Twelve fractions were collected
and each fraction was dried in a vacuum concentrator for the
next step. The fractions were resuspended with 40 µl solvent C
containing 1× iRT kit, separated by nanoLC, and analyzed by
on-line electrospray tandem mass spectrometry. Conditions for
DDA analysis and DIA analysis were similar to those reported in
Roland et al. (Bruderer et al., 2019).

The acquired MS spectra were analyzed by Mascot search
engine (v.2.3.2; Matrix Science, London, United Kingdom) for
protein identification by searching against the Bovine databases
obtained from Uniprot1. DTA files were generated from the
raw data files and then converted to Mascot generic files
using Proteome Discoverer software (v.1.4.0.288). Trypsin was
specified as the proteolytic enzyme and two missed cleavage
was allowed. Carbamidomethyl of cysteine was used as a fixed
modification, methionine oxidation as a variable modification.
The initial peptide mass tolerance was set at 10 ppm in the first
search and 5 ppm in the main search, and fragment (MS/MS)
mass deviation was set to 20 ppm; false discovery rate (FDR)
for peptide and protein identification of all searches were less
than 5%. Each protein identification involved at least one unique
peptide. For protein quantification, a protein had to contain at
least one unique spectra. The quantitative protein ratios were
weighted and normalized by the median ratio in Mascot2.

Data Processing and Statistics
In the metabolomics analysis, all LC-MS data were extracted
by ProteoWizard (v.3.0.878) and converted to mzXML format.
All mass spectra were processed with peaks identification, peaks
filtration, and alignment using the R package XCMS (Smith
et al., 2006). The chromatographic peak data were normalized
uniformly, and the multidimensional data were analyzed using
SIMCA-P software (v.14.1). The metabolic peaks with relative
standard deviations (RSDs) larger than 30% in QC samples
were removed from the dataset (Dunn et al., 2011). Principal
component analysis (PCA) was carried out to determine the
global clustering and separation trends or possible outliers
in an un-supervised manner. Orthogonal partial least squares
discriminant analysis (OPLS-DA), a supervised model, was
performed to obtain an overview of the complete data set
and discriminate the inter-group differences. The model quality
could be evaluated based on interpretation of variation for
the X matrix (R2Y) and forecast ability of the model (Q2),
which was discussed elsewhere (Yin et al., 2009). Generally,
the model is believed to be reliable when Q2 > 0.4. The
differentially accumulated metabolites (DAMs) were screened
out using variable importance projection threshold (VIP > 1.0)
in the OPLS-DA model and p-value in student’s t-test (p < 0.05)
(Tian et al., 2015). Identification of metabolites was carried out by
searching the reference standard MS/MS spectral library or the

1https://www.uniprot.org/news/2018/02/28/release
2http://www.matrixscience.com/help/quant_statistics_help.html
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HumanMetabolome Database (HMDB3), Metlin4, or mzcloud5

database. The functional enrichment analysis of DAMs was
performed based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database using MetaboAnalyst 4.0 online tool
(Chong et al., 2018).

In the proteomics analysis, Student’s t-test was used to
compare protein differences between groups and to calculate
p-values. Protein with a fold change of 1.5 and p < 0.05 was
considered as differentially abundant protein (DAP) based on
the published reference (Guo et al., 2019). We used PCA and
partial least squares discriminant analysis (PLS-DA) to visualize
the distribution of the samples between case and control groups
and detect potential outliers. Functional enrichment analysis was
performed using the differentially expressed proteins between
different groups by functional categorization of Gene Ontology
(GO) terms with agriGO toolkit (Tian et al., 2017), and KEGG
pathway analysis was performed by KOBAS 3.0 (Xie et al., 2011).

Pearson correlation analysis was conducted for evaluating
the metabolomics and proteomics integration. For this, the
expression data of both DAMs and DAPs related to ketosis were
calculated. Then, only the protein and metabolite with high
correction (|R| ≥ 0.7) and p-value < 0.05 were considered.
Finally, pathway over-representation analysis was conducted
using Integrated Molecular Pathway Level Analysis (IMPaLA)
(Kamburov et al., 2011).

RESULTS

Quality Assessment of LS-MS Data and
Metabolites Identification
The pooled QC sample was applied to ensure the reproducibility
of the LC-MS system. The overlapped total ion chromatograms

3http://www.hmdb.ca
4http://metlin.scripps.edu
5https://www.mzcloud.org

(TIC) of QC samples in positive and negative ion modes
demonstrated the strong repeatability of the instruments,
and more than 70% of main peaks had RSDs lower than
30% (Supplementary Figure 1). These results represented the
robustness of the system. Therefore, the method was deemed
acceptable for our subsequent metabolic analysis. Multivariate
analysis of OPLS-DA was used to detect potential outliers and
identify features potentially responsible for causing the variation
between different groups of sera. Generally, the model was
jointly assessed using R2 (model fit) and Q2 (predictive power)
and the model is believed to be reliable when the R2Y and
Q2 values > 0.4. As shown in Figure 1, the OPLS-DA score
plot could separately distinguish each of the four sera groups,
indicating the differential metabolomic profiling of the four
groups. Furthermore, in the positive ion mode, R2X = 0.297,
R2Y = 0.999, and Q2 = 0.936 (Figure 1A), whereas in the
negative ion mode, R2X = 0.25, R2Y = 0.993, and Q2 = 0.848
(Figure 1B). Both the R2Y and Q2 values of the models were
greater than 0.4, indicating that the models were predictable and
reliable to discriminate among the four groups. After rigorous
quality control and identification, we obtained 97 metabolites
(Supplementary Table 3) among all samples.

Comparisons of the Metabolomic
Profiles of Sera From Different Groups
We next examined the metabolomic profiles of sera from
different groups. Firstly, we examined the variations in
metabolomic profiles of cases during parturition. Multivariate
analysis showed that when sera metabolites from CK were
compared to those from PCK, both score plots from the
PCA (Supplementary Figure 2) and OPLS-DA (Supplementary
Figure 3) exhibited a clear separation without any overlap. It
is noted that both the R2Y and Q2 values of OPLS-DA models
from positive ion mode and negative ion mode were greater than
0.4 (Supplementary Figure 3), demonstrating that the models
were stable and reliable. We next examined dissimilarities in the

FIGURE 1 | Orthogonal partial least squares discriminant analysis (OPLS-DA) score scatter plots of all grouped sera in the study. (A) All the four groups in ESI+

mode (R2X = 0.18, R2Y = 0.976, Q2 = 0.826), and (B) and ESI- mode (R2X = 0.25, R2Y = 0.993, Q2 = 0.848), respectively.
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abundance of identified metabolites between these two groups.
Based on the VIP value in the OPLS-DA model > 1 and p-value
in student’s t-test < 0.05, a total of 76 DAMs were identified. Of
these, the level of 46 metabolites had increased, whereas those of
30 had decreased in CK group with respect to the level of PCK
group (Supplementary Table 4). Sera belonging to a group (CK
or PCK) clustered together perfectly (Figure 2A).

Secondly, in order to reveal the successful adaption changes
in global metabolites during the transition phase, metabolomic
profiles of controls during parturition were analyzed using
multivariate analysis. Our results of PCA (Supplementary
Figure 2) and OPLS-DA (Supplementary Figure 3) showed that
sera metabolites from HC and those from PHC were clearly
separated into two parts. We also observed that both the R2Y
and Q2 values of OPLS-DA models from both positive ion mode
and negative ion mode were greater than 0.4 (Supplementary
Figure 3), indicating a satisfactory effectiveness of the models
which can be used to identify the difference between two groups.
Based on the criteria of VIP > 1 and p < 0.05, 48 variables
were screened out with 34 metabolites upregulated and 14
downregulated ones in the HC group when compared with
PHC group (Supplementary Table 5). The hierarchical clustering
illustrated that these metabolites clearly segregated the samples
into two groups (Figure 2B).

Thirdly, we used PCA and OPLS-DA score plots to detect
potential outliers and identify features potentially responsible
for causing the variation between cases and controls at
postpartum. Our results of PCA (Supplementary Figure 2)
and OPLS-DA (Supplementary Figure 3) also showed excellent
separation between CK and HC. The parameters of the
OPLS-DA models from positive ion mode and negative
ion mode showed that both the R2Y and Q2 values were
greater than 0.4 (Supplementary Figure 3). This indicated
that these are reliable and predictable models to discriminate
between the two groups. To identify the DAMs between
the CK and HC groups, we compared the abundance of
identified metabolites between these two groups. A total
of 31 DAMs were obtained from the comparison, 14 of
which had a higher relative abundance in the CK than HC
group; the other 17 metabolites significantly decreased in the
CK group (Supplementary Table 6). Cluster hierarchization
showed that the clusters of these two groups were obviously
separated (Figure 2C).

In addition, we found 21 shared metabolites between the
comparisons of CK vs. HC and CK vs. PCK (Figure 3A).
Strikingly, of these shared metabolites, 10 were consistently
upregulated and the other 10 consistently downregulated
in the CK group; only one metabolite of L-Pipecolic acid

FIGURE 2 | Heatmap of the differentially accumulated metabolites (DAMs) in sera of different comparisons. (A) Hierarchical clustering analysis of the 76 DAMs
between CK vs. PCK, and (B) the 48 DAMs between HC vs. PHC, and (C) the 31 DAMs between CK vs. HC, respectively.
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FIGURE 3 | Comparison of metabolite profiling between CK vs. HC and CK vs. PCK. (A) 21 shared metabolites from these two comparisons were identified and
which showed similar up- or down- accumulated pattern but L-Pipecolic acid. (B) Bar plot (left) showed the fold change of shared metabolites in CK vs. HC and
(right) CK vs. PCK, of which, red represents high and blue represents low in CK group.

did not show agreement in the direction of the fold change
between comparisons of CK vs. HC and CK vs. PCK
(Figure 3B), indicating that these 20 metabolites were
consistent with the clinical determination of the cases. The
most upregulated metabolites in the CK group included the
metabolites of 4-Hydroxy-6-Methylpyran-2-one, BHBA, and
cinnamoylglycine (Figure 3).

Functional Implications of Differentially
Accumulated Metabolites
We evaluated the interactions of the 76 DAMs identified
between CK vs. PCK, which would help to unravel potential
metabolic changes contributed to ketosis from prepartum to
postpartum. The enrichment analysis revealed that these DAMs
were enriched in 32 KEGG pathways. Among these pathways,

carbohydrate metabolism (35%), amino acid metabolism (22%),
and metabolism of cofactors and vitamins (13%) accounted
for a large proportion (Figure 4A). Furthermore, a total of
five pathways of “D-Glutamine and D-glutamate metabolism”,
“Alanine, aspartate, and glutamate metabolism”, “Arginine and
proline metabolism”, “Histidine metabolism”, and “Citrate cycle
(TCA cycle)” were the most enriched pathways (p < 0.05,
impact value > 0.10) (Figure 4B). For the 48 DAMs identified
between HC vs. PHC, these would help to unravel the metabolic
pathways involved in successful adaption from prepartum to
postpartum. The enrichment analysis revealed that these DAMs
were enriched in 20 KEGG pathways. Among these pathways,
amino acid metabolism (30%), carbohydrate metabolism (25%),
and metabolism of cofactors and vitamins (15%) accounted for
a large proportion (Figure 4C). The functional impact pathways
were shown in Figure 4D, by which we found only the pathway
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FIGURE 4 | Functional classification and enrichment analysis of differentially accumulated metabolites (DAMs) from different comparisons. (A,C,E) Functional
classification of these DAMs identified between CK vs. PCK, HC vs. PHC, and CK vs. HC, respectively. (B,D,F) Enrichment results of these DAMs identified between
CK vs. PCK, HC vs. PHC, and CK vs. HC, respectively.

of “Arginine and proline metabolism” was significantly changed
in lactating cows.

To further investigate metabolic variations of cases
and controls at postpartum, we mapped the 31 DAMs

identified between CK vs. HC to the KEGG database.
The results of enrichment demonstrated that there
were 22 pathways enriched. Among these pathways,
amino acid metabolism (36%), carbohydrate metabolism
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(23%), and metabolism of cofactors and vitamins (14%)
accounted for a large proportion (Figure 4E). The five
significantly enriched pathways included “D-Glutamine
and D-glutamate metabolism”, “Valine, leucine, and
isoleucine biosynthesis”, “Alanine, aspartate, and glutamate
metabolism”, “Histidine metabolism”, and “Arginine and proline
metabolism” (Figure 4F).

Protein Identification and Multivariate
Analysis
To further understand the systematic changes associated with
metabolic adaptions to transition phase stress as well as metabolic
variations associated with ketosis during the transition period,
the proteomic profiles among cases and controls at both
prepartum and postpartum were carried out. Of the total
sequenced spectra, 7,036 were mapped to the bovine reference
protein database. Of these, 4,072 were uniquely mapped to
specific peptides. In total, 540 proteins were identified under the
5% false discovery rate threshold at both the peptide and protein
levels. Next, all the 540 proteins were subjected to PCA analysis
for clustering all the samples. The first two principle components
accounted for 30% of total variance (Figure 5A). This panel
did not show a clear separation between sera from HC and
PHC groups. However, it can be easily observed that sera within
each group tended to cluster together (Figure 5A). Subsequently,
the PLS-DA model was used for further multivariate analysis,
which revealed that the proteomics of each group could be
clearly distinguished from the others (Figure 5B), indicating
the differential proteomic profiling of the four groups of sera.
In summary, clear separation in proteomic profiles was found
among sera from cases and controls.

Comparisons of the Proteomic Profiles
of Sera From Different Groups
To survey the DAPs associated with transition phase stress as
well as ketosis, we compared the abundance of identified proteins
among the following three comparisons. Firstly, we identified
37 DAPs in sera between the CK vs. PCK (fold change > 1.5
and p < 0.05), of which 16 were upregulated and 21 were

downregulated in the CK group (Supplementary Table 7).
A heatmap of these DAPs was generated to visualize expression
patterns across all 10 sera samples, and expression patterns in
the heatmap were accompanied by hierarchical clustering of
proteins (horizontal axis) and samples (vertical axis) (Figure 6A).
Secondly, we identified 30 DAPs, with 10 significantly higher
and 20 significantly lower relative concentration proteins in the
HC group when compared with PHC group (Supplementary
Table 8). Cluster hierarchization using the expression data of
these 30 DAPs confirmed the presence of two distinct groups
(Figure 6B). Thirdly, a total of 30 DAPs was identified between
CK vs. HC, with 18 upregulated and 12 downregulated in CK
group compared with HC group (Supplementary Table 9).
The protein abundance data of these 30 DAPs revealed an
obvious separation of two parts (Figure 6C), which confirmed the
presence of discriminating features between CK and HC groups.

Functional Enrichment Analysis of
Differentially Abundant Proteins
The functional enrichment analysis of DAPs based on
GO categories was performed and the significantly (p-
adjusted < 0.05) enriched terms were shown in Figures 7A–C.
By which, the 37 DAPs obtained between CK vs. PCK were
enriched in 40 GO terms. Three of these terms corresponded
to molecular function (MF), namely protein binding, enzyme
regulator activity, and enzyme inhibitor activity, and most of
these proteins were concentrated in protein binding (Figure 7A).
For biological process (BP) ontology, 22 terms were enriched, and
most of these proteins were enriched in the terms of biological
regulation, regulation of biological quality, and regulation of
molecular function (Figure 7A). The cellular component (CC)
ontology presented 15 enriched terms, and those of extracellular
region, extracellular region part, membrane-bounded organelle,
and extracellular region were ranked at the top of the category
(Figure 7A). In addition, a total of 36 GO terms were obtained
by DAPs between HC vs. PHC. For biological processes, most
proteins were enriched in multicellular organismal process,
localization, developmental process, and response to stimulus
(Figure 7B). For molecular function, the top term was protein

FIGURE 5 | Multivariate analysis of proteins in sera from different groups. (A) Principal component analysis (PCA) score scatter plots of all the four grouped sera.
(B) Partial least squares discriminant analysis (PLS-DA) score scatter plots of all the four grouped sera.
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FIGURE 6 | Heatmap of the differentially abundant proteins (DAPs) between sera from different comparisons. (A) Hierarchical clustering analysis of the 37 DAPs
between CK vs. PCK, and (B) 30 DAPs between HC vs. PHC, and (C) 30 DAPs between CK vs. HC, respectively.

binding (Figure 7B), while no MF terms were enriched by
DAPs between CK vs. HC (Figure 7C). Meanwhile, the proteins
participate in several CC terms, such as extracellular region,
extracellular region part, organelle, and membrane-bounded
organelle, and these terms had high ratios among the DAPs
that were identified among all three comparisons within
each comparison.

For cellular components, most proteins were enriched in the
extracellular region, extracellular region part, and membrane-
bounded organelle. For molecular function, the top term was
protein binding (Figure 7B), while no MF terms were enriched
by DAPs between CK vs. HC (Figure 7C).

The KEGG analysis of DAPs allowed us to better understand
the key proteins and pathways affected by transition phase stress
and ketosis. By which, the KEGG pathways enriched by DAPs
between different comparisons were displayed in Figures 7D–F.
A total of four pathways, including amebiasis, vitamin digestion
and absorption, phagosome, and legionellosis, were significantly
(p-adjusted < 0.05) enriched by DAPs between CK vs. PCK
(Figure 7D); those between HC vs. PHC were cholesterol
metabolism and phagosome (Figure 7E), and those between CK
vs. HC were ECM-receptor interaction (Figure 7F).

Integrating Metabolomics and
Proteomics Pathway Analysis
To investigate the protein and metabolite regulatory network
of ketosis implicated in transition cows, we performed a
pathway over-representation analysis using IMPaLA tool. By
which, the DAMs and DAPs obtained from both comparisons

of CK vs. PCK and CK vs. HC were used to identify
significantly perturbed pathways. In total, 85 metabolites and
53 annotated proteins were subjected to Pearson correlation
analysis (Supplementary Table 10). The results showed that
38 metabolites had 78 strong corrections (R ≥ 0.7) with 25
proteins (Figure 8).

Based on the results, interaction networks between the 38
metabolites and 25 proteins were organized. The list of pathways
with joint p-values < 0.05 is shown in Supplementary Table 11.
Ketosis altered a wide range of metabolic pathways, among them
mainly metabolism, metabolism of proteins, and metabolism
of angiotensinogen to angiotensins. The cellular processes
involved were ones such as gene expression (transcription),
RNA polymerase II transcription, and post-translational protein
modification. Also involved were vitamin metabolism (e.g.,
vitamin digestion and absorption, metabolism of vitamins and
cofactors, metabolism of water-soluble vitamins and cofactors)
and signaling (e.g., G alpha (q) signaling events, GPCR ligand
binding, GPCR downstream signaling, signaling by GPCR, and
signal transduction). Other pathways associated with the vascular
system (hemostasis, ion channels, and their functional role in
vascular endothelium) and disease (amebiasis) were identified.

DISCUSSION

Because blood reflects the physiological and pathological states in
body, the blood-based profiles would be a powerful means in all
kinds of biological studies (Mohr and Liew, 2007). For ruminants,
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FIGURE 7 | Functional enrichment analysis of differentially abundant proteins (DAPs) between different comparisons. (A–C) GO categories enriched by DAPs
between CK vs. PCK, HC vs. PHC, and CK vs. HC, respectively. (D–F) KEGG pathways enriched by DAPs between CK vs. PCK, HC vs. PHC, and CK vs. HC,
respectively.

some blood parameters, such as glucose, fructosamine, insulin,
metabolites, enzymes, and proteins, may indicate their nutrient
status (Stengärde et al., 2008; Puppel and Kuczynska, 2016).
Although several biomarkers and the pathogenesis of ketosis
have been recently proposed, the understanding of serum

metabolomic and proteomic changes during the incidence and
progression of ketosis remains limited (Abuajamieh et al., 2016;
Li et al., 2018; Wang et al., 2018). However, these studies focused
exclusively on samples collected from sick cows and matched
controls without taking prospective samples into account. Here,
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FIGURE 8 | The interaction value between the differentially abundant proteins (DAPs) and differentially accumulated metabolites (DAMs).

we used high-throughput metabolomic and proteomic analysis
on serum collected at both prepartum and postpartum to
identify differentially expressed metabolites and proteins between
cases and controls and explored their functions involved in
ketosis. In addition, we extended our investigations to uncover
serum metabolomic and proteomic changes from prepartum to
postpartum, which could provide potentially new insights to the
metabolic changes to adapt transition phase stress.

As an effort to elucidate the metabolic changes to adapt
transition phase stress, a comparison of metabolomics and
proteomics between HC vs. PHC were performed, and 48

metabolites (Figure 2B) and 30 proteins (Figure 6B) were
found to be differentially expressed. These metabolites were
found to be significantly enriched in arginine and proline
metabolism, while these proteins were mainly enriched into
biological processes and pathways associated with cholesterol
metabolism and phagosome. This finding is consistent with
a previous study that showed that amino acid metabolism
and energy metabolism are related changes in transition cows
(Luo et al., 2019). Nevertheless, it should be noted that we
did not demonstrate the inflammation-related pathways as
we have previously shown from transcriptome data with the
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same animals. A possible reason for this observation is that
there is not always a relationship between gene expression and
protein expression.

Multivariate analysis revealed significant differences in both
the metabolomic and proteomic profiles between cases and
controls, revealing an evident impact of ketosis on serum
metabolites and proteins. Our results demonstrated that those
metabolites changed between cases and controls at postpartum
were significantly enriched into the pathways related to
amino acid metabolism, carbohydrate metabolism, nucleotide
metabolism, and amino acid biosynthesis and metabolism. In the
meantime, functional analysis showed that metabolites changed
between cases at prepartum and postpartum were also enriched
in the same pathways. Thus, the results altogether suggested that
the landscape of sera metabolites may direct the dynamic changes
in level of compounds involved in particular pathways during the
incidence and progression of ketosis. These pathways identified at
a metabolomic level will ultimately improve our understanding
of ketosis. At a proteomic level, KEGG pathway analysis
indicated that these proteins were involved in disease-related
pathways, such as amebiasis, vitamin digestion and absorption,
phagosome, legionellosis, and ECM-receptor interaction; part of
these results are in accordance with our previous work based on
transcriptomic analysis (Wu et al., 2020) and work from others
(Xu and Wang, 2008; Trevisi and Minuti, 2018). It was difficult to
uncover molecular mechanisms for ketosis during the transition
period although the level of each compound and the abundance
of each protein could be determined. We used IMPaLA to analyze
the high correlated metabolites and proteins for integrating
pathway analysis. It revealed connections of ketosis related
metabolites and proteins, which were significantly enriched in
a wide range of metabolic pathways, cellular processes, vitamin
metabolism, and signaling. Of note, most of these pathways
have been shown to have essential roles in the regulation of
ketosis (Sun et al., 2014; Wang et al., 2016; Shahzad et al.,
2019).

Negative energy balance is the pathological basis of ketosis. It
was reported that elevated ketone bodies, such as BHBA, acetone,
and acetoacetate, could serve as the metabolic biomarkers
for detecting ketosis (Enjalbert et al., 2001). Additionally,
concentrations of NEFA in blood is also used as an indicator of
negative energy balance in dairy cows (Oetzel, 2004). Currently,
the concentration of NEFA, BHBA, and glucose are commonly
used as indicators of negative energy balance (Asl et al., 2011;
Xia et al., 2012). It is well known that BHBA is the most
common biomarker for evaluation and establishment of ketosis
(Iwersen et al., 2009; González et al., 2011). In a previous
study, several metabolites were identified to possibly predict or
discriminate ketotic cows using a plasma targeted quantitative
metabolomics approach (Hailemariam et al., 2014). In this
study, the most consistently elevated metabolites in the CK
group included 4-Hydroxy-6-Methylpyran-2-one, BHBA, and
cinnamoylglycine. We proposed that 4-Hydroxy-6-Methylpyran-
2-one and cinnamoylglycine could be potentially used as
new alterative indicators to diagnose ketosis. Nevertheless,
further studies are warranted to validate these results in
large populations.

The limitation of this study is a relatively small sample size
(nine cases and 10 controls) was conducted to explore the sera
metabolomic and proteomic profiles. We applied the stringent
inclusion criteria of 2.60 mmol/L plasma BHBA concentration
for clinical ketosis, which could provide enhanced power to avoid
false-positive of case animals. Even through proteomics costs less
than before, it is still unaffordable to use on a large number
of samples tested using DIA LC-MS based proteomics method.
The statistical evaluation to determine differentially expressed
proteins between groups was therefore limited. However, data
from metabolomics and proteomics can provide complementary
and inherent validation information with each other, and thus,
integrating these two data sets can partially compensate for the
relatively small sample sizes (Qiu et al., 2020).

CONCLUSION

In summary, our results comprehensively revealed the
metabolomic and proteomic profiles associated with the
incidence and progression of ketosis in dairy cows during the
transition period. The involved pathways have been successfully
identified. Also, the metabolites of 4-Hydroxy-6-Methylpyran-2-
one and cinnamoylglycine could be used as potential indicators
to diagnose ketosis.
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Supplementary Figure 1 | Principal component analysis (PCA) score scatter
plots of sera from four groups (CK, HC, PCK, and PHC) and quality control (QC)
based on sera LC-MS data. (A) PCA plot for metabolites obtained in ESI+ mode
and (B) ESI− mode.

Supplementary Figure 2 | Principal component analysis (PCA) score scatter
plots of sera show excellent separation between different comparisons. (A,C,E)

PCA score scatter plots of metabolite profile between CK vs. PCK, HC vs. PHC,

and CK vs. HC in ESI+ mode, and (B,D,F) those in ESI− mode.

Supplementary Figure 3 | Orthogonal partial least squares discriminant analysis
(OPLS-DA) score scatter plots show excellent separation between different
comparisons. (A,C,E) OPLS-DA score scatter plots of metabolite profile
between CK vs. PCK (R2X = 0.297, R2Y = 0.999, Q2 = 0.936), HC vs. PHC
(R2X = 0.242, R2Y = 0.987, Q2 = 0.814), and CK vs. HC (R2X = 0.19,
R2Y = 0.995, Q2 = 0.716) in ESI+ mode, and (B,D,F) those between CK vs. PCK
(R2X = 0.337, R2Y = 0.997, Q2 = 0.94), HC vs. PHC (R2X = 0.246, R2Y = 0.994,
Q2 = 0.891), and CK vs. HC (R2X = 0.236, R2Y = 0.979, Q2 = 0.676) in
ESI− mode.
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