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Background: Complex regional pain syndrome (CRPS) is a rare debilitating disorder

characterized by severe pain affecting one or more limbs. CRPS presents a complex

multifactorial physiopathology. The peripheral and sensorimotor abnormalities reflect

maladaptive changes of the central nervous system. These changes of volume,

connectivity, activation, metabolism, etc., could be the keys to understand chronicization,

refractoriness to conventional treatment, and developing more efficient treatments.

Objective: This review discusses the use of non-pharmacological, non-invasive

neurostimulation techniques in CRPS, with regard to the CRPS physiopathology, brain

changes underlying chronicization, conventional approaches to treat CRPS, current

evidence, and mechanisms of action of peripheral and brain stimulation.

Conclusion: Future work is warranted to foster the evidence of the efficacy

of non-invasive neurostimulation in CRPS. It seems that the approach has to be

individualized owing to the integrity of the brain and corticospinal function. Non-invasive

neurostimulation of the brain or of nerve/muscles/spinal roots, alone or in combination

with conventional therapy, represents a fertile ground to develop more efficient

approaches for pain management in CRPS.

Keywords: complex regional pain syndrome (CRPS), non-invasive neurostimulation techniques, rTMS, rPMS,

tDCS, TENS, maladaptive plasticity, chronic pain

INTRODUCTION

Complex regional pain syndrome (CRPS) is a rare debilitating disorder characterized by severe
and persisting pain affecting one or more limbs. Signs and symptoms are disproportionate
owing to the inciting event and include spontaneous and/or movement-induced pain, sensory
impairment (allodynia, hyperesthesia), autonomic dysregulation (changes in skin temperature
and/or color, abnormal sweating), and motor abnormalities (joint stiffness, tremor, dystonia, and
muscle weakness). The inciting event is usually traumatic, such as fracture, surgery outcome, sprain,
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or contusion, but in ∼10% of cases, the precipitating cause
remains unknown. CRPS is divided into two main categories
based on the absence (type I, 90% of cases) or presence (type
II) of nerve lesion at the periphery (1). A third type (“Not
Otherwise Specified, or “NOS”) includes patients who do not
fulfill the diagnosis criteria, but whose signs and symptoms
cannot be better explained by another diagnosis (2). Also, people
who were diagnosed only at a later stage when some of the
symptoms were resolved can enter the NOS category (although
retrospective inspection of medical history shows that they
would have fulfilled all criteria for CRPS diagnosis if only they
had been assessed at an earlier stage). Due to the variety and
complexity of its symptoms and the initial lack of recognition as
a disease, CRPS was historically referred to different names [e.g.,
reflex sympathetic dystrophy, RSD; algodystrophy; causalgia;
shoulder-hand syndrome; etc., refer to Merskey (3)]. The 1994
International Association for the Study of Pain (IASP) adopted
the appellation of CRPS and affined the diagnosis by establishing
specific descriptive criteria. The latter was then improved by the
“Budapest Criteria” (refer to Table 1) (2), which are in use even
today to diagnose CRPS (4, 5).

Complex regional pain syndrome mostly occurs in the age
range of 40–70 years (median of 46 years), three to four times
more frequently in women (6) and rarely in children (<10%
of cases, usually in early adolescence) (7). CRPS worldwide
prevalence varies from 5.5 to 26.2 per 100,000 persons per year
(8, 9). The upper limb ismore often affected (almost 60% of cases)
than the lower limb and most cases resolve within the first year
(10). But CRPS evolves into a chronic condition in 15–20% of
cases, hindering daily life activities and overall quality of life and

TABLE 1 | The “Budapest Criteria” for complex regional pain syndrome (CRPS)

diagnosis*.

1. Continuing pain, which is disproportionate to any inciting event

2. Must report at least one symptom on three of the four following categories

(clinical diagnosis) OR in all four (research purpose):

Sensory hyperesthesia and/or allodynia

Vasomotor: temperature asymmetry and/or skin color changes and/or skin

color asymmetry

Sudomotor/edema: edema and/or sweating changes and/or sweating

asymmetry

Motor/trophic: decreased range of motion and/or motor dysfunction

(weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)

3. Must display at least one sign at the time of evaluation in two or more of the

following categories (clinical criteria and research purpose):

Sensory: evidence of hyperalgesia (to pinpricks) and/or allodynia (to light

touch and/or temperature sensation and/or deep somatic pressure and/or

joint movement)

Vasomotor: evidence of temperature asymmetry (>1◦C) and/or skin color

changes and/or asymmetry

Sudomotor/edema: evidence of edema and/or sweating changes and/or

sweating asymmetry

Motor/trophic: evidence of decreased range of motion and/or motor

dysfunction (weakness, tremor, dystonia) and/or trophic changes (hair,

nail, skin)

4. There is no other diagnosis that better explains the signs and symptoms

Taken from Harden et al. (2). *Diagnosis of CRPS requires to meet all four criteria.

preventing 31% of these cases to be back to work 2 years after the
onset of symptoms (11–15).

To date, the pathophysiology of CRPS remains largely
discussed as multifactorial (16). Peripheral sensitization,
dysregulation of the autonomic nervous system, and immune
dysfunction are known to contribute to the occurrence and
development of the syndrome. However, the prevalence and
intensity of each mechanism involved can vary between patients
and over time, thus laying the stress on the difficulty to
treat CRPS and the need for individualization of therapeutic
approaches (16, 17). A growing line of research points out that
autonomic and sensorimotor disturbances should be viewed as
a manifestation of underlying plastic changes that occur in the
central nervous system (CNS) (18–20) and which might be also
responsible for the evolution of CRPS into a chronic condition.

The present review discusses the use of non-pharmacological
non-invasive neurostimulation techniques in CRPS, with
regard to CRPS physiopathology, brain changes underlying
chronicization, conventional approaches to treat CRPS,
current evidence, and mechanisms of action of peripheral and
brain stimulation.

OVERVIEW OF CRPS PHYSIOPATHOLOGY

Peripheral Changes and Central
Sensitization
The inciting trauma of CRPS is usually responsible for
the inflammation and the immune cascade that trigger
the proliferation of connective tissue cells associated with
contracture and of keratinocytes that produce inflammatory
cytokines; the inflammatory cytokines activate osteoblasts and
osteoclasts responsible for the formation and resorption of the
bones. This results in less bone density and sensitization of
peripheral nociceptors in CRPS, i.e., a lower pain threshold.
Precisely, some C-fibers (nociceptive afferents), which usually
only transmit nociceptive information from periphery to spinal
cord, begin to produce inflammatory neuropeptides (e.g., P-
substance); these neuropeptides activate mast cells that release
in turn chemical mediators associated with the acute phase
symptoms, such as the edema, the skin red coloring and
warmth, or hair growth (21, 22). It follows oxidative stress
for the patient in the acute phase, as denoted by a higher
number of oxygen free and hydroxyl radicals in the saliva
and serum (23). At the chronic stage (symptoms present for 6
months and more), pro-inflammatory factors are still present,
but it is reported that the inflammatory profile (presence,
among others, of interleukins 1 and 6 in the cerebrospinal
fluid and interleukins 1, 2, 4, and 7 in blood samples) is
different than during the acute phase (symptoms from <6
months; the presence of interleukins 8 and TNFα receptors
I and II in the blood) (24). Neurogenic inflammation is also
reported in parallel with CNS changes and reciprocal influences
are suspected, likely the former influencing the latter in the
acute phase and the reverse in the chronic phase (25). For
example, at a spinal level, sustained neuropeptide signaling and
inflammatory mediators induce persistent central sensitization,
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which could contribute to the chronicization of pain symptoms
(26, 27).

It is noteworthy that cutaneous innervation seems affected
even in type-1 CRPS (no nerve lesion) as reflected by lower
axonal density (28), lower C-fiber and Aδ-fiber density, and
changes in hair follicles and sweat glands innervation (29). In
that vein, it was suggested that a minimal distal nerve injury (not
detectable) could be the initial trigger for the cascade of events
leading to CRPS (16, 28), thus likely explaining why some people
do not recall any inciting trauma of their CRPS.

Dysregulation of the Autonomic Nervous
System
CRPS has been considered for a long time as hyperactivity of
the autonomic nervous system. This was because of the changes
in skin color, temperature, and sweating, and because people
were diagnosed with CRPS, only if symptoms were reduced by a
stellate ganglion block or by a sympathetic block of the lumbar
chain (1, 5, 30). Whether the autonomic nervous system is
involved in CRPS pathophysiology is controversial, some authors
have reported sympathetic dysfunction in the acute phase and its
normalization over 3 months (31, 32), others reported a normal
activity or an increase (1, 33–35). This warrants studies on that
topic because dysregulation of the autonomic nervous system
may at least contribute to state changes (warm vs. cold limb) that
cannot be only due to local inflammation (30, 36).

Immune Dysfunction
In the last decade, research has revealed that antibodies (e.g.,
of adrenergic and cholinergic receptors) could be present in
the serum samples of people with CRPS. This suggests that the
immune system could contribute to CRPS chronicization (37–
39). Research in this field is booming and the upcoming evidence
ought to be considered in future reviews.

UNDERSTANDING BRAIN CHANGES IN
CRPS

This section deals with the neuronal maladaptive plasticity
reported in CRPS and the neuroanatomical and functional
changes studied by neuroimaging techniques and transcranial
magnetic stimulation (TMS), respectively. Most changes in CRPS
are presented in Table 2 and are illustrated in Figure 1.

Neuronal Maladaptive Plasticity and
Relation to NMDA Receptors
Neuronal plasticity is the capacity of neurons to modulate the
efficacy of their synaptic connections with other elements of
the CNS (neurons, glial cells). Long-term potentiation (LTP)
and long-term depression (LTD) characterize, respectively, the
increase and the decrease of synaptic strength. LTP and LTD
act via, e.g., isotopic receptors of glutaminergic N-methyl-D-
aspartate (NMDA), which works as gates for massive inflows
of calcium ions in the post-synaptic neuron when previously
depolarized (70). The duration of these changes (LTP or LTD)
can be influenced by some neuromodulators, such as dopamine,

TABLE 2 | Brain changes reported in CRPS.

Changes of volumes and maps (decrease ↓ or increase ↑)

↓ Gray matter volume in right anterior insula, OFC, right ventral PFC, CC, inferior

PL, SMA, nucleus accumbens, putamen (40–43)

↑ Gray matter volume in the M1 contralateral to CRPS hand, dorso-medial PFC,

right hypothalamus, bilateral dorsal putamen, choroid plexus (42, 44)

= or ↓ Extent of CRPS hand maps in the contralateral S1 and in M1 (18, 45–51)

↑ Shifting of CRPS hand map in the contralateral S1 (18)

Changes of connectivity, activation, metabolism

Alteration or decrease (↓) or no change (=)

↓ Default mode network (52–54)

↓ Connectivity to sensorimotor cortices (41)

↓ Metabolism in the M1 and dorsal PFC (55)

↓ Connectivity between M1 and SPL in the hemisphere contralateral to CRPS

side (41)

↓ Connectivity between ventro-medial PFC and basal ganglia (40)

↓ Thalamic perfusion (56, 57)

↓ Connectivity between putamen and cerebellum (43)

↓ Opercular activation during painful stimulation (58)

↓ Pain and sensory threshold via sensitization of N-methyl-D-aspartate

(glutamate) receptors (59)

Increase (↑) or no change (=)

↑ Activation of M1 and SMA during movement (60)

↑ Activation of M1 and SMA at rest (41)

↑ Metabolism bilaterally in S2, mid-anterior and posterior CC, PC, PPC,

cerebellum, right posterior insula, and thalamus (55)

= or ↑ Amplitude and frequency of SSEP in the contralateral S1 hand area in

response to stimulation on the CRPS side (45, 49)

↓ Suppression of SSEP by paired-evoked paradigm bilaterally (61, 62)

= Peak latency of SSEP (18, 46, 48, 49)

= Peak strength of SSEP (46, 62)

↑ Connectivity between ventro-medial PFC and insula (40)

↑ Connectivity between putamen and pre-post-central gyri (43)

↑ Activation of PPC during painful stimulation (58)

Changes of Neurophysiological Outcomes (decrease ↓ or no change =

or increase ↑)

↓ Reactivity of M1-related 20-Hz rhythm to tactile stimulation (49, 63)

↓ SICI (23, 50, 64)

↓ LAI (65)

= SAI (65, 66)

= PAS (65)

= Cortical silent period (65, 67)

= RMT (64, 65, 68, 69)

= or ↓ MEP amplitude (64, 65, 67–69)

= or ↑ ICF (64, 65)

↑ I-wave facilitation (23)

Acronyms of neurophysiological outcomes. SICI, short-interval intracortical inhibition;

LAI, SAI, long-/short-afferent inhibition; PAS, paired associative stimulation; RMT, resting

motor threshold; ICF, intracortical facilitation; I-wave, indirect wave corresponding to

indirect activation of corticospinal cells (at the cell body, not directly at the axons) by

transcranial magnetic stimulation.

Acronyms for structures. OFC, orbitofrontal cortex; PFC, prefrontal cortex; CC,

cingulate cortex; PL, parietal lobule; SMA, supplementary motor area; M1, S1,

primary motor and somatosensory cortex, respectively; SPL, superior parietal lobe; S2,

secondary somatosensory cortex; PC, parietal cortex; PPC, post-parietal cortex; SSEP,

somatosensory-evoked potential.
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FIGURE 1 | Brain changes in people with a complex regional pain syndrome. This figure illustrates the main data reported in Table 2 owing to the increase or

decrease of gray matter volume, connectivity, activity, and metabolism and the alteration of maps related to hand sensorimotor function.

serotonin, acetylcholine, norepinephrine (71–73). That is, the
more often synaptic circuits are used, the higher will be the
LTP. Thus, the more often pain pathways are activated, the
lower will be the threshold to trigger pain messages. In chronic
pain, the NMDA receptors lead to the activation of sensory and
nociceptive pathways at a lower threshold of peripheral stimuli
(a change referred to as “central sensitization”) (74). In CRPS,
some studies showed positive results after the administration of
an NMDA-antagonist, such as ketamine, either alone (75–77) or
in combination with other medications (78). This explains why
it was suggested that glutamate NMDA receptors could play a
pivotal role in brain maladaptive plasticity in CRPS (59).

Neuroimaging Studies of Brain Volumes,
Activation, and Connectivity
Brain Volumes
Changes in CRPS include a decrease in the gray matter volume
in the right anterior insula, orbitofrontal cortex (OFC), right
ventromedial prefrontal cortex (PFC), cingulate cortex, putamen,
sensorimotor cortices, and parietal areas (40–43), and an increase
in the gray matter volume in the two dorsal putamen, right
hypothalamus, dorsomedial PFC, contralateral primary motor
cortex, and choroid plexus (42, 44).

Primary Somatosensory Cortex (S1)
Except in one study (45), most magnetoencephalography (MEG),
electroencephalography (EEG), or functional MRI (fMRI)
data in CRPS confirmed a significant shrinking of S1 hand
representation in the hemisphere contralateral to the painful
side, as compared to the unaffected hand or pain-free subjects

(18, 46–50). One study denoted that the center of gravity
of the S1 hand area was shifted to the lip area (18). EEG-
recorded amplitudes of somatosensory evoked potentials (SSEPs)
following median/ulnar nerve stimulation on the CRPS side
showed that the S1 hand area was more responsive to peripheral
signal than on the unaffected side or in pain-free people (49),
i.e., hyperexcitability but without any change of peak timing
(18, 46, 48, 49). Some fMRI studies reported a smaller activation
and weaker blood-oxygen level-dependent signal (BOLD) in
the CRPS-related S1 area as compared with the other side
(46, 79) or to pain-free subjects (80), but one study did not
find any between-hemisphere difference (58). Somatosensory
excitability was assessed by SSEP using the paired-pulse evoked
suppression paradigm. This technique requires the application
of two asynchronous stimulations of the median nerve at the
level of the wrist, with the expectation that the amplitude of the
second SSEP in S1 is significantly smaller than the first. Results
showed a marked bilateral reduction of cortical disinhibition in
specific tasks, as compared with that of pain-free subjects, thus
supporting the dysfunction of somatosensory circuits (61, 62).

Motor Areas
The activation of the primary motor cortex (M1) and
supplementary motor area (SMA) recorded by fMRI during
finger tapping with the CRPS-affected limb was shown to be
increased bilaterally but more markedly on the ipsilateral side
(60). The technique of arterial spin labeling was used to test
the motor-resting neural activity and it was found that blood
perfusion in M1 and the SMA was increased in people with
chronic CRPS (41). Also, the technique of positron emission
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tomography with F-fluorodeoxyglucose (FDG-PET) tested that
the metabolism of M1 and dorsal PFC contralateral to the CRPS-
affected side was decreased as compared to that in pain-free
people (55). Two MEG studies investigated the 20Hz rebound of
M1 in response to somatosensory stimulation, which reflects the
increase of M1 excitability after a period of suppressed activity
due to the somatosensory stimulation. In people with CRPS, 20-
Hz oscillations did not adapt properly in response to tactile (49)
and noxious (63) stimuli, thus suggesting the alteration of M1
inhibition processes.

Non-motor Areas
fMRI recordings during painful stimulation in people with CRPS
denoted an increase (either contralateral to the site of stimulation
or bilateral) of the responses in the posterior cingulate cortex,
in parallel with a decrease of the posterior opercular cortex
(58). Several studies found a bilateral increase of the responses
in somatosensory cortices, cingulate cortex, parietal cortex,
cerebellum, as well as in the right insula and the right thalamus
(55). Perfusion was also decreased in the part of the thalamus
contralateral to the affected limb (56, 57).

Inter-structure Connectivity
Diffusion-tensor imaging (a technique using MRI-recorded
direction of water within the myelinated fibers to reconstruct
brain tractography) helped detect the increase of connectivity
between the ventromedial PFC and insula, and between the
putamen and pre-/post-central gyri (43) and the decrease of
connectivity between the ventromedial PFC and basal ganglia
(40) and between putamen and cerebellum (43). Precisely, the
involvement of the basal ganglia in the physiopathology of CRPS
was recently hypothesized (81). In support, it was shown that
basal ganglia activation to nociceptive stimuli was increased
in children (82, 83) and adults with CRPS (58) and that the
functional linking between the intraparietal sulcus and caudate
nuclei was bilaterally altered in people with CRPS (52). Resting-
state fMRI studies also brought about evidence of the alteration
of the default mode network in CRPS (52–54).

TMS Studies of Brain Functional Integrity
Transcranial magnetic stimulation is a reliable tool widely used
to study M1 mapping and to characterize markers of M1 and
corticospinal excitability in CRPS (84). Some TMS outcomes
were reported to be different in CRPS and others unchanged as
compared to pain-free people.

Cortical Organization
Mapping of M1 representation by single-pulse TMS in people
with type-1 CRPS showed that the affected hand had a smallerM1
representation than the unaffected with a center of gravity more
variable but not significantly different between sides or compared
with that in pain-free people (51).

M1 Inhibition
TMS paradigms enable investigation of the different mechanisms
of M1 inhibition, and CRPS studies showed that some inhibitory
processes could be altered and others not. Paired-pulse TMS
of M1 at inter-stimulus intervals below 4ms showed that the

short-interval intracortical motor inhibition (SICI, depending on
GABAA receptors activity) (85) was reduced either in both the
hemispheres as compared to that in pain-free individuals (64, 68)
or only in M1 contralateral to CRSP side (23, 50, 86). Of note,
the cortical silent period following a motor-evoked potential
(MEP) (superimposed on background isometric contraction)
is a different mechanism of M1 inhibition that depends on
the GABAB-receptors, and which was shown to be comparable
between sides in CRPS and to pain-free subjects (65, 67). Also, the
long-afferent inhibition (LAI), which investigates sensorimotor
integration, i.e., the inhibition of TMS-MEP by sensory afferents
volley triggered by electrical stimulation of a peripheral nerve
(85), was shown to be reduced in M1 contralateral to the affected
hand (65). However, at shorter inter-stimulus intervals aiming at
testing the short-afferent inhibition (SAI), the MEP reduction by
median nerve stimulation was unchanged as compared to that
in pain-free subjects (65, 66). In addition, the paired associative
stimulation (PAS), e.g., 180 pairs of nerve electric stimulation
and TMS of M1, induced the same sensorimotor plasticity
(MEP increase) in CRPS as in pain-free subjects (65). Thus,
circuits connecting S1 and M1 seem to work properly in CRPS
and may not explain the differences in M1 inhibitory function
and plasticity.

M1 Facilitation
TMS studies showed controversial findings in CRPS for M1
facilitation. Indeed, paired-pulse TMS of M1 at inter-stimulus
intervals over 10ms showed that the intracortical motor
facilitation (ICF, depending on NMDA glutamatergic receptors)
could be comparable between sides and to that in pain-free
subjects (64) and significantly increased in the hemisphere
contralateral to the CRPS side (65).

M1 and Corticospinal Excitability
Among other TMS outcomes in CRPS that were unchanged
between hemispheres or as compared to pain-free people are
the resting motor threshold (RMT) and the amplitude of the
MEP tested at 120% RMT (64, 65, 68, 69). RMT is the minimal
TMS intensity required to evoke five MEP ≥50 µV out of 10
successive trials in the target muscle at rest and it informs on the
basic transsynaptic M1 excitability. The MEP amplitude informs
on the corticospinal excitability and it depends on the volume
of M1 tissue responding to TMS and on the synchronicity of
descending volleys to excite the alpha-motoneurons in the spinal
cord. Of note, the same authors showed that MEP amplitudes
were either unchanged in CRPS (68) and bilaterally decreased
(67) as compared to those in pain-free subjects (refer to Table 2).

Clinical Significance of Brain Changes
Brain changes in CRPS are extensive and they underlie multiple
brain areas, and maladaptive neuronal plasticity has been
evidenced as a primary cause of chronicization (17, 87). Pain
intensity was reported to be positively correlated with volume
changes of the left posterior hippocampus and left amygdala
(42) and negatively correlated with volume changes of the
bilateral dorsolateral PFC, putamen, and other areas associated
with pain processing (41–43). Also, the shrinkage of hand S1
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representation increased with the intensity of pain and the
presence of hyperalgesia (88) and the motor threshold of the M1
hand area was significantly lower (higher M1 excitability) in the
presence of allodynia (68). Most importantly, some abnormal
brain changes were found to be reversed, even normalized,
concomitantly to the improvement of symptoms and CRPS
resolution (17, 88, 89). CRPS chronicization being related to
maladaptive brain changes, it is thus legitimate to propose that
improvement of the condition in individuals depends on the
normalization of these brain changes.

ARE TREATMENTS ADAPTED TO BRAIN
CHANGES IN CRPS?

The previous sections deciphered that neuroanatomical and
functional brain modifications in CRPS can be of clinical
significance and rely on the somatosensory, motor, and
emotional pathways, in one or both hemispheres (refer to
Table 2). Data are, however, sometimes controversial, likely due
to the fact that some studies tested the acute stage, whereas
others the chronic. Also, the clinical significance of brain
changes remains unclear, i.e., whether they are specific to CRPS
symptoms or shared with other chronic pain conditions. Thus,
it is not known whether a conventional treatment that reduces
a symptom influences brain maladaptive plasticity, and in other
words, whether a treatment actually heals the cause or the
consequence. In the latter case, improvement of the condition
may only be transient, and the condition will not be resolved due
to the persistence of abnormal brain functioning.

The conventional care and follow-up of CRPS are
multidisciplinary with pharmacological interventions (often a
combination of molecules) (90), local anesthetic sympathetic
blockade (91–93), ketamine injections (75, 76, 94, 95), physical
or occupational therapy (96, 97), and psychological support
(13, 98). However, there is almost no clinical evidence to support
these treatments (10, 90, 99), being CRPS often refractory to
any intervention. Also, there is no randomized clinical trial
published yet to defend the multidisciplinary approach. Overall,
CRPS literature remains scarce on a treatment influencing brain
plasticity with clinical significance. Conventional treatments
that influence sensory integration, such as rehabilitation, may
be sometimes of concern because they are based on intensive
movement training but people with CRPS can feel pain only by
the thoughts of moving the painful part (100, 101), thus creating
additional discomfort that could even worsen brain changes.
The question is thus whether conventional treatments in CRPS
are appropriate and sufficient to normalize brain changes and
improve the condition sustainably. For example, S1 and M1
map distortion in CRPS can alter sensorimotor integration as
already shown in other pain conditions (e.g., phantom limb
pain) (16): people with CRPS take a longer time to recognize the
laterality of their affected hand (102) and this leads to a mismatch
between sensory information and movement, thus hindering
motor control and generating pain. Only an approach nurturing
the brain with sensory information from the affected side, to
improve sensorimotor control and without creating pain, could

contribute to normalize S1 and M1 neuroplasticity and decrease
CRPS severity. This has never been addressed by studies using
conventional treatment regimens.

The way CRPS is treated should be revisited. Researchers
should test the approaches that influence sufficiently the
neuroplasticity at the origin of the improvement of the condition.
The next section deals with the potential and current evidence of
non-invasive neurostimulation to normalize maladaptive brain
changes. It is noteworthy, however, that one size does not
fit all, i.e., people experience pain differently and respond
to treatment differently, thus the same treatment may not
be efficient for everyone. It is suggested that individualized
protocols of neurostimulation should be developed on the basis
of individual brain changes in CRPS.

NON-INVASIVE NEUROSTIMULATION IN
CRPS

The use of non-invasive neurostimulation techniques for the
management of pain is based on its potential to influence the
neuronal plasticity related to the condition (brain changes
exposed in the previous sections). These techniques include
cortical and peripheral repetitive transcranial magnetic
stimulation [rTMS, repetitive peripheral magnetic stimulation
(rPMS)], transcranial direct current stimulation (tDCS), and
transcutaneous electrical nerve stimulation (TENS). This section
presents the rationale for plasticity and the different techniques
of non-invasive neurostimulation, the current evidence in the
CRPS, and proposes research and clinical prospective.

Brain Plasticity Influenced by Non-invasive
Neurostimulation
Non-invasive neurostimulation can influence cerebral plasticity
and reverse maladaptive neural changes either directly by brain
stimulation or indirectly via ascending pathways following
peripheral stimulation of nerves, muscles, or spinal cord
(72, 103–106). These techniques can be potentially implemented
into interdisciplinary approaches that are precisely aimed
at promoting the central reorganization at the origin of
pain reduction. Compared to other invasive treatments,
neurostimulation techniques offer multiple advantages. They
are painless, particularly with the use of magnetic stimulation
(rTMS, rPMS), and do not have side effects (or limited ones
such as transient headaches for rTMS and tDCS). Especially,
they can be used as add-ons to rehabilitation exercises. Indeed,
neurostimulation can normalize the maladaptive brain plasticity
responsible for CRPS chronicization, and this influence on
plasticity primes and potentiates the effects of the task-oriented
rehabilitation, thus making it possible to go beyond the gains
already reached and plateaued (107). It is known, furthermore,
that patients with CRPS often experience kinesiophobia or fear
of movement (101). This said, rPMS of muscles that mimic the
contraction/relaxation mechanisms and triggers movements of
the CRPS limb with any pain could help reduce kinesiophobia
and all the psychological stress surrounding the attempt to move,
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thus easing at the end the compliance to therapy and its success
(106, 107).

The Different Techniques
Cortical and Peripheral Repetitive Magnetic

Stimulation (rTMS, rPMS)
Repetitive magnetic stimulation consists of the administration
of painless magnetic pulse trains above the brain, e.g., M1 or
dorsal PFC (rTMS, T for transcranial), or at the periphery, e.g.,
over nerve or muscle (rPMS, P for peripheral). The manipulation
of the stimulation parameters, such as the frequency (from 0.1
up to 50Hz), train duration, inter-train interval, coil positioning
over a cortical or peripheral target, enables modifying of the
actual net after-effects in the neural tissues beneath the coil,
i.e., depolarization or hyperpolarization/depression [for details,
refer to Pell et al. (73), Beaulieu and Schneider (108)]. In clinical
pain studies, rTMS is usually applied over M1 at subthreshold
intensity (below the intensity eliciting a muscle response via
the corticospinal pathway). The after-effects (LTP-like excitation
or LTD-like inhibition) can last from minutes to several hours,
depending on the protocol and the task tested and can induce
changes of excitability and function in remote areas. Long-
lasting rTMS-induced analgesic effects likely rely on LTP/LTD-
like mechanisms (refer to the previous section on central
sensitization) via an influence on glutamatergic networks (109).

rPMS is commonly applied over a spinal root, nerve, ormuscle
belly at a suprathreshold intensity to trigger muscle contraction
(72). It is hypothesized that it may recruit proprioceptive
afferents directly by the depolarization of sensory fibers terminals
and indirectly via the induction of repeated contractions and
joint movements (108). Also, due to minimal recruitment
of nociceptive receptors (the magnetic pulse bypasses skin
without resistance), it is painless and the proprioceptive message
mediated to the brain is not contaminated by cutaneous
information. Thus, rPMS mimics the contraction/relaxation
process of one muscle or a group of muscles, and the pure
proprioceptive information generated is coherent with the
appropriate motor control to influence sensorimotor plasticity
at the origin of motor improvement or pain reduction (108).
In support, it is shown in motor disorders or in chronic
pain that rPMS influences the cortical markers with clinical
significance (110).

Transcranial Direct Current Stimulation
tDCS is administrated by means of two electrodes (the anode
and the cathode) fixed on the scalp. Many studies have shown
a greater reduction of pain when the anode is positioned
above M1, as compared to S1 or the dorsolateral PFC (111,
112). The cathode is always on the forehead, supraorbital area,
contralateral to M1 stimulated. M1 stimulation by tDCS may
activate corticospinal and corticothalamic projections which in
turn influence the activity of regions of the diencephalon, brain
stem, and spinal cord involved in pain modulation mechanisms
(113, 114). Specifically, studies show that the effectiveness of
tDCS in relieving chronic pain and maintaining effects depends
on key stimulation parameters, such as electrode position (anodal

M1 montage), stimulation intensity (2mA), duration (20min),
and the number of weekly sessions (111, 112).

Transcutaneous Electrical Nerve Stimulation
TENS can be applied at a high frequency (HF > 50Hz) with
subthreshold intensity (no muscle contraction) or at a low
frequency (LF< 10Hz) with suprathreshold intensity (producing
muscle contraction) (115). In humans, both protocols can reduce
chronic pain by the generation of somatosensory inputs but their
respectivemechanisms of action seem different owing to different
after-effects due to different frequencies used (116). Also, low-
intensity conventional TENS can have maximal analgesic effects
homotopically, i.e., on the stimulated side, whereas high-intensity
TENS can induce spatially diffused analgesic effects. It has also
been shown that only high-intensity TENS produced long-lasting
changes in S1 and M1 areas and in their connectivity to vmPFC,
which is part of the pain inhibition descending system (116). This
activation of the pain inhibition systems promotes the release
of endogenous opioids, thus explaining the diffuse analgesic
effects (117–119).

Current Evidence in CRPS
Fourteen studies have been published to date on the use of non-
invasive neurostimulation in CRPS, either alone, or combined
with other therapies. Table 3 details these rTMS, tDCS, rPMS,
and TENS studies.

rTMS
Three studies tested the after-effects of rTMS in people with
CRPS: two studies focused on type I (128) and the third on
mixed types I and II CRPS (122). All the three administrated
rTMS over M1 were contralateral to the CRPS hand. The first
two studies used 10Hz rTMS in a single session with 10 patients
or 10 sessions with 12 patients, one time a day for 10 days
in a row (46, 128). Precisely, Pleger et al. (128) reported that
pain intensity could be reduced after one rTMS session (as
measured on the visual analog scale or VAS), as compared to
sham stimulation, with the VAS scores being the lowest at 15min
after the end stimulation, but back to baseline at 45min. One
study (127) applied rTMS as an add-on intervention of a standard
pharmacological and rehabilitation treatment for 10 consecutive
sessions (10 days in a row). Of note, the pharmacological and
rehabilitation treatment was first administrated over a month
before adding on rTMS. The authors reported a reduction of
pain (scores of VAS and McGill Pain Questionnaire or MPQ)
and improvements of affective and emotional scores (SF-36
and Hamilton Depression Scale) during the period of rTMS
treatment, but the effects had vanished at follow-ups of 1
week and 3 months. The third study (122) was conducted in
a mixed cohort (CRPS types I and II). The authors used an
open-label and non-randomized design to investigate the after-
effects of the priming of 10Hz rTMS by intermittent theta burst
stimulation (iTBS). The protocol of iTBS (5Hz bursts of three
pulses delivered at 50Hz) was delivered at an intensity of 70%
of the RMT and was followed immediately by the 10Hz rTMS
(10 s trains with 30 s inter-train interval) delivered at 80% RMT
with the coil guided by real-time neuronavigation. A decrease in
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TABLE 3 | Studies with noninvasive neurostimulation in CRPS.

References Study type Population Intervention

Stimulation protocol Control Number of sessions Site Parameters Scales and time of

testing

Outcomes reported

Bilgili et al. (120) Double-blinded,

placebo-controlled,

randomized trial

CRPS type I (N = 30)

Exp = 15

Sham = 15

TENS + standard

physical therapy

Sham stimulation +

standard physical

therapy

15 Sessions,

frequency/week not

reported

Active electrode on the

dorsal aspect of the

forearm, passive

electrode on the dorsal

aspect of hand

100-Hz TENS

(50–100ms pulse

duration) at intensity

below the discomfort

threshold, 20min

VAS, LANSS, DN-4,

ROM, edema size,

functional capacity with

hand dynamometer and

DHI

Reduction of pain,

edema, and fingers

ROM

Bodenheim and

Bennett (121)

Case report SA Exp = 1 TENS na 24 Sessions (3

sessions/week, 8

weeks)

Acupuncture points 20-Hz TENS at intensity

adjusted to patient

tolerance (100-µs pulse

width), 60min

Clinical evaluation of pain

and physical outcomes

Reduction of pain,

recovery of ankle

ROM, increase of

bone stock, and

reversal of atrophy

Gaertner et al.

(122)

Open-label and

non-randomized study

CRPS type I and II (N = 21)

Exp = 6

Exp = 15

iTBS + rTMS iTBS +

rTMS

na na 1 Session 5 Sessions (1

session/day, 5 days)

Contralateral M1

Contralateral M1

iTBS at 70% RMT (5-Hz

bursts of 3 pulses at

50Hz, 2 s ON/8 s OFF,

total = 600 pulses)

followed immediately by

10-Hz rTMS at 80%

RMT (10-s trains, 30-s

inter-train interval; total

= 2,000 pulses). Total =

2,600 pulses

per session

VAS, at baseline, then

after the single or the 5

sessions and 2 weeks

after

Significant pain

reduction after 1

session and 1-week

post-treatment;

however, no group

differences were

present

Houde et al. (123) Case report CRPS type I

Exp = 1

Anodal tDCS Anodal

tDCS + TENS

na na 5 Sessions (1

session/day, 5 days) 10

Sessions (1

session/day, 5 days,

repeated after 6

months)

tDCS on contralateral

M1, TENS over painful

area

2-mA tDCS and 3-Hz

TENS (400 µs), 25min

VAS; at baseline, after

15min of each

intervention, after 6

months from tDCS +

TENS only

tDCS + TENS slightly

reduced pain intensity

and unpleasantness

Kesler et al. (124) Cohort study RSD (N = 10)

Exp = 10

TENS + home-based

physical therapy

na Various depending on

the patient (4

sessions/day, multiple

days)

Over vascular supply of

affected extremity

Intensity adjusted to

comfort, 60min. No

other information

provided

Clinical evaluation of pain

and physical outcomes

N=7 with complete

remission within 2

months

Krause et al. (67) Cohort study CRPS type I (N = 22)

Exp = 12

Control = 10

rPMS Healthy subjects 1 Session Over C7/C8 20-Hz rPMS at 120%

RMT; 10 trains of 10 s

each, inter-train interval

not reported; Total =

2,000 pulses over

∼10min

Cortical and spinal MEP,

contra-and-ipsilateral

cortical silent period;

pre-/post-rPMS testing

Less effective input to

the motor cortical

system

Lagueux et al.

(125)

Randomized parallel single

blind study

CRPS type I (N = 22)

Exp = 11

Control = 11

Anodal tDCS + graded

motor imagery

Sham stimulation +

graded motor

imagery

14 Sessions (1

session/day, 5

days/week for 2 weeks,

1 day/week for 4 weeks)

Contralateral M1 2-mA tDCS of 20min Pain perception, quality

of life, kinesiophobia,

pain catastrophizing,

anxiety, mood; at

baseline, at 6 weeks of

treatment and 1 month

after the end of treatment

No added value of

tDCS combined with

GMI for reducing pain

Leo (126) Case report RSD Exp = 1 TENS na 2 Sessions (1

session/day, 22 days

apart)

Bilaterally at

acupuncture points

4-Hz TENS at intensity

below pain threshold,

30 s for each point

Pain and right upper

extremity ROM; at

baseline and after each

session

Reduction of pain and

increased ROM at

painful, improvements

still present at 3

months

(Continued)
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TABLE 3 | Continued

References Study type Population Intervention

Stimulation protocol Control Number of sessions Site Parameters Scales and time of

testing

Outcomes reported

Picarelli et al. (127) Double-blind,

placebo-controlled,

two-arm, randomized trial

CRPS type I (N = 23)

Exp = 12

Sham = 11

rTMS + best medical

treatment

Sham stimulation 10 Sessions (1

session/day, 5

days/week, 2 weeks)

Contralateral M1 10-Hz rTMS at 100%

RMT; 25 trains of 10 s

each, 60-s inter-train

interval; total = 2,500

pulses over ∼29min

VAS, MPQ, SF-36,

HDRS; at baseline, then

daily during the 10

sessions and 1 week/3

months after the last

session

Reduction of pain and

improvement of

affective aspects only

during the period of

stimulation

Pleger et al. (128) Cohort study CRPS type I

Exp = 10

rTMS Sham stimulation 1 Session Contralateral M1 10-Hz rTMS at 110%

RMT; 10 trains of 1.2 s

each, 10-s inter-train

interval; total = 120

pulses over ∼2min

VAS; baseline, 30 s after,

then 15/45/90min after

the stimulation

Pain reduction at 30 s

with lowest VAS

score at 15 min

Richlin et al. (129) Case report RSD Exp = 1 TENS na 30 Sessions (3

sessions/day, 10 days)

Proximal electrode over

the right femoral

triangle, distal electrode

over the dorsum of the

right foot

40-Hz TENS at intensity

below discomfort

threshold, 80-µs pulse

width, 30min

Pain, ROM,

thermography, skin

temperature; at baseline,

5 days after the

beginning of treatment, 2

days later, and 4 weeks

from the beginning

Reduction of

hyperalgesia,

increased ROM,

complete pain relief

after the treatment

Robaina et al.

(130)

Cohort study RSD Exp = 26 TENS na Various depending on

the patient (2–5

sessions/day, multiple

days)

Painful area or proximal

area next to painful area

or nerve trunk

80-120-Hz TENS at

intensity at parasthesia

threshold (50–200 µs

pulse width), 30 to

60min depending on

the patient

VAS, MPQ; at baseline

and follow-up over

10–36 months

N= 20 / 29 with

good/excellent pain

reduction

Schmid et al. (131) Case report CRPS type not specified

Exp = 1

Anodal tDCS +

sensorimotor hand

training

Sham stimulation 1 Session Contralateral M1 Anodal tDCS for 20min.

No other information

provided

Specific sensorimotor

hand training, VAS; pre-

and post-tDCS testing

Pain reduction and

improved

performance on ST

Stilz et al. (132) Case report RSD Exp = 1 TENS na 2 Weeks, number of

sessions not reported

Proximal electrode over

the right femoral

triangle, distal electrode

over the right foot

dorsum

50-Hz TENS at 3.5mA,

no other information

provided

Clinical evaluation of pain

and physical outcomes

Reduction of pain,

hyperesthesia, edema

and cyanosis. Pain

was still absent after

1 month

Acronyms of population. RSD, Reflex Sympathetic Dystrophy; SA, Sudeck’s Atrophy; CRPS, Complex Regional Pain Syndrome.

Acronyms of intervention. TENS, transcutaneous electric current stimulation; tDCS, transcutaneous direct current stimulation; rTMS, repetitive transcranial magnetic stimulation; iTBS, intermittent theta burst stimulation.

Acronyms of scales and outcomes. ROM, range of motion; VAS, visual analog scale; MPQ, McGill Pain Questionnaire; SF-36, 36-Item Short Form Survey; HDRS, Hamilton Rating Scale for Depression; ST, sensorimotor hand training;

Clinical evaluation: therapist judgment without scales; na, not available.
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the pain, VAS scores were reported immediately after the end of
the stimulation and 2 weeks after. Of note, the magnitude of pain
reduction was similar between patients having undergone a single
session (n= 6) and those having been enrolled in five sessions one
time a day (n= 15).

rPMS
One study used rPMS in CRPS (67). Ten series of 10 s of 20Hz
rPMS at 120% of spinal RMT were applied over the cervical
nerve roots innervating muscles of the painful area. The authors
reported that the amplitudes of MEP to TMS of M1 were
smaller on both sides in CRPS than in pain-free participants.
The after-effects of rPMS in this study were limited to the
lengthening, in pain-free participants only, of the duration of the
contralateral and ipsilateral cortical silent periods, which informs
on the level of M1 and interhemispheric inhibition, respectively.
Unfortunately, this study did not collect any clinical outcomes.

tDCS
Three studies investigated the after-effects of anodal tDCS
applied over M1 contralateral to the CRPS hand, two case studies
(131), and one randomized parallel single-blind study (125). Of
note, these studies used tDCS as an add-on of sensorimotor
training (131), TENS over the painful area (123), and graded
motor imagery (125). Schmid et al. reported that anodal tDCS
+ sensorimotor training reduced pain intensity and improved
the pattern identification during ST, as compared to sham tDCS
+ sensorimotor training (131). The second study (123) reported
that anodal tDCS+ TENS one time a day a day for 5 consecutive
days slightly reduced pain intensity and unpleasantness, as
compared to tDCS alone. Lagueux et al. tested tDCS + graded
motor imagery in 11 people with CRPS type I (125). Precisely,
the participants underwent 6 weeks of graded motor imagery,
and anodal tDCS of M1 was added one time a day for 5 days in
a row in the first 2 weeks of graded motor imagery, then, one
time a week for the remaining 4 weeks of graded motor imagery.
The authors reported that this did not reduce pain more than in
the control group of 11 other patients having undergone sham
tDCS + graded motor imagery with the same parameters (125).
Of note, it has never been reported either that protocols of tDCS
alone could improve pain management in CRPS (112).

TENS
TENS after-effects in CRPS pain management have been
described in numerous interesting case reports and case series
since the late 1970s, both in children and adults. However, robust
data-evidence-based studies are missing and the efficacy of TENS
has not yet been established. Current evidence is limited by the
case report designs, the large variety of protocols employed or
the missing details in the protocol, the heterogeneous cohorts
of patients, and the lack of appropriate control conditions in
most cases. However, given the high acceptance and safety of
this device, it is almost always worthwhile to consider TENS as
part of a multidisciplinary approach (133). For example, three
case studies in children aged 10, 6, and 3.5 years old, respectively
(126), and one case report in a 43-year-old woman (121) reported

that TENS applied over acupuncture points or painful areas,
at low or high frequencies and for one or several sessions,
decreased pain, hyperesthesia, hyperalgesia, edema, cyanosis if
any, and, in parallel, improved the range of motion (ROM) at the
painful joint. Two other series of cases used various stimulation
protocols between children and with limited details provided in
the articles: TENS coupled with home-based physical therapy
reduced pain symptoms in 9/10 cases with complete remission
within 2 months in 7/10 cases (124) and TENS alone reduced
pain in 20/29 cases (130). More recently, a randomized clinical
trial tested 100Hz TENS as an add-on to a standard physical
therapy program (contrast bath, whirlpool bath, and physical
exercise) in 15 people with type-1 CRPS. The authors showed
that 15 sessions of TENS + standard physical therapy program
reduced pain scores and edema and increased the second-to-
third fingers ROMmore than in a group of 15 other patients who
underwent sham TENS + standard physical therapy program. It
was concluded that the addition of TENS to standard physical
therapy programs significantly contributed to clinical recovery in
CRPS (120).

Research and Clinical Prospective
Non-invasive neurostimulation techniques have already been
reported to influence neurophysiological markers in various
chronic pain conditions, such as fibromyalgia (134, 135),
neuropathic pain (136–140), lower back pain (107, 141–143),
deafferentation pain (144), or phantom limb pain (145). Evidence
is slowly piling up and the work from Moisset et al. (109)
in chronic pain reviewed the analgesic effects of rTMS of M1
or of dorsolateral PFC and related this pain reduction to the
changes of corticospinal excitability that can last for weeks. In a
recent systematic review (146), the use of high-frequency rTMS
over M1 was acknowledged level A of evidence in neuropathic
pain, level B in CRPS, and the use of high-frequency rTMS
over the left dorsolateral PFC was acknowledged level B of
evidence in the control of pain. It is thus surprising that,
despite promising data in other chronic pain conditions, only
a few randomized clinical studies tested these techniques in
CRPS (112). A possible explanation is that CRPS is a rare
syndrome characterized by a large variabilty of clinical profiles,
thus making it difficult to run larger studies with randomized
placebo-controlled designs. In fact, two systematic reviews rated
with very low quality of evidence on the therapeutic effects
of non-invasive neurostimulation in CRPS on pain intensity,
but this may be due to small sample size and short follow-up
(99, 147).

Future research is warranted to better determine whether
non-invasive neurostimulation, alone or combined with other
treatments, is efficient to reduce CRPS severity. To this end,
studies ought to clearly identify if there are responders and non-
responders to one or another technique if some data or variables
collected at baseline can be predictors of responsiveness, and if
all brain changes detected are specific to CRPS, or commonly
related to chronic pain, or, for example, a consequence of the
limb non-use, i.e., not directly related to pain. Due to the
high variability of CRPS profiles, it is expected that not all
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people will respond to non-invasive neurostimulation to the
same extent. It will thus be crucial to customize an individual
approach owing to brain changes and the integrity of the
corticospinal system.

CONCLUSION

Knowledge of CRPS neurophysiopathology has evolved rapidly
in the last decades, with more evidence of neural changes
involvement in the chronicization, the symptoms and the
resistance to conventional treatment. However, literature
on non-invasive neurostimulation trials to influence these
neural changes remains scarce. This is despite evidence
from other pain conditions of sustained pain decrease
and function improvement in parallel with a resolution
of maladaptive neural plasticity. The current review lays
the stress on the fact that non-invasive neurostimulation
of the brain or of nerve/muscles/spinal roots, alone or in
combination with other treatments, represents a fertile ground
for further investigations on more efficient interventions in
CRPS management.
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