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Identifying Reproducible Molecular 
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To precisely diagnose metastasis state is important for tailoring treatments for gastric cancer 
patients. However, the routinely employed radiological and pathologic tests for tumour metastasis 
have considerable high false negative rates, which may retard the identification of reproducible 
metastasis-related molecular biomarkers for gastric cancer. In this research, using three datasets, we 
firstly shwed that differentially expressed genes (DEGs) between metastatic tissue samples and non-
metastatic tissue samples could hardly be reproducibly detected with a proper statistical control when 
the metastatic and non-metastatic samples were defined by TNM stage alone. Then, assuming that 
undetectable micrometastases are the prime cause for recurrence of early stage patients with curative 
resection, we reclassified all the “non-metastatic” samples as metastatic samples whenever the 
patients experienced tumour recurrence during follow-up after tumour resection. In this way, we were 
able to find distinct and reproducible DEGs between the reclassified metastatic and non-metastatic 
tissue samples and concordantly significant DNA methylation alterations distinguishing metastatic 
tissues and non-metastatic tissues of gastric cancer. Our analyses suggested that the follow-up 
recurrence information for patients should be employed in the research of tumour metastasis in order to 
decrease the confounding effects of false non-metastatic samples with undetected micrometastases.

Tumour metastasis is the primary cause of recurrence and mortality of early stage gastric cancer patients after 
curative surgery1–4. Therefore, accurate diagnosis of distant and lymph node metastasis is essential for predicting 
prognosis and tailoring treatment strategies for gastric cancer patients5,6. However, current preoperative imaging 
techniques such as computed tomography (CT) and endoscopic ultrasound (EUS) are lack of accuracy7,8 and 
especially tend to produce a high rate of false negative clinical reports due to the poor identification of tiny lesions 
or micrometastases4,7,8. The lymph node metastasis is routinely detected by hematoxylin-eosin (H&E) staining of 
one section containing the largest dimension of the lymph node6, which also tends to produce a high rate of false 
negative clinical reports because of the random distribution of tumour cells throughout the lymph node4,6,9,10. 
More lymph node sections may decrease the false negative rate of H&E staining but the workload of surgeons 
and pathologists will be increased greatly4,6. The same problem exists when immunohistochemistry is used for 
detecting lymph node metastasis4,6. Consequently biomarkers for predicting the metastasis state for individual 
patients are in urgent need to avoid over- or inadequate-treatment owing to the misdiagnosis.

Because gene expression profiling has the advantage of exploring the tumour progression systematically based 
on the multiple gene disorders, many researches have exploited the high throughout data to study the transcrip-
tional characteristics of metastasis and identify transcriptional biomarkers for metastasis11–13. Epigenomics data 
has also been taken into consideration by researchers and some methylation loci related to gastric metastasis have 
been reported14,15. However, the results of different studies showed inconsistency and lacked independent valida-
tion16. The same irreproducibility problem may exist for the basic task of extracting differentially expressed genes 
(DEGs) between the metastasis and non-metastasis samples17, which might make it unreliable to investigate the 
metastasis based on DEGs.
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In this research, using three datasets of gene expression profiles for gastric cancer, we firstly showed that DEGs 
between metastatic tissue samples and non-metastatic tissue samples could hardly be reproducibly detected with 
a proper statistical control when the metastasis and non-metastasis samples were defined by TNM stage alone. 
Because micrometastases not found by the routine pathology diagnosis could be the major cause for recurrence 
after curative surgery18–20, we could hypothesize that the patients diagnosed as non-metastasis cases but subse-
quently suffered the recurrence should have developed micrometastases before the surgery. According to this 
hypothesis, we reclassified all the “non-metastatic” samples of patients, defined according to TNM stage, as meta-
static samples whenever the patients experienced tumour recurrence during follow-up after tumour resection. By 
this strategy, we were able to find distinct and reproducible DEGs and concordant DNA methylation alterations 
between the reclassified metastatic and non-metastatic tissue samples with a proper statistical control false dis-
covery rate (FDR) of less than 20%.

Results
Detecting reproducible metastasis-associated DEGs with the recurrence information. The 
TNM stage of the samples in the three datasets analysed in this study were diagnosed according to the 6th edition 
(GSE15459 and GSE62254) or 7th edition ( TCGA batch 220) of the AJCC Cancer Staging Manual21, where the 
two editions have the same definition for metastasis and non-metastasis. According to TNM stage, the non-me-
tastasis group consisted of samples without lymph node metastasis (N0) nor distant metastasis (M0), while the 
metastasis group included samples with lymph node metastasis (N+ ) and /or distant metastasis (M+ ) (Table 1). 
Using Wilcoxon rank-sum test with FDR <  10%, 126 and 1687 DEGs were detected between the metastasis group 
and non-metastasis group for the GSE15459 and GSE62254 datasets, respectively. The two lists of DEGs shared 
only 7 genes and the concordance score (see Materials and Methods) was 57.1% (p =  0.5). With FDR <  10%, 
69 DEGs were found in TCGA batch 220 by the edgeR package (see Materials and Methods), of which only 1 
and 3 DEGs were shared by GSE15459 and GSE62254, respectively (Supplementary Table 1). With FDR <  20%, 
660 and 3371 DEGs were detected in GSE15459 and GSE62254 respectively. The two lists of DEGs had only 94 
overlapped genes, and the concordance scores was as low as 54.3% (p =  0.24). With FDR <  20%, 124 DEGs were 
detected in the TCGA batch 220, of which only 3 and 15 DEGs were also detected as DEGs in GSE15459 and 
GSE62254 and the concordance scores were as low as 0% and 33.3% (p =  0.94), respectively. The low concordance 
scores and small overlaps between DEGs identified from independent datasets indicated that differential gene 
expression signals were weak and poorly reproducible in the three datasets when the samples were grouped by 
the TNM stage only (Supplementary Table 2), possibly due to confounding factors such as false negatives and/or 
false positive samples.

Considering that micrometastases undetectable by the routine pathology diagnosis could be the major cause 
for recurrence after curative surgery, we reclassified the samples by taking into account the recurrence informa-
tion. GSE15459 provided the adjuvant treatment information for individual patients. Some patients experiencing 
no recurrence after curative surgery might benefit from the adjuvant treatment. Accordingly, only patients who 
were diagnosed as non-metastasis (N0M0) and did not recur under the condition of without adjuvant treatment 
were defined as the non-metastasis group. Because the information on adjuvant treatment were not explicitly 
provided in both GSE62254 and TCGA batch 220, the non-metastasis samples were defined as the ones who 
were diagnosed as non-metastasis (N0M0) and did not recur. For all these three datasets, the metastasis group 
consisted of the patients who were diagnosed as distant metastasis and the ones without distant metastasis but 
suffered from recurrence. In order to exclude the potential non-distant metastasis samples (false positive sam-
ples), we ignored the samples who were diagnosed as lymph node metastasis (N +  M0) but did not recur after 
curative resection. After this reclassification, we obtained 94 metastasis samples and 27 non-metastasis samples 
in GSE15459, 132 metastasis samples and 27 non-metastasis samples in GSE62254, 18 metastasis samples and 
11 non-metastasis samples in TCGA batch 220 respectively (Table 1). With FDR <  20%, the DEGs between the 
regrouped metastasis and non-metastasis samples were separately detected by the Wilcoxon rank-sum test for 
the GSE15459 and GSE62254 datasets and by the edgeR package for the data of the TCGA batch 220. After the 
sample reclassification, both the overlaps and concordance scores between every two lists of DEGs identified 
from the three independent datasets increased greatly (Supplementary Table 3). For GSE62254 and TCGA batch 
220, the concordance score increased to 92.9% (p <  2.20 ×  10−16) and the consistent DEGs increased to 2625. The 
concordance score between GSE15459 and GSE62254 increased to 90.5% (p <  1.11 ×  10−4) and the score between 

Dataset Metastasis group Non-metastasis group

Gene expression profiles (grouped by TNM stage)

 GSE15459 139 35

 GSE62254 263 37

 TCGA batch 220 33 19

Gene expression profiles (regrouped by TNM stage and recurrence information)

 GSE15459 94 27

 GSE62254 132 27

 TCGA batch 220 18 11

Methylation profile (regrouped by TNM stage and recurrence information)

 TCGA batch 220 21 14

Table 1.  Samples classified as metastasis and non-metastasis groups according to different criteria.
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the GSE15459 and TCGA batch 220 increased to 92.3% (p <  1.71 ×  10−3), respectively, although they still had 
small numbers of overlapped DEGs. The high and statistically significant concordance scores verified that the 
reclassification of recurred samples was a powerful practice to extract reliable DEGs related to gastric cancer 
metastasis (Table 2). Part of the misjudged samples had been regrouped in accord with their actual metastasis 
status by this practice.

Functional enrichment analysis further supported that the DEGs consistently detected in GSE62254 and 
TCGA batch 220 were correlated with metastasis. With FDR <  20%, the DEGs up-regulated in the metas-
tasis samples compared with the non-metastasis samples were significantly enriched in some typical tumour 
metastasis-associated signalling pathways, such as ECM-receptor interaction22, focal adhesion23–25 and 
cGMP-PKG signalling pathways26,27 (Supplementary Table 4). In contrast, the DEGs down-regulated in the 
metastasis samples were significantly enriched in pathways involved in cell metabolism, such as biosynthesis of 
amino acids, carbon metabolism, pyrimidine metabolism and many other pathways, such as homologous recom-
bination, DNA replication and mismatch repair (Supplementary Table 4).

Distinct epigenomic characteristics of metastasis. After reclassifying the samples with methyla-
tion data of TCGA batch 220 by the same rule used for the gene expression profiles, we compared the methyl-
ation profiles between the metastasis and the non-metastasis samples. Using the Wilcoxon rank-sum test with 
FDR <  20%, 447 and 233 genes were found to be hypermethylated and hypomethylated in the metastasis samples 
compared with the non-metastasis samples, respectively. Among the 447 hypermethylated genes, 62 genes were 
also identified as DEGs between the two groups, among which 90.3% were concordantly down-regulated in the 
metastasis samples compared with the non-metastasis samples, which was unlikely to be observed by chance 
(p <  1.49 ×  10−11). These results suggested that hypermethylation of gene promoters may play a major role in 
inducing gene down-regulations in the metastasis tissues, and thus could be a major driver for the gastric can-
cer metastasis. Some of the concordant genes play important roles in the process of tumour cell migration. For 
example, IFNG in the regulation of autophagy pathway, which was both hypermethylated and down-regulated in 
metastasis tissues, might reduce cell epithelial apoptosis and decrease cell proliferation via autophagy28.

Similarly, 207 out of 233 hypomethylated genes were identified as DEGs between the two groups, among 
which 57.5% were concordantly up-regulated in the metastasis samples compared with the non-metastasis 
samples, which was also unlikely to be observed by chance (p <  0.02). Although the correlation between hypo-
methylation of gene promoters and gene overexpression was weak, DNA hypomethylation might also play a 
role in the metastasis. For example, we found that the COL4A3 annotated in the ECM-receptor interaction 
pathway was both hypomethylated and up-regulated in metastasis tissues, which might play a role in tumour 
metastasis29.

Discussion
Our analyses demonstrated that the metastasis-associated differential gene expression signals were very weak 
and thus poorly reproducible in independent data when the samples were classified simply according to the 
TNM stage. The high recurrence rates of non-metastasis samples used in this study indicated high false negative 
rates, which might blur the difference between the metastasis and non-metastasis samples. This problem might 
exist for many studies on cancer metastasis mechanisms or predictive signatures, including both the high- and 
low-throughput researches. In order to reduce the interference of the false negative samples, we suggest making 
use of follow-up information of samples when researches on gastric cancer metastasis are conducted. Our results 
showed that distinct metastasis-associated DEGs could be reproducibly detected in independent data when the 
samples were regrouped based on both the TNM stage and recurrence information. With the help of recurrence 
information, classical metastasis-associated pathways significantly enriched with metastasis-associated DEGs 
could be readily detected, including focal adhesion, ECM-receptor interaction and metabolism pathways. The 
functional analysis results also provided extra evidence for the authenticity of the metastasis-associated DEGs 
identified between the reclassified metastasis and non-metastasis groups.

Gene expression alterations are usually caused by epigenomic and/or genomic lesions30,31. 
Metastasis-associated DNA methylation alterations which were significantly concordant with differen-
tial gene expressions were indeed observed between the reclassified metastasis and non-metastasis groups. 
Our results showed that hypermethylation of CpG loci in genes’ promoter regions could contribute to genes’ 
down-regulations in metastasis samples, indicating that DNA methylation alternation might be an important 
factor promoting cancer metastasis. However, we were unable to detect copy number alternations and gene muta-
tions with significantly different frequencies between the metastasis and non-metastasis samples by the Fisher’s 
exact test with FDR control (FDR <  20%). The failure in finding genomic events characterizing the metastasis 

Datasets

TNM stage1 TNM stage and recurrence2

overlap(CS3) p value overlap(CS) p value

GSE15459 vs. GSE62254 94 (54.3%) 0.24 21 (90.5%) 1.11 ×  10−4

GSE62254 vs. TCGA batch 220 15 (33.3%) 0.94 2827 (92.9%) < 2.2 ×  10−16

GSE15459 vs. TCGA batch 220 3 (0%) > 0.99 13 (92.3%) 1.71 ×  10−3

Table 2.  Concordance scores between DEGs detected from different datasets (FDR < 20%). Note: 1results 
for sample classified by the TNM stage alone. 2Results for sample classified by TNM stage and recurrence 
information. 3CS denotes for concordant score.
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samples might indicate the existence of a certain percentage of misjudged samples in the datasets analysed in this 
study even after reclassifying some potential false negative samples. The undetected misjudged samples could be 
possibly due to the confounded effect of adjuvant treatment and short-term follow-up.

In summary, the false negative problem lays a major barrier for detecting reproducible metastasis-associated 
DEGs, let alone the identification of signatures for predicting metastasis. The same problem should exist in stud-
ies for other cancers and thus we suggest that the follow-up information should be taken into consideration for 
studying cancer metastasis.

Materials and Methods
Data acquisition and pre-processing. Gastric cancer gene expression profiles of the GSE15459 and 
GSE62254 datasets were downloaded from the GEO. The raw data (.CEL files) were normalized using the robust 
multi-array average method (RMA) in the Bioconductor package32–34. If multiple probes were mapped to the 
same gene, the expression value for the gene was summarized as the arithmetic mean of the values of the multiple 
probes (on the log2 scale). After data preprocess, 20283 genes were remained for analysis for both GSE15459 and 
GSE62254.

The multi-omic data for gastric cancer were derived from The Cancer Genome Atlas (TCGA) (http://can-
cergenome.nih.gov/). In order to avoid the batch effect, we restricted our analysis to samples of batch 220 which 
had comprehensive clinical information. The count data of RNA-seq were downloaded from the TCGA Web 
Portal. After excluding the unknown transcripts, we kept the data of 22509 genes for the following analysis. The 
methylation beta-values of samples measured by the Infinium HumanMethylation450 platform were downloaded 
from the TCGA Web Portal. Because the correlation between gene body methylation and gene expression is 
not clearly understood until now35,36, we focused on analysing the 27,578 CpG loci within the promoters for 
14,495 protein-coding genes, which were defined in the Infinium HumanMethylation27 platform37. It has been 
widely recognized that there is a negative correlation between the promoter methylation and transcription activ-
ity, especially the hypermethylation of CpG loci in a gene promoter could lead to silence in gene transcription38,39. 
After excluding the loci with missing values, 22,432 CpG loci within the promoters for 14,495 protein-coding 
genes were analysed. CNVs data of level 4 of the TCGA samples analysed by GISTIC 2.0 were downloaded from 
Firehose (https://confluence.broadinstitute.org/display/GDAC/Download). A total of 36 significant amplification 
peaks and 53 deletion peaks were obtained.

Identification of DEGs and differentially methylated genes. The two-tailed Wilcoxon rank-sum test 
was used to select DEGs and differentially methylated (DM) genes between metastasis and non-metastasis sam-
ples for microarray data and methylation data40. The R package of edgeR41 for RNA-seq data was conducted to 
exact DEGs between two kinds of samples. All the p values in this paper were adjusted by the Benjamini-Hochberg 
FDR procedure42.

Analysis of epigenetic data. Only the CpG loci within the gene promoters for 14,495 protein-coding 
genes, as defined in the Infinium HumanMethylation27 platform37, were analysed. If a gene had both hypermeth-
ylated and hypomethylated CpG loci, this gene was excluded from subsequent analysis43. A gene with at least one 
DM locus in its promoter was termed a DM gene. By comparing the mean beta values of DM CpG loci between 
metastasis and non-metastasis samples, we classified the DM genes as hypermethylated genes or hypomethylated 
genes.

Concordance scores. Suppose a couple of DEGs lists extracted separately from two datasets shared k genes, 
of which s genes showed the same deregulation directions (up- or down-regulation). In this case the concord-
ance score was calculated as s/k ×  100%. This score was used to evaluate the consistence of DEGs extracted from 
independent datasets.

If k genes are both significantly altered down-regulated (or up-regulation) in gene expression and methylated 
in the metastasis samples, of which s genes were hypermethylated (or hypomethylated) and correspondingly 
down-regulated (or up-regulation), then the concordance score was calculated as s/k ×  100%. This score was used 
to evaluate the concordance of hypermethylation (or hypomethylation) with down-regulation (or up-regulation).

The probability of observing a concordance score of s/k by chance was evaluated by the cumulative binomial 
distribution model as follows:

∑= − −
=

−
−( )P k

i P P1 ( ) (1 )
(1)i

s

e
i

e
k

0

1
1

where Pe is the probability of one gene having the concordant relationship between the two lists of genes by 
chance (here, Pe =  0.5).

Functional enrichment analysis. The functional enrichment analysis was conducted based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database44. The biological pathways in this database are described 
in KEGG Markup Language (KGML) files including nodes (genes and compounds) and edges (functional links). 
The KGML data files were obtained manually from the KEGG website in July, 2014. After removing the pathways 
without functional links between genes, we obtained 217 pathways. Functional KEGG enrichment analyses were 
performed separately for up- and down-regulated genes for the reason that it was more powerful than analysing 
all the DEGs together45. The biological pathways that were significantly enriched with genes of interest were 
determined by the hypergeometric distribution model. If k genes were identified as interesting genes (such as 
DEGs) from n genes in a dataset and x of them were annotated in a pathway with m genes, then the probability 
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of observing at least x genes in this pathway by chance can be appropriately modelled by the cumulative hyperge-
ometric distribution model as follows:
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