
OPINION
published: 22 September 2015
doi: 10.3389/fbioe.2015.00144

Edited by:
Ekaterina Shelest,

Leibniz Institute for Natural Product
Research and Infection

Biology – Hans-Knoell Institute,
Germany

Reviewed by:
Gaurav Sablok,

Istituto Agrario San Michele, Italy
Uwe Ohler,

Max Delbrueck Center, Germany

*Correspondence:
Pedro Madrigal

pm12@sanger.ac.uk

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology, a section of the journal
Frontiers in Bioengineering and

Biotechnology

Received: 14 June 2015
Accepted: 07 September 2015
Published: 22 September 2015

Citation:
Madrigal P (2015) On accounting for

sequence-specific bias in
genome-wide chromatin accessibility
experiments: recent advances and

contradictions.
Front. Bioeng. Biotechnol. 3:144.
doi: 10.3389/fbioe.2015.00144

On accounting for sequence-specific
bias in genome-wide chromatin
accessibility experiments: recent
advances and contradictions
Pedro Madrigal1,2*

1Wellcome Trust Sanger Institute, Cambridge, UK, 2 Department of Surgery, University of Cambridge, Cambridge, UK

Keywords: next-generation sequencing, DNase-seq, ATAC-seq, chromatin accessibility, footprinting, sequence
bias, ChIP-exo

Next-Generation Sequencing for Chromatin Biology

Uncovering the protein–DNA interactions involved in cell fate, development, and disease in a
time- and cell-specific manner is a fundamental goal of molecular biology. The advent of the
sequencing technologies has opened a new genomic era, uncovering the information encoded in
genomes, epigenomes, and transcriptomes (McPherson, 2014). For example, the popular ChIP-
based techniques ChIP-seq (Johnson et al., 2007; Robertson et al., 2007) and ChIP-exo (Rhee and
Pugh, 2011) are widely used to detect transcription factor (TF)-binding sites using an antibody
against a single protein of interest (Mahony and Pugh, 2015). Alternative protocols assaying the
chromatin landscape, such as those based ondigestion byDNase I enzyme (DNase-seq),micrococcal
nuclease (MNase-seq), and Tn5 transposase attack (ATAC-seq), enable the identification of DNA-
binding protein footprints of many TFs in a single experiment (Tsompana and Buck, 2014). Time-
series experiments might be required for the identification of those TFs cataloged as pioneer factors,
allowing their effects on chromatin to be investigated (Zaret and Carroll, 2011; Pajoro et al., 2014;
Sherwood et al., 2014).

Despite the initial promise of detecting the majority of TFs in one assay, DNA sequence-
specific biases, together with TF-dependent binding kinetics, have been recently pinpointed as
major confounding factors in DNase-seq experiments (Koohy et al., 2013; He et al., 2014; Raj
and McVicker, 2014; Rusk, 2014; Sung et al., 2014). These influencing factors were not considered
by any of the previous computational approaches for the analysis of next-generation sequencing
chromatin accessibility data (Madrigal and Krajewski, 2012); neither those strategies based on TF-
generic DNase signature nor those based on TF-specific DNase signature (Luo and Hartemink,
2013).

Alleviating Sequence-Specific Biases in DNase-seq

To partly address these challenges, four recent approaches have been published that model, predict,
or explain DNase I sequence specificity in order to improve the detection of TF occupancy events
at high resolution (digital genomic footprinting). The first method, FootprintMixture, uses a
multinomial mixture model in which one mixture models the footprint component, and the other
the background component taking into account the sequence bias (Yardimci et al., 2014). The
background can be either uniform or derived from naked DNA measurements – this is the main
difference with respect to the footprint component in CENTIPEDE (Pique-Regi et al., 2011), which
assumes a uniform background. Alternatively, more than two components may be set to detect
variability in the footprint model. Thus, the cleavage signature (number of DNase I cuts that map
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to each nucleotide) is used in a multinomial mixture model to
classify candidate sites as either “bound” or “unbound” aided
by 6-mer DNase sequence bias cleavage frequencies (Yardimci
et al., 2014). Remarkably, the authors found that sequence bias
is DNase-seq protocol specific. They also found that the sig-
nature of a footprint could be formed by a mixture of DNase
digestion profiles identified by unsupervised k-means clustering,
in agreement with the observations found in an earlier study
(Tewari et al., 2012). For TFs CTCF and ZNF143, variants of the
consensus sequence motif associated to different footprint shapes
were observed.

In the second, the DNase2TF algorithm is able to correct din-
ucleotide bias, detecting footprints with accuracy better or com-
parable to existing approaches (Sung et al., 2014). Furthermore,
Sung et al. (2014) were able to predict DNase signatures using
solely tetranucleotide frequency information. Although this 4-
nucleotide region has the highest information content, Koohy
et al. (2013) and Lazarovici et al. (2013) demonstrated information
beyond a context longer than four nucleotides. Consequently,
using naked (deproteinized) DNA control datasets specific to a
protocol and an enzyme as well as high sequencing depth (Hes-
selberth et al., 2009) are now suggested recommendations for
DNase-seq experiments aiming to detect footprints (Meyer and
Liu, 2014).

A third approach, an improved version of HINT [HMM-based
identification of TF footprints (Gusmao et al., 2014)], named as
HINT-BC/HINT-BCN (BiasCorrection based onhypersensitivity
sites/Bias Correction based on Naked DNase-seq) includes k-mer
based bias correction in DNase-seq data as in He et al. (2014),
leading to substantial changes in the average DNase I cleavage
patterns surrounding the TFs. These changes result beneficial to
footprinting method accuracy (personal communication with the
author).

Contradictorily, a fourth study using DNase-seq has shown
that bias correction does not significantly improve the accuracy
of TF binding identification (Kähärä and Lähdesmäki, 2015). In
addition, this study poses a second counterintuitive idea in the
field: accuracy saturates at a modest sequencing depth (30–60
million reads), and only a few TFs present improvement at
deeper sequencing.

ATAC-seq Shows Sequence Cleavage Bias

It is unknown if ATAC-seq derived footprints are factor depen-
dent or affected by Tn5 cleavage preferences (Tsompana and
Buck, 2014). As expected, bioinformatic analysis of chromo-
some 22 in the published human datasets for 50,000 cells reveals
sequence biases in ATAC-seq experiments (Buenrostro et al.,
2013) (Figure 1), similar to those found by Koohy et al. (2013)
in DNase-seq. As ATAC-seq might replace DNase-seq in the fore-
seeable future due to its cost and time efficiencies, and because it
simultaneously allows the identification of nucleosome positions
(Buenrostro et al., 2013), new computationalmodels are necessary
to evaluate intrinsic confounding factors in ATAC-seq.

A novel approach, msCentipede (Raj et al., 2014), has extended
CENTIPEDE (Pique-Regi et al., 2011) from a mutinomial
model to a hierarchical multiscale model. It has been evaluated
on “single-hit” UW DNase-seq (Hesselberth et al., 2009) and
on paired-end (PE) ATAC-seq data. Surprisingly, the “flexible
model” for background DNase I cleavage rate (msCentipede-
flexbg) shows very little improvement for a broad range of fac-
tors when taking into account naked DNA information from
Lazarovici et al. (2013) datasets. This finding clearly contradicts
those of He et al. (2014) and Sung et al. (2014). In msCen-
tipede, the footprint signature (or cleavage profile) pattern within
a factor-bound motif instance was, therefore, found to be infor-
mative when increasing the sensitivity and specificity of the TF
binding site prediction. Raj et al. (2014) suggest that this might
be explained by the different range of read count data between
the matched consensus sequence of the candidate site/motif
(10–30 bp) and the data matrix used typically by the software
packages (larger sequence window, around 100–150 bp extension
at each flank of the motif), which can mask the effects produced
by not accounting for sequence biases within the core motif.

Are Current Benchmarks Adequate to
Evaluate Bias-Corrected DNase-seq Data?

So far, a footprint of a TF, therefore, might be either detectable
(and better detectable when accounting, or not, for influencing
factors), or undetectable. In many studies, both problems are

FIGURE 1 | Tn5 transposase shows sequence cleavage bias. Data represented correspond to read-start sites in reads aligned to forward and reverse strands in
chromosome 22 in four ATAC-seq replicates (50 k cells per replicate) reported in Buenrostro et al. (2013). Of total, 50 bp PE reads were pre-processed with
Trimmomatic v0.32 under default parameters, and then aligned to hg19 using BWA v0.7.4-r385 (Li and Durbin, 2010; Bolger et al., 2014). Sequence logos were
generated using WebLogo (Crooks et al., 2004). Y-axis: 0.0–0.3 bits.
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convoluted and addressed using the same “gold standard”
datasets, such as ChIP-seq, which do not have nucleotide-level
resolution.Hence, on thesemethods and gold standards, no repro-
ducible improvements can be seen. This was already noted in
Cuellar-Partida et al. (2012), when it was showed that simply
scanning for position weight matrices in DNase I hypersensi-
tive sites (DHSs) had the same power as CENTIPEDE. These
issues also complicate data integration with TF ChIP-seq, as
peaks without a footprint in DNase-seq/ATAC-seq, considered
weak/indirect binding or false positives (ChIP artifacts), might
instead be explained by a class of TFs with rapid kinetics. And
vice versa, DNase I cleavage patterns located within “ChIP-seq
unbound” sites – noted previously, e.g., in theMILLIPEDE frame-
work, especially in yeast (Luo and Hartemink, 2013) – could
support the hypothesis of footprint shape dominated by DNA
sequence specificities.

Future Directions

There is room for improvement in currentmethodologies bymak-
ing use of the sequence specificity of each enzyme/assay, including
ATAC-seq, but there is no clear consensus in its importance for
digital genomic footprinting. This situation is not exclusive for
genome-wide chromatin accessibility experiments: modeling the
sequence-specific lambda exonuclease bias in ChIP-exo did not
significantly increase the identification of TF binding sites (Wang
et al., 2014). Similarly, there is no clear consensus if footprint
signatures at the core motif, whether they are unique or not for an
individual factor, are really important for footprint identification.

Establishing better benchmarks to compare performance of the
algorithms across different protocols is a fundamental task. These
benchmarks could be based on “differential footprints” (sites
within DHSs that are bound by a factor in one condition but
not the other) as a more appropriate metric to evaluate foot-
print identification performance instead of using ChIP-seq data
(Yardimci et al., 2014). In addition, are DNase-seq software tools
equally applicable to ATAC-seq without modification? If enzyme-
specific biases are taken into account in a comparable experi-
mental set-up, will DNase-seq and ATAC-seq report the same
footprints for an identical sample using same algorithm param-
eters? This is unlikely, based on a previous comparison between
open chromatin DHSs and FAIRE sites, which revealed unique
regions produced in each assay (Song et al., 2011). It has been
also proposed that performing, and combining, experiments with
different nucleases can be an alternative to mitigate biases (He
et al., 2014; Mahony and Pugh, 2015).

A greater challenge is dealing with proteins with very short
residency time in the DNA as they produce mostly negligible
footprints (Rusk, 2014; Sung et al., 2014). Optimizing and imple-
menting new methods is necessary in order to enable biological
insights that current methods cannot reveal.
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