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1  | INTRODUC TION

Plant pathogens are ubiquitous in both natural and managed ecosys-
tems, and they have complex and diverse effects on their host's sur-
vival and reproduction. These effects include host mortality, reduced 

growth and lower seed production, which is caused either directly by 
the pathogen or indirectly due to hampered plant growth (Agrios, 2005; 
Alexander, 2010; Gilbert, 2002; Jarosz & Davelos, 1995). Natural plant 
populations support extensive phenotypic variation in disease resis-
tance (Antonovics et al., 2011; Laine et al., 2011; Lebeda et al., 2014). 
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Abstract
1.	 Maternal effects of pathogen infection on progeny development and disease 

resistance may be adaptive and have important consequences for population dyna
mics. However, these effects are often context-dependent and examples of adaptive 
transgenerational responses from perennials are scarce, although they may be a particu-
larly important mechanism generating variation in the offspring of long-lived species.

2.	 Here, we studied the effect of maternal infection of Plantago lanceolata by Podosphaera 
plantaginis, a fungal parasite, on the growth, flower production and resistance of the 
progeny of six maternal genotypes in nutrient-rich and nutrient-poor environments. For 
this purpose, we combined a common garden study with automated phenotyping meas-
urements of early life stages, and an inoculation experiment.

3.	 Our results show that the effects of infection on the mother plants transcend to 
impact their progeny. Although maternal infection decreased total leaf and flower 
production of the progeny by the end of the growing season, it accelerated early 
growth and enhanced resistance to the pathogen P. plantaginis.

4.	 We also discovered that the effects of maternal infection affected progeny devel-
opment and resistance through a three way-interaction between maternal geno-
type, maternal infection status and nutrient availability.

5.	 Synthesis. Our results emphasize the importance of maternal effects mediated 
through genotypic and environmental factors in long-living perennials and sug-
gest that maternal infection can create a layer of phenotypic diversity in resist-
ance. These results may have important implications for both epidemiological and 
evolutionary dynamics of host–parasite interactions in the wild.
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Traditionally, phenotypic variation in resistance is assumed to have 
a genetic basis (Flor, 1956), where variation is maintained through a 
co-evolutionary arms race with pathogens (Bergelson, Dwyer, et al., 
2001; Bergelson, Kreitman, et  al.,  2001). However, we are becom-
ing increasingly aware that the local context—consisting of both 
abiotic and biotic variables—may alter the resistance phenotype di-
rectly and through genotype-by-​environment interactions (Blanford 
et al., 2003; Raghavendra & Newcombe, 2013). To date, remarkably 
little is known about how the conditions experienced by the paren-
tal generation contribute to phenotypic resistance diversity through 
non-genetic inheritance (Bonduriansky & Day,  2009). In particu-
lar, transgenerational priming (Bruce et al., 2007; Luna et al., 2012; 
Martinez-Medina et  al.,  2016; Mauch-Mani et  al.,  2017)—whereby 
maternal infection renders the offspring more resistant against patho-
gen attack (Holeski et al., 2012)—could create a layer of phenotypic 
diversity in resistance to provide further protection from infection.

It is well established that pathogen infection can prime defence 
plasticity in plant hosts, resulting in enhanced activation of induced 
defence mechanisms (Bruce et al., 2007; Mauch-Mani et al., 2017). 
Although often the primed response may be limited to a short time 
window (Frost et al., 2008; Luna et al., 2012), there is also evidence 
of a response that is maintained throughout the plant's life cycle 
(Martinez-Medina et al., 2016; Mauch-Mani et al., 2017). The effects 
of priming can be passed on to subsequent generations through 
the embryo via non-genetic mechanisms including DNA methyla-
tion, chromatin remodelling and small RNA signalling (Mauch-Mani 
et al., 2017; Singh & Roberts, 2015), and therefore transgenerational 
priming represents a type of plant immunological memory (Martinez-
Medina et al., 2016). Increased resistance against pathogens in the 
progeny of infected mothers was first shown in tobacco plants inoc-
ulated with tobacco mosaic virus (Roberts, 1983), and later studies 
mostly performed with short-living annuals and model species have 
described similar responses (reviewed by Holeski et al., 2012). Results 
from these studies have confirmed that transgenerational priming 
may enhance resistance in the progeny of plants exposed to the 
same or different pathogen species (Kathiria et al., 2010; Slaughter 
et al., 2012) and hence, maternal effects are often viewed as a form 
of adaptive, transgenerational plasticity (Agrawal et al., 1999; Frost 
et al., 2008; Marshall & Uller, 2007; Mauch-Mani et al., 2017; Uller 
et al., 2013; Yin et al., 2019).

Under pathogen attack, both host growth and reproduction 
are typically reduced, host resources are allocated to defence and 
depleted by the parasite, and in some cases hosts are exposed 
to pathogen-produced toxins (Tsuge et  al.,  2013; Van Kal,  2006; 
Yoder,  1980). Hence, transgenerational effects of maternal infec-
tion—or other stressors—are not always expected to be adaptive 
(Burton & Metcalfe, 2014; Marshall & Uller, 2007). In agricultural 
crops, it is well established that maternal infection may reduce the 
quantity of the produced seeds (Agrios, 2005; Argyris et al., 2003; 
Strange & Scott, 2005). In addition to producing fewer seeds, infected 
plants have been reported to produce smaller seeds, and seeds that 
have reduced protein content when compared to seeds produced by 
healthy plants (Edwards et al., 2001; Murray et al., 1995). Parental 

pathogen infection may also limit the growth in asexually spreading 
clonal species (Piqueras, 2001). While such reductions in seed qual-
ity due to parental infection are expected to affect seed viability, 
seedling emergence, growth and reproduction, to date this has not 
been verified, particularly in natural populations (Burdon & Laine, 
2019).

How consistently maternal infection generates variation in 
offspring fitness and resistance depends on how the effects vary 
across genotypes and environments. Experiments that focused 
on maternal effects induced by insect herbivores have shown that 
maternal effects can be highly genotype specific (Agrawal,  2002; 
Colicchio, 2017; Holeski et al., 2013), and may vary across genotypes 
in different abiotic conditions (Münzbergová & Hadincová, 2017; 
Rendina González et al., 2018; Vivas et al., 2013; Vu et al., 2015). 
Hence, how strong and durable the pathogen-induced priming ef-
fects are, may depend on the genotype-specific response to infec-
tion, and the quality and predictability of the environment that both 
mothers and their offspring encounter (Agrawal et al., 1999; Herman 
& Sultan,  2011; Kuijper & Hoyle,  2015; Luna et  al.,  2012; Mauch-
Mani et al., 2017).

In this study, we were particularly interested in whether the ef-
fects of maternal infection depend on the level of nutrients available 
to the offspring. Nutrient availability is considered a key determi-
nant of plant growth but may also affect plant disease tolerance 
and resistance (Agrios, 2005; Amtmann et al., 2008; Dordas, 2008; 
Mittler & Blumwald, 2010; Suzuki et  al.,  2014). Generally, nutrient 
stress is shown to weaken plant defences (Amtmann et  al.,  2008; 
Dordas, 2008; Suzuki et al., 2014). However, there is also evidence 
that increasing nutrients can increase the severity of infection, espe-
cially by obligate pathogens (Dordas, 2008), and that the effects of 
nutrients on disease resistance vary among plant species (Veresoglou 
et al., 2013) and genotypes (Laine, 2007). Agriculture has replaced 
natural habitats across the world, and those remaining are increas-
ingly occurring adjacent to agricultural practices (Foley et al., 2005). 
With both nutrient spillover from agricultural habitats (Matson et al., 
1997), and nitrogen deposition Hyvönen et al., 2007), natural popu-
lations are increasingly exposed to new levels of nutrients, and there 
is a pressing need to quantify the consequences of this.

Long-lived perennial plants may face short periods of stress with 
respect to their life span, and thus transgenerationally induced phe-
notypic plasticity may be a particularly advantageous strategy to cope 
with changing conditions (Auge et al., 2017; Donelson et al., 2018). 
Here, we investigate whether maternal infection by powdery mildew 
Podosphaera plantaginis affects progeny growth, flower production 
and resistance phenotype in the perennial ribwort plantain Plantago 
lanceolata in a series of experiments described in Figure S1. We also 
tested whether the effect varies depending on the maternal gen-
otype, and between two contrasting nutrient environments of the 
offspring. In our study area in the Åland archipelago P. lanceolata 
grows on open dry meadows that are characterized by low in nutri-
ent concentrations. However, soils in populations adjacent to agri-
cultural fields have significantly higher nutrient levels (H. Susi & A.-L. 
Laine, pers. comm.), with potentially far reaching implications for the 
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ecology and evolution of these populations. We used seeds from six 
maternal P. lanceolata genotypes that had been clonally propagated 
into multiple individuals and grown in common garden conditions 
for 3 years with and without infection. First, we monitored early-life 
development of the offspring, in two contrasting nutrient environ-
ments in the greenhouse conditions using automated phenotyping 
technology. Subsequent life-history traits were then monitored 
under the common garden settings. Finally, the progeny resistance 
against powdery mildew strains was assessed in a laboratory inoc-
ulation trial. The epidemic of P. plantaginis peaks late in the growing 
season, and hence we measured the resistance of mature progeny.

2  | MATERIAL S AND METHODS

2.1 | Plantago lanceolata and Podosphaera plantaginis 
interaction

Plantago lanceolata L., the ribwort plantain, is a perennial monoe-
cious herb (Sagar & Harper, 1964). It is an obligate outcrosser that 
can reproduce sexually via wind pollination, or asexually by produc-
ing vegetative side rosettes (Laine, 2004). Seeds drop close to the 
mother plant forming a long-term seed bank (Bos, 1992). Obligate 
biotroph P. plantaginis (Castagne; U. Braun and S. Takamatsu), be-
longing to the order Erysiphales in Ascomycota, is a powdery mildew 
parasite which is specific to P. lanceolata. Like all powdery mildews, 
P. plantaginis completes its life cycle as localized lesions on host tis-
sue where it obtains nutrients via haustorial feeding roots. Infection 
causes significant stress for host plant, decreasing host growth and 
increasing host mortality (Laine, 2004; Susi & Laine, 2015). Almost 
4,000 natural P. lanceolata populations located in the Åland islands, 
SW of Finland, have been surveyed annually since 2001 to study the 
metapopulation dynamics of P. plantaginis in this highly fragmented 
pathosystem (Jousimo et al., 2014). Between epidemic seasons, the 
parasite survives on decaying host leaves by producing overwinter-
ing structures, chasmotechia (Tack & Laine, 2014).

2.2 | Plant material

To produce genetically identical mother plants that differed in 
their infection status, we set up a common garden study in Lammi 
Biological station (Hämeenlinna, Finland), where cloned P. lanceo-
lata plants were grown over years 2011–2013 with and without the 
pathogen P. plantaginis (Susi & Laine,  2015). Originally, seeds for 
the six mother plants were collected in 2010 from six distinct natu-
ral populations located in the Åland islands. The grown six mother 
genotypes were then propagated into altogether 51 individuals 
(2–14 clones representing each genotype; Figure S2a) and planted 
into common garden populations (Susi & Laine,  2015). Soil used 
in the experimental populations was a mixture of commercial soil 
substrate and sand (1:1), and the abiotic environmental conditions 
were same for all the plants. In this multi-year experiment, half of 

the mothers were inoculated with two P. plantaginis strains (strain 
IDs L3 and L10, harvested from two allopatric populations in Åland 
islands) for three consecutive years. The infection level of each host 
plant was measured four times during every growing season through 
2011–2013 (for more details, see Susi & Laine, 2015). We also meas-
ured the growth and reproduction of the host plants as number of 
leaves and flowers, respectively, first in July and secondly at the end 
of the growing season in September. The results of the analysis of 
this multi-year study are reported in Susi and Laine (2015), here we 
focus on reporting the findings regarding the six maternal genotypes 
that were included in this study.

After 3 years of repeated infection, we collected seeds from the 
six maternal genotypes, two clones of each (in total from 12 plants), 
where one was always heavily (more than 30% of leaves) infected 
(infected mothers) and another clone represented the same geno-
type, but was never infected (healthy mothers). From each of the 
12 maternal plants, 18 seeds (half- or full-sibs, resulting from natu-
ral wind-pollination) were sown into 0.75 L pots. Half of the seeds 
(n = 9) were sown into fertilized, nutrient-rich soil and the other half 
(n = 9) to nutrient-poor soil (1:1 mixture of commercial soil substrate 
without added nutrients and sand). The plants in the nutrient-rich 
treatment received slow-release fertilizer twice, first portion (25 g 
of NPK 4-1-2 per plant) prior to the planting, and the second por-
tion (20 g/plant) when we started the second common garden ex-
periment (details below), in total 1.8 g of N, 0. 45 g of P and 0.9 g 
of K. No fertilizer was added to the plants in the nutrient-poor 
treatment. Finally, the experiment consisted in total of 216 plants in 
four experimental groups: offspring in nutrient-rich or nutrient-poor 
soils originating from the healthy and infected mothers, 54 plants 
in each group. Seedlings were grown in the greenhouse conditions 
at 20 ± 2°C (day) and 16 ± 2°C (night) with 16:8 L:D photoperiod. 
When the seedlings were 18 days old, we moved them into National 
Plant Phenotyping Infrastructure (NaPPI, https://www.helsi​nki.fi/
en/infra​struc​tures/​natio​nal-plant​-pheno​typing) platform.

2.3 | Early life measurements

We used the plant phenotyping facility located at the University 
of Helsinki, Viikki campus, for the phenotypic characterization of 
progeny's growth patterns. The plants were randomly arrayed into 
rows that were rotated every night to avoid microclimate differ-
ences influencing growing conditions. Plants were imaged every 
72 hr by overhead CCD camera for Red Green Blue (RGB) images 
positioned in a PlantScreen™ analysis chamber (PSI, Czech R.). In 
addition, images from three sides (angles 0°, 120° and 240°) were 
taken simultaneously with overhead imaging. The images were 
obtained for all 216 plants in total 13 times during the 8-week pe-
riod and pre-processed online as described in Awlia et al.  (2016) 
to allow collecting RGB data. Obtained binary images from top 
view were used for calculating growth parameter of leaf area 
(PlantScreen™ analyzer, PSI, Czech R.), which has been found to 
yield precise data for several plant species (Humplík et al., 2015). 

https://www.helsinki.fi/en/infrastructures/national-plant-phenotyping
https://www.helsinki.fi/en/infrastructures/national-plant-phenotyping
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Because all three side angles (0°, 120° and 240°) resulted in simi-
lar estimations, the parameter ‘height’ only from angle 0° was in-
cluded in the further analyses. The bolting day (a day when first 
flower stem was visible) and the number of developing flowers 
was manually observed and counted for each plant individual from 
the top RGB images.

2.4 | Common garden populations to measure  
offspring development over the growing season

To determine progeny growth and flowering traits under semi-
natural conditions, we established a common garden population in 
the Viikki campus experimental field (Helsinki, Finland) after the 
phenotyping characterization. When the plants were 8-week old, 
they were acclimated for 1-week outdoors and then were planted 
into six common garden plots. In each plot, there were 36 plants of 
which half (18) of the plants originated from infected mothers, and 
half (18) from healthy mothers. Each maternal genotype was repre-
sented by three offspring from healthy plants, and three offspring 
from infected plants in each plot. The positions of the plants within 
plots were randomly assigned. To exclude the variation in the soil, 
the top layer (30 cm) was replaced with a mixture of commercial 
substrate without nutrients and sand (1:1) and the experimental 
area was covered with plastic to avoid weeds and asexual repro-
duction of the experimental plants. The plants in the nutrient-rich 
treatment (i.e. in the three experimental plots) received a second 
portion of fertilizer (20 g/plant of NPK 4-1-2) prior to planting. The 
experimental plots (three fertilized and three non-fertilized) were 
randomly arrayed in the experimental field. We counted the num-
ber of leaves, the length and width of the longest leaf, the number 
of flowers, the height of the longest stalk and the height of the in-
florescence in the longest stalk, when the progeny plants were 16, 
20 and 24 weeks old. After the last manual measurements, flower 
stalks were removed and the above-ground biomass was collected, 
dried and weighted.

2.5 | Inoculation experiment

To characterize the resistance of the progeny of infected and healthy 
mothers against powdery mildew P. plantaginis, we performed an in-
oculation experiment when the progeny plants were 24-weeks old. 
Leaves collected from 216 offspring plants were placed in random 
order on moist filter paper in Petri dishes and inoculated with conid-
ial spores from purified powdery mildew lesions, by evenly brushing 
the spores on a leaf. We tested the resistance of the progeny plants 
against four P. plantaginis strains (L3, L10, 1630_2 and 877), origi-
nally collected from natural populations in the Åland Islands. Lesion 
development was monitored under a dissecting microscope every 
second day, starting at day 3 and continued until day 13. For the 
statistical analysis, resistance was scored on day 13 as 0 = no resist-
ance (infection) or 1 = resistance (no infection), when there was no 

growth, or if the test plant showed rapid cell death (hypersensitive 
response) around the inoculum area.

2.6 | Statistical analysis

We ran all the analyses, including linear fixed effect models, in R 
software (R Development Core Team, 2016), using the lme4 package 
(Bates et al., 2015). Each analysis was started with a full model with 
all the interactions included. Minimum adequate models were as-
sessed through stepwise simplification and selection based on likeli-
hood ratio or X2 values to compare significant interactions (Crawley, 
2012). The effect of significant independent variables was derived 
from analysis of the minimum adequate model with the car package 
(Fox & Weisberg, 2011). Overdispersion was tested when necessary 
and accounted for by fitting an observation-level random effect. To 
detect the significant differences in resistance among genotypes in 
different nutrient treatments, a post hoc analysis was performed 
using the multcomp package (Hothorn et al., 2008).

2.7 | Growth and reproduction of the mother plants

To test whether the maternal genotypes differed in their infection 
levels, we first ran a generalized linear model where we defined the 
proportion of diseased leaves (n = 25 plants) at the highest peak of 
epidemics (July 2013) as the response variable, and genotype as cat-
egorical explanatory variables. To test whether the genotypes, and 
infected and healthy plants differed in their growth, we defined the 
number of leaves (in September 2013 count) as the response variable, 
and genotype and pathogen treatment (inoculation or no inoculation) 
as the categorical explanatory variables in the analysis. To understand 
the effect of infection and genotype on plant reproduction, we used 
the summed number of the flowers counted in July and September 
as the response variable, and genotype and pathogen treatment as 
the class explanatory variables. In models with two explanatory vari-
ables, the interaction of these variables was included in the model. In 
all models, we assumed a Poisson distribution of errors.

2.8 | Early growth and flower production of the  
progeny

To analyse the differences in early growth between nutrient treat-
ment and maternal infection groups, we fitted mixed polynomial 
linear model (Mirman, 2014; Pavicic et al., 2017) for measurements 
obtained from the RGB images. The class explanatory variables 
treatment, maternal genotype, maternal infection and their interac-
tions were fixed effects. The polynomial order of days after sowing 
was added as fixed effect to take into account the curved growth 
patterns over time. Plant ID was nested under a day and included 
as random effect to account for the repeated measurements. This 
structure was fitted to response variables area in mm2 and height 
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computed from the top RGB images. To test whether experimental 
groups varied in their flower production, we analysed the number of 
flowers in every imaging day using a generalized linear mixed-effect 
model with log link and Poisson distribution of errors, with the same 
explanatory variables as above. The proportion of plants that were 
flowering (0/1) measured in every imaging day was analysed as a 
likelihood using a generalized linear model with a logit link function. 
The polynomial order of days and class explanatory variables treat-
ment, maternal infection, maternal genotype and their interactions 
were defined as fixed effects.

2.9 | Growth and flower production of the progeny 
in the common garden study

To determine the differences between progeny groups among manu-
ally measured traits in the common garden experiment, we analysed 
the data from the last measuring point (24  weeks). The number of 
leaves and flowers was analysed as generalized linear mixed-effect 
models with a Poisson distribution of errors. Continuous response var-
iables (the length and width of the longest leaf, the height of the tallest 
stalk, the height of inflorescence in the tallest stalk and the total bio-
mass from dried plants) were analysed as linear mixed-effect models. 
The fixed class explanatory variables were nutrient treatment, mater-
nal infection, maternal genotype and their interactions. The common 
garden plot was defined as a random effect in the models.

2.10 | Progeny resistance to powdery mildew 
measured through inoculations

To test whether maternal infection, genotype or offspring nutrient 
treatment affected the resistance responses against powdery mil-
dew strains, we analysed the inoculation experiment data derived 
from laboratory observations. The inoculation response (0/1) on day 
13 post-inoculation was modelled as a likelihood using a generalized 

mixed-effect model with a logit link function. Maternal infection, 
genotype, offspring nutrient treatment and their interactions were 
fixed effects, and plant ID was nested under a mildew strain (the 
four mildew genotypes) as a random intercept.

3  | RESULTS

3.1 | Growth and reproduction of the mother plants

All the mother plants grown in common garden conditions with path-
ogen inoculation became heavily infected (33%–100% of the leaves 
infected). There were no significant differences among the genotypes 
in the proportion of infected leaves (p =  0.9126; Tables S1 and S2; 
Figure  S2a). We found that the mother plant genotypes varied in 
the number of leaves they produced (p < 0.0001; Tables S1 and S2; 
Figure  S2b), and that the effect of pathogen inoculation on growth 
was genotype specific (p  <  0.0001; Tables  S1 and S2; Figure  S2b). 
However, there was no direct significant effect of pathogen treatment 
on growth (p = 0.749; Tables S1 and S2; Figure S2b). When we analysed 
the reproduction of the mother plants, we found that healthy plants 
generally produced more flowers than infected plants (96.9 ± 5.6 vs. 
77.1 ± 5.2; p < 0.0001; Tables S1 and S2; Figure S2c). We also found 
a significant interaction between genotype and pathogen treatment 
(p < 0.0001; Table S1; Figure S1c). Genotype alone had a significant 
effect on flower production (p < 0.0001; Table S1; Figure S1c).

3.2 | Early growth and flower production of the  
progeny

To understand the differences in the progeny growth rates during the 
first 8 weeks, we compared the accumulation of the total leaf area 
(mm2) and height using the RGB imaging approach. The measured 
leaf area and plant height increased with time (p < 0.0001, Table 1; 
Figure 1; Table S3), and plants in the nutrient-rich conditions grew 

TA B L E  1   Factors contributing to early growth of Plantago lanceolata plants in the greenhouse study analysed with polynomial linear mixed-
effect models. Statistics for minimum adequate models with smallest AIC values are reported. Significant values are highlighted in bold

Source

Area (mm2) Height Number of flowers Flowering individuals

LRT p LRT p LRT p LRT p

Days from sowing, polynomial 
order, df = 3

1,239.67 <0.0001 961.68 <0.0001 858.77 <0.0001 21.64 <0.0001

Nutrient treatment, df = 1 96.91 <0.0001 19.28 <0.0001 377.05 <0.0001 3.16 0.07

Maternal infection, df = 1 16.38 <0.0001 0.42 0.51 2.81 0.09 3.42 0.06

Genotype, df = 5 9.24 0.099 9.63 0.086 6.07 0.2 15.62 0.008

Nutrient treatment × maternal 
infection, df = 1

10.21 0.001 6.09 0.01 12.99 0.0003 1.54 0.21

Random ID Days ID Days ID Days ID Days

Variance 159,622,863 251,066 23,784.8 32.85 22.76 0.03 0.01 18.38

St. dev. 12,634.20 501.10 154.22 5.73 4.77 0.16 0.11 4.29
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faster and produced more leaves than the plants in the nutrient-poor 
conditions (p  <  0.0001, Table  1; Figure  1; Table  S3). The progeny 
of infected mothers produced more leaf area (p < 0.0001, Table 1; 
Figure 1; Table S3), especially in the nutrient-poor treatment (interac-
tion between nutrition treatment and maternal infection, p < 0.0001, 
Table  1; Figure  1a; Table  S3). Maternal genotype had no effect on 
the detected leaf area (p = 0.09, Table 1) or height (p = 0.51, Table 1). 
Plant height was affected by both the nutrient treatment (p < 0.0001, 
Table 1), and a significant interaction between nutrient treatment and 
maternal infection (p = 0.01, Table 1; Table S3).

To understand how maternal infection and nutrient treatment 
affect offspring flower production over the first 8 weeks, we quan-
tified the number of flowers from top RGB images. As expected, the 
proportion of plants that were flowering, and the number of flow-
ers increased with time (p < 0.0001 and p < 0.0001, respectively, 
Table  1; Figure  2; Table  S2). In the last imaging round on day 58, 
67% of progeny of healthy mothers and 81% of progeny of infected 
mothers were flowering in the nutrient-poor treatment, and 96% of 
healthy and 98% of progeny of infected mothers were flowering in 
the nutrient-rich treatment (nutrient treatment, p  =  0.07, Table  1; 
Table S3). Maternal infection had no significant effect on the pro-
portion of flowering plants (p = 0.06, Table 1), but the genotypes dif-
fered in their flowering efforts (p = 0.008; Table 1). In general, plants 
produced significantly more flowers in the nutrient-rich treatment 
than in the nutrient-poor treatment (p < 0.0001, Table 1; Figure 2; 
Table S3). Neither maternal infection nor genotype had a significant 
effect on the number of flowers produced (infection p = 0.09, gen-
otype p = 0.2, Table 1; Table S3). However, we found a significant 
interaction between nutrient treatment and maternal infection for 
the number of flowers produced. The progeny of infected mother 

produced more flowers in the nutrient-poor treatment, while in the 
high nutrient treatment flower production was similar between the 
progeny of both infected and healthy mothers (interaction between 
nutrient treatment and maternal infection, p  =  0.0003, Table  1; 
Figure 2; Table S2).

3.3 | Growth and flower production of the progeny 
in the common garden study

To understand how maternal infection and nutrient treatment affect 
vegetative growth and the number of flowers produced in 8-week-
old to 24-week-old progeny, we measured phenotypic traits manu-
ally in common garden populations. The phenotypic measurements 
conducted at the last time point revealed that the accelerated growth 
and reproduction rate detected in the progeny of infected mothers 
during early life were not detected anymore when the plants were 
24 weeks old (Figure S3). By the last manual measurement time point 
in early September, offspring of infected mothers had produced less 
flowers and leaves than the offspring of healthy mothers (maternal 
infection p < 0.0001 and p < 0.0001, respectively; Table 2; Figure 3; 
Table S4). Plants produced more flowers and leaves in the nutrient-
rich treatment (Table 2; Figure 3), and the genotypes also differed 
in their flower and leaf production (p < 0.0001 and p < 0.0001, re-
spectively; Table 2; Figure 3; Table S4). We found a significant three-
way interaction between maternal infection, nutrient treatment and 
maternal genotype on both the number of flowers and leaves pro-
duced (p < 0.0001 and p < 0.0001, respectively, Table 2; Figure 3; 
Table S4). These significant three-way interactions indicate that the 
effects of maternal infection on leaf size and flower production vary 
depending on the maternal genotype and the nutrient conditions 
that the progeny encounter.

F I G U R E  1   Development of detected top leaf area (mm2) from 
RGB images. Plant early development between first 22–58 days 
as measured in pixels and transferred into mm2, detected by RGB 
imaging. Growth of progeny of healthy and infected mothers was 
followed in two treatments, where (a) no nutrients were added and 
(b) nutrients were added. Curves and confidence intervals from 
fitted models, n = 54 plants per treatment and maternal infection 
group. The triangles represent the average for each group at a given 
time point

F I G U R E  2   Flower development in the progeny of healthy and 
infected mothers. Number of flowers detected from top RGB 
images through early life in two treatments, where (a) no nutrients 
were added and (b) nutrients were added. Curves from fitted 
models with 95% confidence intervals, n = 54 plants per treatment 
and maternal infection group. The triangles represent the average 
for each group at a given time point
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For the other measured life-history traits, nutrient treatment 
was the most significant factor affecting growth (‘Nutrient treat-
ment’ row in Table  2; Figure  S3). Total growth was highest in the 
high nutrient treatment for the following measurements: number of 
leaves (on average 111.2 in nutrient-poor and 136.4 in nutrient-rich 
treatment), number of flowers (68.4 and 89.3), longest stalk (42.6 
and 49.1 cm), largest inflorescence size (4.3 and 4.9 cm) and dried 
biomass (19.6 and 28.6 g), respectively (Figure S3). The length of the 
longest leaf (on average 24.4 cm) was defined by the maternal gen-
otype, and the leaf width (2.3  cm) and the longest stalk (47.3) by 
the interaction between maternal genotype and infection (Table 2; 
Figure S3).

3.4 | Progeny resistance to powdery mildew 
measured through inoculations

To study how maternal infection and nutrient treatment affect 
progeny disease resistance, we characterized the progeny pheno-
typic resistance against powdery mildew P. plantaginis strains in a 
laboratory inoculation experiment when the progeny were 24 weeks 
old. On day 13 post-inoculation, 36.3% of the leaves showed infec-
tion. The resistance phenotype of the progeny was significantly af-
fected by maternal genotype (p < 0.001, Table 2; Figure 4; Table S4). 
There was no significant difference between the detected resist-
ance responses of progeny grown in nutrient-rich or nutrient-poor 

F I G U R E  3   Total number of leaves and 
flowers produced at the end of growing 
season. Reaction norms for number of 
leaves in progeny of healthy and infected 
mothers by genotype in two treatments, 
where (a) no nutrients were added and 
(b) nutrients were added. Number of 
flowers in (c) no nutrients (d) nutrients 
treatment by genotype. The mean values 
for reaction norms in each nutrient 
treatment–maternal infection groups are 
shown by black lines. Standard errors for 
each genotype are shown

F I G U R E  4   Mean resistance of progeny 
of six Plantago lanceolata maternal 
genotypes in nutrient-poor and nutrient-
rich treatments. Reaction norms for 
resistance in the progeny of healthy and 
infected mothers in two treatments, 
where (a) no nutrients were added and 
(b) nutrients were added. Resistance was 
tested against four Podosphaera plantaginis 
strains. The mean values for reaction 
norms in both nutrient treatment–maternal 
infection groups are shown by black lines. 
Standard errors for each genotype are 
shown. Significant interactions among 
genotypes are indicated by asterisks
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conditions (Table 2, p = 0.72, Figure 4; Table S4). In general, there 
was a tendency for progeny of infected mothers to be more resistant 
than the progeny of healthy mothers (p = 0.049, Table 2; Figure 4; 
Table  S4). However, measured levels of resistance varied signifi-
cantly according to genotype and nutrient as shown by a significant 
three-way interaction between maternal nutrient treatment, mater-
nal infection and genotype (p  =  0.04, Table  2; Figure  4). This sig-
nificant three-way interaction indicates that the effects of maternal 
infection on progeny resistance vary depending on the mother plant 
genotype and nutrient conditions that the progeny encounter.

4  | DISCUSSION

The extensive variation in disease resistance that natural popula-
tions support (Laine et al., 2011) has been traditionally considered 
to reflect genetic diversity. However, recent studies have high-
lighted that the effects of pathogen infection may transcend gen-
erations also via non-genetic mechanisms (Holeski et  al.,  2012; 
Martinez-Medina et  al.,  2016; Mauch-Mani et  al.,  2017; Singh & 
Roberts, 2015). Pathogen infection in a perennial, long-living plant 
may affect offspring fitness and resistance phenotype, yet its extent 
remains largely unknown. Here, we determined how maternal infec-
tion affects progeny fitness and resistance in contrasting nutrient 
environments. Our results reveal that the negative effect powdery 
mildew infection has on the mother plants also transcends to impact 
their progeny. By the end of the growing season, the progeny of in-
fected mothers had grown less, and produced fewer flowers than 
the progeny of healthy mothers. The offspring of infected mothers 
also had a tendency to have higher resistance against infection by 
P. plantaginis. Moreover, we discovered that maternal infection af-
fected progeny development and resistance both directly, as well as 
through a three way-interaction between maternal genotype, ma-
ternal infection status and nutrient availability.

In line with previous studies (Laine, 2004; Penczykowski et al., 
2015), we found a negative effect of infection on the maternal plant 
generation in the common garden study where plants were grown 
with and without infection. The negative effect of P. plantaginis on 
the growth of P. lanceolata was genotype specific while flower pro-
duction was negatively affected by infection both directly and via 
genotype-specific effects. Indeed, there is a strong evidence show-
ing that pathogen infection may reduce host fitness and the quantity 
and quality of produced seeds (Agrios, 2005; Argyris et al., 2003). 
Asexual reproduction may also be altered by pathogen infection, as 
shown in Trientalis europea where plants infected by the systemic 
smut Urocystis trientalis produced smaller ramets than healthy plants 
(Piqueras, 2001). Hence, it is not surprising that the effects of infec-
tion may transcend to affect a wide range of life-history traits also in 
the progeny. We found that both infected mothers and their non-in-
fected offspring produced fewer flowers than the healthy moth-
ers and their offspring. Similarly, progeny of wheat plants infected 
by powdery mildew Blumeria graminis produced fewer and lighter 
seeds in two generations after an epidemic (Jarosz et al., 1989), and 

ryegrass Lolium multiflorum progeny produced smaller and less vig-
orous seeds when their parents were infected by a rust pathogen 
Puccinia coronata (Mattner & Parbery, 2007).

We found that the offspring of mothers that had experienced 
powdery mildew infection had adapted a life-history strategy 
that favours early reproduction. Initially, in the greenhouse study, 
the size of progeny plants—measured as leaf area—grew faster 
if the mother had been infected. Similarly, in their study, Latzel 
et al. (2009) showed that Plantago plants produced more and longer 
leaves, and had higher photosynthetic capacity if mothers were me-
chanically disturbed and grown in stressful nutrient-poor environ-
ments, even in their second year (Latzel et al., 2010). In our study, 
the progeny of infected mothers not only grew faster but also bolted 
earlier in both nutrient treatments. Increased abiotic or biotic stress 
is known to accelerate flowering in many plant species (Banday & 
Nandi, 2015; Brachi et al., 2012; Cho et al., 2017). As the differences 
in progeny growth and flowering patterns due the maternal infec-
tion were evidenced mostly in nutrient-poor conditions similar to 
those experienced by the mother plants, our results are in line with 
previous studies suggesting that maternal effects are responsible 
for enhanced growth of progeny in maternal conditions (Donohue 
& Scmitt,  1998; Galloway,  2005), and the maternal stress results 
in enhanced growth in progeny (Latzel et  al.,  2009; Sultan,  1996; 
Yin et al., 2019). However, we found the opposite effect of mater-
nal infection later in the growing season with progeny of infected 
mothers being smaller and producing fewer flowers than those of 
healthy mothers. The epidemic of P. plantaginis in Åland islands does 
not peak until August (Ovaskainen & Laine, 2006) while flowering 
starts in early June. Hence, this strategy would allow individuals to 
maximize their fitness when risk of infection is expected to be high.

We found that the progeny of infected Plantago mother clones 
had a tendency to be more resistant to powdery mildew infection. 
Both the strength and the direction of this trend depended on ma-
ternal genotype and nutrient availability. Increasing evidence has 
shown that pathogens can prime defence plasticity in plants, and 
that the enhanced resistance may be transgenerational (Holeski 
et al., 2012; Mauch-Mani et al., 2017). The mechanisms underpinning 
pathogen-induced epigenetic changes have been detected in several 
annual species such as Arabidopsis (reviewed by Martinez-Medina 
et al., 2016; Mauch-Mani et al., 2017). Since the discovery that de-
fence priming can be transmitted to future generations, similar ef-
fects have been described in cultivated crops (Walters et al., 2013) 
and in legumes (Martinez-Aguilar et al., 2016; terHorst & Lau, 2012). 
We tested priming effects after three consecutive years of maternal 
infection, which may have strengthened the detected resistance re-
sponses in the progeny. Because our study spans only one growing 
season of progeny growth and reproduction, we cannot determine 
the durability of increased resistance over multiple seasons or gen-
erations. However, a study conducted in natural populations of the 
Plantago–Podosphaera system has revealed that resistance is higher 
in areas where disease encounter rates have been high compared to 
areas where it has been low (Laine, 2006). This phenomenon could 
have arisen both via direct genetic changes in these populations or 
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via transgenerational priming. An exciting future avenue of research 
would be to determine the extent to which transgenerational prim-
ing contributes to the high levels of phenotypic resistance diversity 
observed in natural populations (Laine et al., 2011).

Importantly, we found evidence for a strong direct genotype 
effect on disease resistance, and both direct and genotype-by-​
maternal infection interactions on progeny growth, and repro-
duction. The strong genotypic differences in disease resistance 
detected here are in line with earlier studies on P. lanceolata (Laine, 
2004, 2007). Overall, genotype-specific responses in the progeny 
to maternal infection may be an important mechanism generat-
ing phenotypic variation in these key life-history traits within and 
among the local populations of P. lanceolata. Similarly, maternal ef-
fects under herbivory stress in long-living Populus sp. varied over 
genotypes, and offspring differed significantly in their constitutive 
allocation to growth and resistance traits (Holeski et al., 2013). In 
the clonal species, for example, in Trifolium repens, the direction 
and strength of maternal effects on offspring biomass were altered 
positively or negatively depending on the type of abiotic maternal 
stress, and these effects were highly genotype specific (Rendina 
González et al., 2018).

A recent meta-analysis (Yin et al., 2019) found that while transgen-
erational effects often enhance offspring performance in response to 
both stressful and benign conditions, perennial plants show hardly 
any transgenerational responses at all, suggesting other strategies 
for adaptation. However, it should be noted that there are relatively 
few case studies on perennial plants (21 studies were identified in 
meta-analysis by Yin et al., 2019), and these have generally not ac-
counted for the high genotypic and environmental variation typical 
of natural plant populations. The three-way interactions we find be-
tween maternal infection, genotype and nutrient availability highlight 
that maternal effects on progeny fitness and disease resistance are 
not consistent across genotypes and environments. Our results sug-
gest that the advantage of transgenerational defence priming occurs 
when environmental conditions become more challenging (Kuijper & 
Hoyle, 2015; Reiss & Drinkwater, 2018). Overall, fine-scale variation 
in genetic diversity and environmental conditions typical of natural 
plant populations are likely to amplify the extent to which maternal 
effects may generate variation in offspring quality both within and 
between populations. Our results are in line with findings by Gáspár 
et al. (2019), who discovered that epigenetic differences across P. 
lanceolata populations were consistently related to genetic and envi-
ronmental variation. Although the mechanistic underpinning maternal 
effects of infection in P. lanceolata is not known, the strong pheno-
typic responses we find are compelling evidence of the role that ma-
ternal effects in heterogeneous environments can have in generating 
phenotypic diversity in perennial plants.

Jointly, our results support the idea that phenotypic variation 
within a generation stems not only from the genetic inheritance of pa-
rental alleles but can also be adjusted by maternal effects in response 
to abiotic and biotic stress experienced by the parental generation 
(Auge et al., 2017). Overall, our results indicate that maternal infection 
may influence progeny growth, flower production and phenotypic 

resistance diversity in long-lived plant species. Both empirical and 
theoretical work have shown that variation in resistance to natural en-
emies across spatially structured populations can fundamentally alter 
epidemiological and evolutionary patterns of infectious disease (Laine 
et al., 2011; Salvaudon et al., 2008; Tack et al., 2012), yet to our knowl-
edge this is the first study to demonstrate how the effects of ma-
ternal infection on progeny resistance vary depending on the mother 
plant genotype and nutrient conditions that the progeny encounter. 
This work provides novel insights into how present conditions may 
shape future generations of perennial plants to help them cope with 
the same stressors as their parental generation in an adaptive manner.
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