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Lipids: A Suitable Therapeutic Target in Diabetic Neuropathy?
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Diabetic polyneuropathy (DPN) encompasses multiple syndromes with a common pathogenesis. Glycemic control shows a limited
correlation with DPN, arguing in favor of major involvement of other factors, one of which is alterations of lipid and lipoprotein
metabolism. Consistent associations have been found between plasma triglycerides/remnant lipoproteins and the risk of DPN.
Studies in cultured nerve tissue or in murine models of diabetes have unveiled mechanisms linking lipid metabolism to DPN.
Deficient insulin action increases fatty acids flux to nerve cells, inducing mitochondrial dysfunction, anomalous protein kinase C
signaling, and perturbations in the physicochemical properties of the plasmamembrane. Oxidized low-density lipoproteins bind to
cellular receptors and promote generation of reactive oxygen species, worsening mitochondrial function and altering the electrical
properties of neurons. Supplementation with specific fatty acids has led to prevention or reversal of different modalities of DPN in
animalmodels. Post hoc and secondary analyses of clinical trials have found benefits of cholesterol reducing (statins and ezetimibe),
triglyceride-reducing (fibrates), or lipid antioxidant (thioctic acid) therapies over the progression and severity of DPN. However,
these findings are mostly hypothesis-generating. Randomized trials are warranted in which the impact of intensive plasma lipids
normalization on DPN outcomes is specifically evaluated.

1. Introduction

Diabetic neuropathy is a frequent and serious complication
of both type 1 (DM1) and type 2 (DM2) diabetes. In patients
with DM2, the prevalence of diabetic neuropathy has been
estimated at 20–40% in different populations [1–3]. Diabetic
neuropathy is a progressive, debilitating condition with a
major impact on patient morbidity, mortality, and quality of
life. There are five types of neurological syndromes related
to diabetes mellitus: distal symmetric polyneuropathy (most
frequent), autonomic neuropathy, small-fiber neuropathy
(earliest), polyradiculopathy, and mononeuropathies [4, 5].
Despite important advances, results from observational stud-
ies and clinical trials suggest that other factors besides
glycaemia play a large role in this particular complication.

2. Glycemic Control Is Not the Only
Determinant of Diabetic Neuropathy

In the Diabetes Control and Complications Trials (DCCT),
patients randomized to the intensive control arm achieved

an HbA1c 1.8% lower than the conventional treatment arm
after a follow-up period of 6.5 years and developed 69% less
distal symmetrical polyneuropathy (DSP) (defined as DSP on
physical examination plus abnormal nerve conduction in 2
different nerves or unequivocally abnormal autonomic test
results) [6]. In the Epidemiology ofDiabetes Intervention and
Complications (EDIC) study, the original cohort of DCCT
was followed observationally for another 8 years. The HbA1c
difference between groups had entirely dissipated (8.0%
prior intensive group versus 7.9% prior conventional therapy
group) [7], yet the difference in diabetic polyneuropathy
(DPN) incidence persisted (cumulative incidence 7% in the
intensive group versus 3.5% control group). Furthermore, the
NeuroEDIC study extended this follow-up for up to 14 years
after the DCCT closure, and the between-group difference
in the risk for neuropathy not only persisted but widened
(25% in the former intensive group versus 35% in the former
control group, 𝑝 < 0.001) [8]. So the relevance of glycemic
control in the progression of DPN in DM1 is paramount.

TheKumamoto and theAction toControl Cardiovascular
Risk in Diabetes (ACCORD) trials found similar results
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in patients with DM2. In the Kumamoto study, patients
treated with multiple insulin therapy (MIT) (3 or more
daily administrations) achieved better glycemic control than
those under conventional insulin therapy (HbA1c 7.1% MIT
group versus 9.4% conventional therapy, 𝑝 < 0.05). This
better glycemic control translated into less nerve damage
after 6 years, with a small but significant difference (median
nerve conduction velocity [NCV] 53.2m/s in MIT versus
50.2m/s in conventional group, 𝑝 < 0.05) [9]. Similarly,
in the glycemic component of the ACCORD trial, patients
originally randomized to strict glycemic control (HbA1c at
glycemic component discontinuation 6.4%) had a slower
progression of DPN versus the standard treatment group
(HbA1c 7.5%) (hazard ratio [HR] for loss of ankle jerk at study
end 0.90, 95% CI: 0.84–0.97, 𝑝 = 0.005) [10].

Nonetheless, not all outcome studies inDM2have found a
significant impact of glycemic control on neuropathy. A very
large difference in final HbA1c (8.4% in control group versus
6.9% in intensive group) had no impact on the cumulative
incidence of any type of neuropathy in the Veterans Affairs
Diabetes Trial (VADT) (43.5% control group, 43.8% inten-
sive group) [11]. The United Kingdom Prospective Diabetes
Study (UKPDS) of intensive treatment with sulphonylureas
or insulin versus standard therapy in patients with DM2
produced comparable findings. Despite better HbA1c control
(7.0% in intensive arm versus 7.9% in standard arm, 𝑝 <
0.001), incidence of DSP measured by absent ankle reflexes
did not differ between groups (35% in the intensive treatment
group versus 37% in the standard treatment group, 𝑝 = 0.60)
[12].

Finally, the Action in Diabetes and Cardiovascular Dis-
ease: Preterax and Diamicron Modified Release Controlled
Evaluation (ADVANCE) study showed a benefic effect of
intensive glycemic control on nephropathy (HR 0.79, IC 95%:
0.66–0.93) but no significant effect on either retinopathy or
neuropathy in patients with DM2 [13]. Two recent large car-
diovascular outcome trials in patients with DM2 (LEADER
with the Glucagon Like Peptide-1 [GLP-1] agonist liraglutide
and EMPA-REG with the Sodium-Glucose Cotransporter-2
[SGLT-2] inhibitor empagliflozin) found significant reduc-
tions of cardiovascular risk with newer oral antidiabetic
therapies but did not report on neuropathy endpoints [14, 15].

So hyperglycemia does not seem to be the sole factor
explaining the appearance and progression of DPN, and
the effect of glycemic control on the improvement of DPN
appears to be variable, particularly among patients withDM2.

Diverse pathophysiologicalmechanisms have been impli-
cated in the development and progression of DPN. The
high oxidative stress characteristic of hyperglycemia exerts
injury to nerve cells through lipid peroxidation, direct dam-
age to DNA with pathological activation of repair path-
ways, depletion of cellular antioxidants, and induction of
proinflammatory transcription factors [16]. Another pathway
leading from hyperglycemia to DPN entails the activation of
the intracellular enzyme aldose reductase, which transforms
glucose that has not been oxidized via glycolysis into sorbitol
and fructose. This so-called polyol pathway leads to the
intracellular accumulation of osmotically active sorbitol,
causing cellular edema and loss of important metabolic

mediators like taurine, myoinositol, and adenosine. Also,
the reaction catalyzed by aldose reductase utilizes NADPH,
so this pathway depletes the cell of NADPH, necessary for
the regeneration of glutathione, the main defense against
oxidative damage [17]. Local alterations of nociceptors and
neural growth factors (neurotrophins) also play a role, espe-
cially in painful DPN. Chronic and continuous stimulation
of the nociceptor transient receptor potential cation channel
subfamily V member 1 (TRPV-1) in early DPN leads to
local release of various growth factors, importantly NGF
(nerve growth factor) and brain-derived neurotrophic factor
(BDNF).This creates a feedforward loop in whichNGF binds
to the trkA receptor, which lowers the threshold for TRPV-
1, leading to further sensitization and pain and to further
NGF release [18].The activation of certain isoforms of protein
kinase C is characteristic of diabetic complications, and it
is presumed to be involved in DPN as well [19]. Protein
kinase C is a second messenger kinase that activates nuclear
factor kappa-B (NF kappa-B) and other proinflammatory
transcription factors.

The hexosamine pathway may also contribute to dia-
betic neuropathy. When cells have a high glucose influx,
some of the fructose-6 phosphate in the glycolytic pathway
is diverted by glutamine:fructose-6-phosphate transferase
to glucosamine-6 phosphate. This hexosamine is used to
produce UDP-N-acetyl glucosamine (UDP-GlcNAc). UDP-
GlcNAc is then enzymatically added to the serine and thre-
onine residues of multiple transcription factors, modifying
their activity. Involvement of this pathway has been clearly
demonstrated for other diabetic complications [20], but its
role in DPN is less clear. Yet another plausible mechanism
of nerve dysfunction in diabetes involves the nonenzymatic
glycation of cellular proteins. Chronic elevation of glucose
in the cellular milieu facilitates the formation of advanced
glycation end-products (AGEs), which directly hinder the
function of multiple essential cellular and extracellular pro-
teins (tubulin, actin, and laminin). AGEs also bind to and
activate a specific receptor (the receptor for AGEs or RAGE),
inducing a proinflammatory, prooxidative transcriptional
program in peripheral nerves [21].

However, despite these well-known pathogenic mecha-
nisms of glucose burden on DPN, the same has not been
consistently replicated in various clinical trials as mentioned.
This suggests the role of additional factors which might
influence the appearance and progression of DPN. Here,
we propose that alterations of lipid metabolism (which are
very frequent in patients with DM2 and/or the metabolic
syndrome) participate in several key pathways of DPN
pathogenesis and that normalization of lipidmetabolismmay
constitute an appealing target for the prevention or treatment
of DPN.

3. Plasma Lipids Are Associated with
Progressive DPN

In several large observational studies, an interesting obser-
vation has been the baseline between-group differences in
lipid profile in patients with DM2 who go on to develop DPN
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and those who do not. In the European Diabetes Prospective
Complications (EURODIAB) study of patients with DM1,
total cholesterol (TC), LDL cholesterol (LDLc), and TG levels
were significantly associated with incident DPN over a 7.3-
year follow-up (Odds Ratio [OR] 1.26, 𝑝 = 0.001; OR: 1.22,
𝑝 = 0.02; andOR 1.35,𝑝 < 0.001, resp.), even after adjustment
for baselineHbA1c and diabetes duration [22]. Concordantly,
in a 52-week prospective study of patients with DM2, plasma
triglycerides (TG) were associated with progressive DPN,
defined as a loss of more than 500 fibers/mm2 in a sural
nerve biopsy (𝑝 = 0.04 for plasma TG difference between
progressors and nonprogressors) [23]. Likewise, the Utah
Diabetic Neuropathy study found an association between
plasma triglycerides ≥150mg/dl and the risk of DPN at entry
in patients with DM2 (relative risk [RR]: 2.3, 95% CI: 1.1–
4.7) [24]. Also, LDL particle size as a marker of atherogenic
dyslipidemia appears to be an independent risk factor for
neuropathy [25], and patients with mixed dyslipidemia have
been shown to exhibit prolonged cutaneous silent period
latency, a measure of small-fiber neuropathy [26].

4. Mechanisms Linking Lipids to
Diabetic Neuropathy

4.1. Peripheral Nerves Are Affected by Insulin Resistance. Even
though glucose uptake in the nervous system is largely
insulin-independent, there is evidence of insulin signaling
in peripheral nerves [27]. Insulin signaling in peripheral
neurons proceeds in a way analog to that in other cells, with
successive phosphorylation of the insulin receptor itself, then
the insulin receptor substrate 2 (IRS-2), phosphoinositide 3-
kinase (PI3K), phosphoinositide-dependent kinase-1 (PDK1),
and subsequently protein kinase B (PKB/Akt) [28]. Direct
insulin administration of insulin at doses insufficient to
change plasma glucose was able to prevent and reverse
features of diabetic neuropathy (motor conduction velocities
and axonal atrophy) in the sural nerves of streptozotocin-
induced diabetic mice [29]. Studies in obese diabetic ob/ob
mice have demonstrated a lack of PKB/Akt activation in
peripheral nerves in response to direct (intrathecal) admin-
istration of insulin [30]. Hyperglycemia may directly affect
the neural response to insulin. In vitro studies of the impact
of insulin on the nerve action potential under normal
or high glucose conditions have found that hyperglycemia
prolongs the action potential, an effect that is abolished by
insulin [31]. However, under normoglycemic conditions the
effect of insulin was to reduce the conduction velocity of
oxygenated nerves. Furthermore, in vitro studies have shown
that continuous exposure to high insulin concentrations
abolishes the ability of acute insulin exposure to activate the
Akt signaling pathway in dorsal root ganglion neurons [32].
Thus, the hallmarks of molecular resistance to insulin action
in other tissues (adipose and liver) are also present in nerve
tissue. Human patients with the metabolic syndrome are
characterized by insulin resistance and a chronic low-degree
inflammation status [33, 34]. In these patients, insulin resis-
tance assessed through the homeostatic model assessment–
insulin resistance (HOMA-IR) index has shown a positive

and independent associationwith clinical scores of peripheral
neuropathy (Odds Ratio: 1.2 per unit, 95% CI: 1.1–1.4) [35].

4.2. Free Fatty Acids Mediate Insulin Resistance and Dysfunc-
tion in Peripheral Nerves. High plasma levels of free fatty
acids (FFA) are a hallmark of insulin resistance. Decreased
inhibition of adipocyte hormone-sensitive lipase due to
insulin resistance leads to a continuous release of FFA [36].
FFA in turn perpetuate and worsen insulin resistance in
adipose and other tissues by inducing intracellular forma-
tion of diacylglycerol and ceramides that activate protein
kinase C-theta and delta isoforms (PKC-theta and PKC-
delta) and serine-threonine kinases that phosphorylate IRS
and reduce their signaling capacity [37]. On the other hand,
the phospholipid bilayer of cells from healthy patients is
characterized by a high concentration of polyunsaturated
fatty acids (PUFA), a composition that facilitates insertion of
membrane receptors and transporters and uptake of external
substrates. In DM2, increased FFA lead to high cytoplas-
mic saturated fatty acyl-CoA, which allosterically inhibits
fatty acid desaturases and reduces synthesis of PUFA [38].
Under these circumstances, membrane flexibility decreases
and multiple functions associated with electrical conduction
and signal transduction may become affected [39]. A rigid
membrane increases oxidative stress and further induces
insulin resistance by its limited capability glucose transporter
(GLUT) expression. High intracellular saturated FFA levels
also activate nuclear factor kappa-B (NF-kB) signaling by
directly stimulating expression of the p65 subunit of NF-
kB [40]. This pathway raises production of reactive oxygen
species (ROS) and promotes oxidative stress, which is a
central factor in the appearance and progression of DPN [41].

In streptozotocin diabetic rats, 5 weeks of supplemen-
tation with PUFAs gamma-linolenic (omega 6) and eicos-
apentaenoic (omega 3) acids led to a significant decrease in
the progression of DPN measured as sensitive and motor
NCV [42]. A multicenter clinical trial revealed a significant
improvement of 13 DPN parameters (including conduction
velocities, thermal sensitivity, and tendon reflexes) in DM2
patients supplemented with gamma-linolenic acid for 1 year
[43]. A recent study focused on the causality of the association
between FFA and DPN. Patients with DM2 received an
intralipid and heparin infusion to intentionally raise FFA
levels and had their heart rate variabilitymeasured by spectral
analysis for 3 hours. Plasma FFA correlated positively with
the low frequency/high frequency variability ratio (higher
values indicate lower heart rate variability) (𝑟 = 0.57, 𝑝 <
0.02). After three months of good glycemic control, when
circulating FFA had dropped to normal levels, heart rate
variability measures also returned to normal [44].

4.3. Imbalance of Mitochondrial Bioenergetics Further Medi-
ates Neuropathy. Cellular energy metabolism is centered at
the mitochondria, which is consequently the main site of
reactive oxygen species (ROS) generation. In neurons and
glial cells, a dysregulation of mitochondrial bioenergetics as
seen in DM2 has been associated with abnormal increases
in mitochondrial fission and biogenesis [45]. Mitochondria
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shift their balance from fatty acid biosynthesis towards
continued oxidation, using for this purpose most available
acyl-carnitines and depleting a key substrate for myelin lipid
biosynthesis [46]. Derangement of substrate utilization may
lead to increased production of mitochondrial ROS, release
of cytochrome C, and activation of proapoptotic pathways
leading to neuronal damage [46, 47].

Transcriptional, proteomic, and functional changes
indicative of altered mitochondrial substrate utilization
associated with greater ROS generation and less respiratory
capacity in the context of insulin-resistant diabetes have been
detected in heart [48], skeletal muscle [49, 50], and sensory
neurons [51].

FFA have the ability to directly inhibit the respiratory
chain [52–54], a property that has been demonstrated in
Schwann cells in vitro [55]. A study in streptozotocin dia-
betic rats found that insulin doses insufficient to induce
changes in plasma glucose were still able to normalize rates
of mitochondrial coupled respiration in cells from dorsal
root ganglia [56]. Murine models of DM2 display reduced
glycolytic intermediaries in peripheral nerves and dorsal root
ganglia, in association with increased oxidative damage of
proteins and lipids [57]. These changes appear to affect first
neurons from longer peripheral nerves, like the sciatic nerve
[58].Mechanistically, AMP-activated protein kinase (AMPK)
and peroxisome proliferator-activated receptor gamma coac-
tivator 1-alpha (PGC-1 alpha) are “central hubs” of energy
metabolism [59, 60] that appear to be involved in the pathway
from fatty acids to mitochondrial dysfunction and DPN.
A high-fat diet increases mitochondrial concentrations of
fatty acid oxidation intermediaries and decreases PGC-1
alpha expression in skeletal muscle [61]. A cross-sectional
study comparing gene expression patterns in skeletal mus-
cle biopsies from patients with insulin resistance, patients
with DM2, and controls found a significant downregulation
of PGC-1-responsive genes involved in mitochondrial ATP
production in the first two groups [62]. The expression of
PGC-1 and nuclear respiratory factor-1 (NRF-1) responsive
oxidative metabolism genes is reduced in muscle tissue of
patientswithDM2 and in normoglycemic relatives of patients
with diabetes [50]. Interestingly, stimulation of AMPK sig-
naling has improved neuropathic manifestations like thermal
hypoalgesia in a rodent model of diabetic neuropathy [63].
Administration of troglitazone (a PPAR-gamma agonist) to
diabetic obese rats improved NCV [64].

4.4. Oxidized Lipids May Promote DPN. Increased LDL cho-
lesterol and TG levels have been shown to be associated
with a faster progression to end-stage renal disease, blindness
and peripheral neuropathy in patients with DM2 [65]. The
mechanism behind the LDL-DPN relationship is thought
to reside in increased oxidative environment, as explained
above. In fact, oxidation of LDL cholesterol is increased in
patients with diabetes compared to healthy controls [66],
resulting in a proinflammatory state. Dorsal root ganglia
express the lectin-like oxLDL receptor (LOX-1). When oxi-
dized LDL (oxLDL) bind to this receptor, a signaling pathway
is activated that increases ROS and oxidative stress. The

same process occurs in the nerve roots of patients with
DPN, particularly via activation of NADPH oxidase, before
a significant impairment of glycemia becomes evident [67].

4.5. Atypical Sphingolipids, Another Metabolic and Neurotoxic
Link? Sphingolipids are a class of naturally occurring lipids
made by subsequent modifications of a sphingoid base,
mostly sphingosine [68]. The rate-limiting step in their
synthesis is the condensation of L-serine and palmitoyl-CoA,
catalyzed by the enzyme serine-palmitoyl transferase (SPT)
[69]. Complex lipids from this group such as ceramide and
sphingomyelin are involved in cell structure and signaling
[68]. Deoxy-sphingolipids (DOSL) are atypical sphingolipids
characterized by the lack of anOHgroup inC1. Several DOSL
display neurotoxic activity [70]. DOSL are produced when
SPT activity is altered and it uses L-alanine or glycine instead
of serine as amino acid substrate [68]. As serine and alanine
are involved in carbohydrate metabolism, it is believed that
DOSL synthesis is a metabolic intersection between lipid,
carbohydrate pathways, and oxidative stress [71], especially
in patients with DM2 [72].

Observational studies have demonstrated that DOSL
levels are increased in patients with metabolic syndrome
and/or DM2. A study comparing the sphingolipid profile of
patients with DM1, DM2, and controls found increased levels
of DOSL in patients with DM2 (0.05, 0.09, and 0.05 arbitrary
units, resp.) [71]. In a case-control study, patients with DM2
also had higher DSOL plasma levels compared to controls
(0.19microM and 0.12microM, resp.,𝑝 = 0.005) [72]. Plasma
sphingolipid profiling of patients with DPN compared to
other types of neuropathy and patients without neuropathy
reveals increased atypical sphingolipids (0.11 microM DPN
versus 0.06 microM controls, 𝑝 < 0.001) [73]. In a subgroup
study from EDIC, patients who reported neuropathy at any
point of follow-up exhibited higher deoxy-ceramide levels
than those without neuropathy (12.3 versus 10.6, 𝑝 = 0.049
units/curve area) [74]. A pilot model with diabetic rats
demonstrated that intentionally lowering plasma DOSL may
improve neuropathymeasures likemechanical sensitivity and
NCV [75]. In a trial comparing treatment with fenofibrate
versus niacin for 6 weeks in patients with primary hyperc-
holesterolemia or mixed dyslipidemia, fenofibrate effectively
lowered atypical sphingolipids (0.13 microM before, 0.09
microM after treatment, 𝑝 ≤ 0.001) [76], which suggests that
PPAR-alpha agonists may provide a positive impact on DPN
(see below).Themechanism of DOSL-induced neurotoxicity
remains to be elucidated.

The mechanisms linking deranged lipid metabolism to
DPN are summarized in Figure 1.

5. Treatment of Dyslipidemia:
Its Impact on DPN

5.1. Triglyceride-Reducing Therapy. Fibrates are a class of
lipid-lowering therapies with demonstrated efficacy at reduc-
ing TG and increasing HDLc in patients with DM2. Recent
evidence suggests a positive effect of fibrates on DPN pro-
gression. In a report from the Fremantle Diabetes Study
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Figure 1: Pathogenic mechanisms linking abnormal lipid metabolism to progression of diabetic neuropathy. HFD: high-fat diet, FA: fatty
acids, PGC-1alpha: PPAR-gamma coactivator 1-alpha, NRF-1: nuclear respiratory factor-1, DPN: diabetic polyneuropathy, FFA: free fatty
acids, IRS: insulin receptor substrates, PKC-theta: protein kinase C, theta isoform, PKC-delta: protein kinase C, delta isoform, Ser/ThrP:
phosphorylation in serine or threonine, ox-LDL: oxidized LDL, LOX-1: lectin-like oxidized LDL receptor, NADPH oxidase: reduced
nicotinamide-adenine dinucleotide phosphate oxidase, PL: phospholipid, and SFFA: saturated free fatty acids. Insulin resistance or a high-fat
diet increase the cellular supply of FFA, leading to decreased expression of PGC-1alpha andNRF1-alpha-responsive genes and subsequently to
impaired mitochondrial capacity and nerve dysfunction. Increased supply of FFA also causes uncontrolled formation of DAG and ceramides,
which activate atypical PKC isoforms and promote serine/threonine phosphorylation of IRS, decreased insulin signaling, and defective nerve
growth and repair.The augmented availability of SFFA in insulin resistance leads to changes in the fatty acid composition of plasmamembrane
phospholipids. Membranes richer in saturated FA are more rigid and exhibit disturbances of electrical conduction and a reduced capacity for
receptor expression and signal transduction, all of which worsen DPN. Accelerated ROS production in diabetes generates oxLDL that bind
to the LOX-1 receptor and activate NADPH oxidase, worsening ROS production even further and hastening the progression of DPN. Finally,
oxidized deoxysphingolipids are neurotoxic lipids associated with DPN, but their mechanism of action is still unknown.

that included 531 patients with DM2 followed for 5 years
using either statins or fibrates as lipid-lowering therapy,
treatment with fenofibrate was associated with a significant
decrease in the appearance of neuropathy (measured by the
Michigan Neuropathy Scoring Instrument (MNSI) [HR 0.52,
𝑝 = 0.042]) [77]. In the Fenofibrate and Event-Lowering in
Diabetes (FIELD) study of 9795 patients with DM2 who were
randomized to fenofibrate or placebo, the fenofibrate group
had a significantly lower rate of nontraumatic amputations
(HR 0.62, 𝑝 = 0.011) [78]. Mechanistic studies in obese
db/dbmice have found that fenofibratemarkedly activates the
above-mentioned PPARalpha-AMPK-PGC1 pathway in the
sciatic nerve, while improving the animals’ tactile threshold
[79].

Omega-3 fatty acids are essential polyunsaturated fatty
acids, a group that includes eicosapentaenoic and docosahex-
aenoic acids (DHA). In patients with DM2, plasma levels of
omega-3 acids correlate negatively with insulin resistance and
dyslipidemia [80]. Experimentally, an increased production
of omega-3 in a diabetic micemodel confers resistance to diet
induced obesity and diabetes [81]. Supplementation with fish
oil containingDHAcompletely prevented the development of
neuropathy in streptozotocin-induced diabetic mice [82] and
led to preservation of NCV and Na+/K+ ATPase activity in
sural nerve of streptozotocin-induced diabetic rats [83]. The
polyunsaturated and anti-inflammatory nature of omega-3
may be key to these effects against diabetes-induced nerve
dysfunction.
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5.2. Cholesterol-Lowering Therapy. Statins are the corner-
stone of hypercholesterolemia management. By inhibit-
ing the rate-limiting enzyme in the cholesterol biosynthe-
sis pathway (conversion of hydroxymethylglutaryl CoA to
mevalonate), they also prevent the formation of isopre-
noid intermediaries like isopentenyl-pyrophosphate, dimeth-
ylallyl-pyrophosphate, geranyl-pyrophosphate, and farnesyl-
pyrophosphate. Isoprenoids play an important role in the
posttranslational modification and membrane attachment
of multiple signaling molecules, among them GTP-binding
proteins of the Ras and Rho family. Therefore changes in
the availability of farnesyl-PP (associated with Ras proteins)
or geranyl-PP (associated with Rho proteins) affect a great
number of cellular processes beyond cholesterol production
[84]. Streptozotocin-induced diabetic mice showed normal-
ization of their NCV of the saphenous and sciatic nerves after
2 weeks of treatment with 0.3–20mg/kg of rosuvastatin and
a normalization of thermal hyperalgesia with the 20mg/kg
dose. These results indicated improvement in both large and
small nerve fibers. The complete reversal of these effects with
mevalonate supplementation implies that theyweremediated
by reduced production of isoprenoid precursors [85].

There is also evidence of DPN improvement with
cholesterol-lowering therapies such as statins or ezetimibe
in clinical studies. In the Fremantle Diabetes Study, patients
with DM2 treated with statins evidenced a 35% reduction
in the incidence of DPN [77]. A recent study demonstrated
that patients with DM2 treated with simvastatin + ezetimibe
or rosuvastatin had lower lipid peroxidation (LPO) markers
versus placebo and a significant reduction in the Neuropathy
Symptoms Score from baseline [86], lending further support
for this pathway as a pharmacological target in DPN.

5.3. Lipoic Acid as a DPNTherapy. In the context previously
described, current approaches for DPN therapy include
molecules with antioxidant properties [87]. Lipoic acid or
thioctic acid (LA) is an octanoic acid derivative that has been
used for symptomatic relief in diabetic polyneuropathy with
positive results. Three pathways may explain its effect: (1) LA
has the capacity to directly scavenge reactive oxygen species;
(2) LA regenerates endogenous antioxidants (glutathione,
vitamin E, vitamin C, and coenzyme Q); and (3) LA has
metal chelating activity over iron and copper. Several clinical
trials have provided evidence of the efficacy of LA against
neuropathy in patients with DM1 and DM2. A recent meta-
analysis of 15 randomized controlled trials evaluating the
efficacy of LA administration on improvement of objective
DSP measures found a positive effect on peripheral NCVs
with the 300–600mg i.v. dose for at least 3 weeks (OR 4.03,
95% IC 2.73–5.94), with no significant adverse effects [88].

6. Summary/Conclusion

DPN is a frequent, serious, and debilitating chronic compli-
cation of diabetes mellitus. Despite its relevance, very little
is known about the details of its molecular pathogenesis and
consequently the availability of targeted, efficacious therapies
is limited. Alterations in the metabolism of lipids including

triglycerides, cholesterol, fatty acids, and sphingolipids have
been implicated in the pathogenesis of DPN and constitute
an interesting molecular target for the treatment of clinical
DPN. However, most of the available evidence in this respect
is mechanistic (i.e., animal on in vitro studies) or from
observational human studies.

The evidence from secondary or post hoc analysis of
randomized trials is limited by patient heterogeneity, vari-
ations in dose and follow-up duration, and particularly the
methodology used to define DPN. Most studies have used
sign-driven scales (like the Michigan Neuropathy Score),
symptom-driven scales (like the Total Symptom Score), or
vibration perception thresholds in an attempt to make DPN
a measurable, comparable variable, but only a few have mea-
sured NCV, a truly objective measure of nerve functionality.
Furthermore, it is known that small-fiber neuropathy, the
earliest manifestation of DPN, can be missed by all these
methodologies. For that reason a group of new techniques
for DPN diagnosis have come into place, including corneal
confocal microscopy, laser Doppler image flare, sudomotor
reflex assessment, quantitative sensory testing, and skin
biopsy [89]. These small-fiber neuropathy detection tools
should be incorporated into endpoint ascertainment in future
studies of lipids and DPN.

In summary, DPN is a complex and multifactorial entity
in which various factors besides hyperglycemia play an
important role. There is a host of indirect evidence showing
that deranged lipid metabolism at the cellular and whole-
organism level aggravates or perpetuates DPN, and mitiga-
tion of such alterations improves DPN in animal models of
diabetes.

In consonance with these observations, clinical trials
in which lipid-modifying therapies have been assessed for
their impact on cardiovascular morbidity and mortality have
shown as descriptive findings positive effects onDPN, but the
available evidence is insufficient to solidly implicate lipids as
a pharmacological target in DPN.

Future research should concentrate on targeting lipids
with one or more aggressive interventions specifically in
patients with DM2 whose DPN is detectable but whose
progression can still be largely prevented. Such studies could
have selection criteria focused on the presence and severity
of DPN instead of plasma lipid concentrations. Until then,
careful control and follow-up of plasma lipids in patients with
diabetes can only be considered an adjunct strategy against
DPN.
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