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Abstract Proteins are necessary for cellular growth. Concurrently, however, protein production

has high energetic demands associated with transcription and translation. Here, we propose that

activity of molecular chaperones shape protein burden, that is the fitness costs associated with

expression of unneeded proteins. To test this hypothesis, we performed a genome-wide genetic

interaction screen in baker’s yeast. Impairment of transcription, translation, and protein folding

rendered cells hypersensitive to protein burden. Specifically, deletion of specific regulators of the

Hsp70-associated chaperone network increased protein burden. In agreement with expectation,

temperature stress, increased mistranslation and a chemical misfolding agent all substantially

enhanced protein burden. Finally, unneeded protein perturbed interactions between key

components of the Hsp70-Hsp90 network involved in folding of native proteins. We conclude that

specific chaperones contribute to protein burden. Our work indicates that by minimizing the

damaging impact of gratuitous protein overproduction, chaperones enable tolerance to massive

changes in genomic expression.

DOI: https://doi.org/10.7554/eLife.29845.001

Introduction
Optimal allocation of cellular resources is a central concept in cell biology (Basan et al., 2015;

Hui et al., 2015). Protein biosynthesis consumes a huge amount of energy: an estimated 30–50% of

the energy consumption of dividing cells is dedicated to translation of the proteome

(Buttgereit and Brand, 1995; Russell and Cook, 1995). Therefore, surplus protein production

incurs a substantial fitness cost. As the ratio of unneeded protein reaches 30% of total protein in

bacteria, ribosomes are destructed and growth is completely inhibited (Dong et al., 1995). Protein

burdens (i.e. protein overexpression costs) are most relevant shortly after an environmental change,

and are subsequently reduced once the translation has adjusted to their novel steady-state level

(Shachrai et al., 2010). Deciphering the key molecular mechanisms that shape protein burden is an

important challenge for systems biology. Moreover, this problem has biotechnological relevance as

well. Protein engineering efforts towards microbial production of a single heterologous protein are

often problematic, as full induction of the engineered constructs frequently yields bacteria with lim-

ited or no growth (Kurland and Dong, 1996).
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Gene expression costs are frequently not due to the detrimental activity of unnecessary proteins,

as reduced viability was observed with the overexpression of proteins with no apparent cellular activ-

ities (Andrews and Hegeman, 1976; Dong et al., 1995; Kurland and Dong, 1996; Stoebel et al.,

2008; Scott et al., 2010). Most notably, a recent systematic study in baker’s yeast (Saccharomyces

cerevisiae) measured the copy number limit of gene overexpression across all protein coding genes

(Makanae et al., 2013). Dosage sensitive genes were generally highly expressed, and replacement

of the open reading frame of these genes with a green fluorescent protein (GFP) left the fitness cost

largely unaltered. Studies in bacteria (Stoebel et al., 2008) and yeast (Kafri et al., 2016) demon-

strated that growth impairment results from the process of protein production and not due to accu-

mulating the unneeded protein product per se.

Protein production of an unneeded protein consumes nutrients and has a high energetic demand.

Associated costs may arise at the level of transcription due to waste of nucleotides incorporate into

RNA or occupation of RNA polymerases. Translation of the unneeded proteins may be especially

costly, as it wastes amino acids, charged tRNAs and occupies ribosomes. It has been shown that

these two major limiting factors of protein production vary across environments, depending on the

availability of nutrients (Kafri et al., 2016). Transcription dominates protein burden in low phos-

phate, while translation dominates costs in low nitrogen conditions. Hypothetically, unneeded pro-

teins may also overload the cellular systems involved in protein folding and degradation. Yet, the

role of chaperone networks in contributing to protein burden has remained unexplored.

In this work, we show that accumulation of an unneeded protein in yeast (S. cerevisiae) has a rela-

tively mild impact on fitness when nutrients are in excess and no internal or external stresses are

present. However, impairment of specific molecular chaperones rendered yeast cells sensitive to gra-

tuitous protein overproduction.

eLife digest Proteins are vital for almost every process that keeps cells alive. They are made

from chains of small molecules called amino acids, which need to fold into three-dimensional

structures for the protein to become active. Specific molecules called chaperones help the proteins

to fold properly.

However, to produce proteins a lot of energy is needed. Therefore, this process is tightly

coordinated with the needs of the cells to conserve energy. If too much protein is made, it can put a

burden on cells and harm the organism, even when it is a protein with no apparent cellular activities.

This can be a problem under stressful conditions, for example, when cells are exposed to heat or

lack nutrients.

For researchers who want to engineer cells to produce different or additional proteins, this poses

a great challenge, as the modified cells often grow slowly or not at all. Until now, it was not known

why proteins are harmful when produced in excess. To investigates this, Farkas, Kalapis et al.

modified the cells of baker’s yeast to overproduce an unneeded protein. The yeast cells were then

exposed to different environmental stresses, such as too much heat or lack of nutrients, and scanned

for any damage. Moreover, any potential protein burden was also measured in a collection of

different cells in which each lacked one dispensable gene.

The results showed that when enough nutrients where present, producing too much of the

protein only mildly affected cell growth. However, when exposed to different stressors, the cells

grew more slowly. When Farkas, Kalapis et al. then blocked specific chaperones, the proteins could

no longer fold properly and consequently, the cells became very sensitive to when the protein was

produced in bulks.

This study shows that chaperones or environmental stress can shape protein production costs. A

next step will be to investigate how sensitive other species are to protein burden, and what the

underlying molecular mechanisms might be. A better understanding of how environmental and

genetic factors affect the way the organisms deal with excess proteins may help to improve

engineered protein-production systems in the future.

DOI: https://doi.org/10.7554/eLife.29845.002
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Results

Impact of protein burden on fitness
Recent works showed that the fitness costs associated with expressing unneeded fluorescent pro-

teins do not result from protein toxicity or impaired metabolic processes, indicating that it is the out-

come of a limitation in the protein production process itself (Makanae et al., 2013; Kafri et al.,

2016). In this paper, we employ yEVenus, a rapidly folding and non-toxic YFP (yellow fluorescent

protein) variant (Sheff and Thorn, 2004) to study protein burden. Using this protein has several

advantages for our study: the amino acid composition of yEVenus and the yeast proteome are highly

similar to each other (Pearson’s correlation, r = 0.6477, p<0.01) and it is codon optimized specifically

for yeast studies. Accordingly, toxicity of yEVenus due to misfolding is negligible. We expressed

yEVenus in S. cerevisiae from single, low and high-copy-number plasmids, respectively, (Gietz et al.,

1988) all of which are under the control of a strong constitutive promoter (pHSC82, see Materials

and methods). The control strain carried the same vector backbone without the yEVenus open read-

ing frame. Fitness of each genotype was determined by measuring colony size on synthetic selection

medium agar plates (for further details, see Materials and methods). Cost is defined as the reduction

in fitness of yEVenus overexpressing genotype relative to fitness of control cells in the same syn-

thetic drop-out medium. When expressed from a single copy plasmid, yEVenus had no detectable

fitness cost, while it caused a small, but significant 2.5% fitness decline expressed from a high-copy

(2 m) plasmid (Figure 1A). A denaturing polyacrylamide gel electrophoresis analysis (PAGE) indicated

that when expressed from the high-copy plasmid, yEVenus constitutes ~3.7% of the total cellular

proteome (Figure 1B).

Genome-wide mapping of genes that mitigate protein burden
The above results indicate that accumulation of an unneeded protein in the cell has a relatively mild

impact on fitness when nutrients are in excess and no internal or external stresses are present. How-

ever, such robustness to protein burden may be restricted to certain conditions: many genetic and

environmental factors could potentially shape the associated fitness costs. To identify genes modu-

lating protein burden, we performed a genetic interaction screen using the synthetic genetic array

(SGA) approach (Tong and Boone, 2006) with the query strain carrying the yEVenus multi-copy plas-

mid. The screen involved construction of high-density arrays of double mutants by crossing the query

mutation (yEVenus overexpression plasmid) against an array of ~5000 viable null mutants. We simul-

taneously measured yEVenus fluorescence intensity and fitness in all genotypes studied. Using a

robotized replicating system, fitness was estimated by measuring colony size on solid agar media.

Digital images were processed to calculate colony sizes, and potential systematic biases in colony

growth were eliminated (see Materials and methods). Deviation of the double-mutant fitness from

the product of the corresponding single-mutant fitness values was used to assess genetic interaction

scores (e, Figure 1C, Supplementary file 1). Biomass-normalized fluorescence level had no major

impact on the distribution of genetic interaction scores (Figure 1D). This pattern was not due to any

major deviation from wild type cell size (Figure 1—figure supplement 1A). This indicates that

genetic interactions reflect a change in the fitness cost, but not in the extent of protein

overexpression.

As the aim of this study was the identification of genes that mitigate the fitness costs of yEVenus

overexpression, we focused on negative genetic interactions (e < 0), i.e. when the double mutant

has a lower fitness than would be expected from the product of the single-mutant fitness values. At

an e = - 0.05 cutoff value (and using a p<0.05 cutoff based on bootstrap analysis), 184 genes showed

such interactions with yEVenus. By definition, lack of these genes substantially increased the fitness

cost of yEVenus overexpression (Figure 1E). A functional enrichment analysis revealed that these

genes are preferentially involved in translation, transcriptional control (e.g. transcription termination

and elongation), mitochondria-related processes, and protein folding (Table 1, Figure 1—figure

supplement 1B). Remarkably, deletion of genes encoding specific chaperones caused a 2–4 fold

increment in the fitness costs of yEVenus overexpression (Figure 1E).

Enrichment of the above functional categories was not found in the set of genes showing positive

genetic interactions with yEVenus overexpression. It is worth noting however a specific case, where

positive genetic interaction was especially strong. Deletion of RPI1, a specific repressor of the Ras-
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Figure 1. Genetic perturbation analyses. (A) Protein burden changes with copy number. The bar plot shows the relative fitness of yEVenus

overexpressing and control genotypes as a function of plasmid copy number, a proxy of gene expression level. From a single copy plasmid, yEVenus

has no detectable fitness cost (t-test, p=not significant), while it confers around 2.5% fitness disadvantage from a high-copy plasmid (t-test, p<0.001).

Absolute fitness was estimated by measuring colony size after 48 hr of growth on solid medium. Relative fitness was calculated by normalizing to the

absolute fitness of the genotypes with the corresponding empty vectors, respectively. The bars indicate mean ±95% confidence interval, based on at

least 12 technical and 10 biological replicates each. Source file is available as Supplementary file 5. (B) PAGE analysis of whole cell protein extracts.

Figure 1 continued on next page
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cAMP pathway removed protein burden (Supplementary file 1, Figure 1—figure supplement 1C).

The underlying molecular mechanisms need further investigation.

Protein synthesis is frequently limited by the availability of free ribosomes (Vind et al., 1993).

Therefore, excess proteins occupy free ribosomes, which could be better used for the translation of

native proteins. Therefore, impairment of genes involved in translation should increase protein bur-

den. We investigated this issue further by measuring fitness in the presence of a translation inhibitor

chemical agent. Cycloheximide binds the ribosome and inhibits eEF2 mediated translocation during

translation (Obrig et al., 1971). In agreement with expectation, partial inhibition of translation elon-

gation by cycloheximide treatment elevated protein burden (Figure 2A).

Similarly, inactivation of genes involved in transcriptional elongation (HPR1, DST1, CDC73, ELP3)

significantly increased protein burden. To validate this result, we tested the effect of a transcriptional

elongation inhibitor on protein burden. Mycophenolic acid interferes with nucleotide biosynthesis

(Costa and Arndt, 2000), through inhibiting IMP dehydrogenase (IMPDH). It thereby reduces the

endogenous GTP/UTP and stalls RNA polymerases. Treatment of cells with sub-inhibitory concentra-

tion of this chemical agent significantly enlarged protein burden (Figure 2B).

Another source of protein burden may arise due to wastes of cellular resources, including ATP

and amino acids needed for protein synthesis. Indeed, inactivation of amino acid metabolism genes

(AAT2, BAT2, CYS3, PRS3, LEU3) influenced protein burden (Supplementary file 1), suggesting that

protein burden depends on the availability of amino acids in the environment. It was indeed so:

depletion of amino acids in the growth medium increased the fitness cost (Figure 2C). Moreover,

genes with mitochondria-related functions, including mitochondrial translation (e.g. MRPS9,

MRPL22), mitochondrial DNA replication and growth (e.g. MMM1), mitochondrial distribution and

morphology (e.g. MDM38) are on the gene list identified by the SGA analysis (Supplementary file

1).

Figure 1 continued

The figure shows the PAGE (polyacrylamide gel electrophoresis) separation of whole cell protein extracts (10 mg, 20 mg, and 30 mg) from both the

control and the yEVenus overexpressing strains in denaturing conditions (4–20% gradient Tris-Glycine SDS-PAGE). To create a standard curve, a bovine

serum albumin (BSA) dilution series (100–800 ng) was loaded onto the same gel. On the basis of a densitometry analysis using the standard curve, the

yEVenus (band at 27 kDa) constitutes 3.7% of the total cellular proteome when expressed from a high-copy plasmid (for further details, see Materials

and methods). (C) Distribution of genetic interaction scores (e) across the haploid yeast knock-out collection. The e value for the vast majority of the

knock-out strains is approximately zero, indicating no specific genetic interaction of the corresponding gene with yEVenus overexpression. The dashed

lines on the y axis represent cutoff values for e (0.05 and �0.05, respectively). Negative/positive interactions are color-coded as magenta/green. For the

calculation of genetic interaction score, see Materials and methods. Source file is available as Supplementary file 1. (D) Scatterplot of the genetic

interaction scores and biomass-normalized fluorescence levels of the deletion strains from the haploid yeast knock-out collection. On the x axis, one

represents the wild type fluorescence level (dashed line). The dashed lines on the y axis represent the previously defined interaction value cutoffs (0.05

and �0.05, respectively). The fluorescence level of the genotypes shows only very weak correlation with the strength of the interaction (Pearson’s

correlation test, r = 0.05, p<0.001). Negative/positive interactions are color-coded as magenta/green. For the calculation of genetic interaction score

and for the evaluation of fluorescence level, see Materials and methods. Source file is available as Supplementary file 1. Additional analysis of genetic

interaction scores and fluorescence levels are shown in Figure 1—figure supplement 1A and B. (E) Examples on negative genetic interactions

between single gene deletions and yEVenus overexpression. The bar plots show the relative fitness values (normalized to wild type) of single mutants

(yEVenus overexpression or single gene deletions), and double mutants (deletion +yEVenus overexpression), based on six replicates. Negative

deviation of the observed double mutant fitness from the expected value (designated as dashed line, calculated by the multiplicative model using the

two single mutant fitness values) is referred to as negative interaction. Absolute fitness was estimated by measuring colony size after 48 hr of growth on

solid medium. The deleted genes (Dcrp7, Dfes1, Dgim5, Dpfd1) are selected members of the chaperone system. Source file is available as

Supplementary file 1. An example of positive genetic interaction is shown in Figure 1—figure supplement 1C. (F) Scatterplot of the genetic

interaction scores and the fitness of the deletion strains from the haploid yeast knock-out collection. On the x axis, one represents the wild type fitness

(dashed line). The dashed lines on the y axis represent the previously defined interaction value cutoffs (0.05 and �0.05, respectively). Negative/positive

interactions are color-coded as magenta/green. The fitness of the deletion strains shows only a weak positive correlation with the strength of

interaction (Pearson’s correlation test, r = 0.12, p<0.001). For the calculation of fitness and genetic interaction score, see Materials and methods. Source

file is available as Supplementary file 1.

DOI: https://doi.org/10.7554/eLife.29845.003

The following figure supplement is available for figure 1:

Figure supplement 1. Additional analyses of the genetic interaction screen.

DOI: https://doi.org/10.7554/eLife.29845.004
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Taken together, results of genetic and chemical perturbations of specific cellular subsystems

demonstrate that impairment of transcription, translation and amino acid availability increase protein

burden.

Finally, one may argue that growth rate reduction per se - irrespective of the exact nature of the

environmental or genetic perturbation - may imply elevated protein burden upon overexpression.

However, this is unlikely to be so, for three reasons. First, the functional roles of genes that showed

genetic interactions were far from being random (Table 1). Second, and more generally, the correla-

tion between the fitness of the deletion strains and the strength of the genetic interaction was very

weak (Figure 1F). Finally, despite major differences in growth rates of yeast grown on glucose,

galactose or raffinose as sole carbon sources, the relative fitness costs of protein burden remained

unchanged (Figure 2D).

Molecular chaperones shape protein burden
The genetic interaction screen revealed that molecular chaperones are overrepresented in the list of

genes that influence protein burden. Most notably, the list includes several members of the Hsp40-

70-110 complex (FES1, SSE1 and YDJ1), and an Hsp70-90 scaffold protein (STI1). These Hsp70-asso-

ciated proteins are functionally highly related (Rizzolo et al., 2017), and all play critical roles in the

ATPase activation and the nucleotide exchange regulation of the Hsp70 class Ssa chaperones.

Accordingly, impairment of these proteins decreases the activity of Ssa chaperones and thereby per-

turbs the recognition and clearance of misfolded proteins. As a consequence, aggregated proteins

accumulate in the cell (Mayer, 2013; Clerico et al., 2015).

Based on these findings we hypothesized that molecular chaperones have a critical role in buffer-

ing protein burden. Several further observations support the hypothesis. First, we tested the impact

of temperature stress on protein burden, not least because genes (e.g. CPR7, YDJ1) involved in the

GO term ‘response to heat’ were on the list of negative genetic interactions. Subjecting yeast cells

to high temperature causes a severe proteotoxic stress as it induces protein misfolding of nascent

proteins and perturbs proteome homeostasis (Trotter et al., 2002). As expected, protein burden

Table 1. Functional enrichment analysis of genes showing synergistic interactions with yEVenus overexpression.

At an e = - 0.05 cutoff value (and using a p<0.05 cutoff based on bootstrapping), 184 genes showed negative interactions with yEVe-

nus. This gene set was tested for GO Slim category enrichment. A GO category was termed as enriched significantly, if the genes

annotated to a particular GO term were significantly overrepresented (Fisher’s exact test, odds ratio >1, p<0.05, FDR-corrected p<0.1)

in the given gene set using the complete list of screened genes as background. N indicates the number of negative interacting genes

belonging to the corresponding GO Slim category. Source file is available as Supplementary file 1.

Go.id Term N Odds ratio P value FDR corrected P value

GO:0002181 cytoplasmic translation 11 2.27 1.52E-02 1.69E-01

GO:0006325 chromatin organization 15 1.70 4.65E-02 2.93E-01

GO:0006353 DNA-templated transcription, termination 3 4.17 4.60E-02 2.93E-01

GO:0006354 DNA-templated transcription, elongation 16 8.43 2.73E-09 2.73E-07

GO:0006360 transcription from RNA polymerase I promoter 6 5.86 1.24E-03 3.10E-02

GO:0006366 transcription from RNA polymerase II promoter 29 2.29 2.01E-04 6.71E-03

GO:0006397 mRNA processing 9 2.84 7.77E-03 1.11E-01

GO:0006414 translational elongation 5 3.31 2.45E-02 2.34E-01

GO:0006457 protein folding 10 3.06 3.26E-03 5.43E-02

GO:0007005 mitochondrion organization 28 2.59 4.13E-05 2.07E-03

GO:0009408 response to heat 7 3.17 1.05E-02 1.31E-01

GO:0009451 RNA modification 7 2.53 2.91E-02 2.34E-01

GO:0016570 histone modification 8 2.33 3.05E-02 2.34E-01

GO:0032543 mitochondrial translation 12 2.96 1.78E-03 3.55E-02

GO:0048308 organelle inheritance 5 3.23 2.68E-02 2.34E-01

DOI: https://doi.org/10.7554/eLife.29845.005
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Figure 2. Environmental screens under protein burden. (A) Impact of translation inhibition on protein burden in wild type yeast. The bar plot shows the

cost of yEVenus in wild type strain as a function of increasing cycloheximide concentration. Cycloheximide is a widely used chemical agent to inhibit

translation. Treatment of cells with sub-inhibitory concentration (0.18 mg/ml) of this chemical agent leads to a 3.7-fold increase in protein burden (t-test,

p<0.001). For the calculation of fitness cost of yEVenus, see Materials and methods. The bars indicate mean ±95% confidence interval, based on four

technical measurements of 17 biological replicates for each concentration. Source file is available as Supplementary file 5. (B) Impact of transcription

inhibition on protein burden in wild type yeast. The bar plot shows the cost of yEVenus in wild type strain in response to mycophenolic acid (MPA)

stress. MPA is a well-known transcription elongation inhibitor. Treatment of cells with sub-inhibitory concentration (30 mg/ml) of this chemical agent

leads to a two-fold increase in protein burden (Mann Whitney U-test, p<0.001). For the calculation of fitness cost of yEVenus, see Materials and

methods. The bars indicate mean ±95% confidence interval, based on at least 12 technical measurements of 15 biological replicates for each

concentration. Source file is available as Supplementary file 5. (C) Impact of amino acid availability on protein burden. The bar plot shows the cost of

yEVenus in wild type strain as a function of amino acid concentration. Auxotrophic amino acids were supplied at normal concentration to the medium,

while non-auxotrophic amino acids were serially diluted from the regular one. Arbitrary units are relative concentrations normalized to the regular

amino acid level. Total depletion of non-essential amino acids (0 arbitrary unit) from the growth medium resulted in a 2.5-fold increase in protein

burden, compared to the regular one (t-test, p<0.001). For the calculation of fitness cost of yEVenus, see Materials and methods. The bars indicate

mean ±95% confidence interval, based on at least five technical measurements of 12 biological replicates for each condition. Source file is available as

Figure 2 continued on next page
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significantly increased with rising temperature (Figure 3A). Reassuringly, these results are insensitive

to the exact promoter employed for the expressional control of yEVenus (Figure 3—figure supple-

ment 1A, Figure 3—figure supplement 1B, Figure 3—figure supplement 1C, Supplementary file

2).

Second, as mistranslation during protein synthesis promotes misfolding and protein aggregation

(Lee et al., 2006; Yang et al., 2010; Paredes et al., 2012), reduction of translation fidelity should

also exacerbate the fitness deficit caused by protein overproduction. Reassuringly, CTK2 and CTK3,

two genes involved in controlling the fidelity of translation elongation (Röther and Strässer, 2007)

were on the list of genes showing negative genetic interaction with yEVenus overexpression

(Supplementary file 1).

Third, induction of protein misfolding by a chemical agent enhanced protein burden. We studied

the cellular response to misfolded proteins generated by azetidine-2-carboxylic acid (AZC) stress

(Shichiri et al., 2001). AZC is a toxic analog of proline, and incorporation of this chemical agent into

proteins causes misfolding (Trotter et al., 2002; Albanèse et al., 2006). Application of sub-lethal

dosages of AZC elevated the fitness costs associated with yEVenus overproduction (Figure 3B).

The fourth piece of evidence comes from monitoring cellular aggregation. An established method

(Kaganovich et al., 2008) was utilized to measure the misfolding propensity of a fluorescently-

tagged reporter protein (VHL-mCherry). Active quality-control machinery in the wild type yeast pre-

vents misfolding of the reporter protein, leading to its uniform distribution in the cell. However,

when the protein folding machinery is impaired or becomes overloaded, the reporter protein mis-

folds and becomes spatially sequestered. As the fluorescent tag of the reporter protein remains fully

functional, protein aggregation spots within the cell become easily visible as fluorescent foci

(Kaganovich et al., 2008).

In wild type cells, protein misfolding propensity did not increase significantly upon protein burden

(Figure 3C). This is in line with expectation, as the fitness cost of protein overexpression in wild type

was only around 2.5% (Figure 1A). The situation was very different when genotypes impaired in pro-

tein folding (Dfes1, Dsse1, Dsti1, Dydj1, Dpfd1, Dgim5, Dcpr7) were considered, all of which showed

negative genetic interactions with yEVenus overexpression. In these genotypes, protein burden ele-

vated the propensity of protein misfolding (Figure 3C, Figure 3—figure supplement 1D).

Protein burden perturbs the Sti1p interaction network
The above results indicate a crucial role of the Hsp70-associated molecular chaperones in mitigating

protein burden. Why should this be so? One possibility is that the unneeded proteins bind to key

regulators of the Hsp70-associated chaperones which otherwise would be used to navigate folding

of native proteins within the cell. To investigate the feasibility of this idea, we performed a GFP co-

immunoprecipitation (co-IP) assay to identify weak in vivo physical interactions between yEVenus

and native cellular proteins.

In order to extract cellular proteins without disturbing physical interactions, we used an estab-

lished protocol (Visweswaraiah et al., 2011) specifically designed for the identification of weak pro-

tein-protein interactions. Total protein extracts from mid-exponential growth phase were

immunopurified (IP) using anti-GFP antibody coupled magnetic beads and the IP-purified proteins

were then subjected to LC-MS/MS analysis (see Materials and methods). Relative abundance of indi-

vidual proteins in the samples was estimated by retrieving peptide counts of the individual proteins.

Figure 2 continued

Supplementary file 5. (D) The impact of protein burden across different carbon sources. The left panel shows the cost of yEVenus in wild type strain on

different carbon sources. The right panel shows the absolute fitness (arbitrary units estimated by measuring colony size on solid agar media) of the

yEVenus overexpressing wild type strain on different carbon sources. Growth media with alternative carbon sources (respirato-fermentative galactose,

respirative raffinose) led to a reduction of absolute fitness by 27–32% (right panel, t-test, p<0.001), compared to that on the standard carbon source

(fermentative glucose). However, the relative fitness cost of yEVenus overexpression (left panel) was not affected by the change of carbon source.

Specifically, the cost of yEVenus on glucose is comparable to that on galactose (t-test, p=0.14) or raffinose (t-test, p=0.07). For the calculation of

absolute fitness and fitness cost of yEVenus, see Materials and methods. The bars indicate mean ±95% confidence interval, based on at least 12

technical measurements of 15 biological replicates for each of the genotype. Source file is available as Supplementary file 5.

DOI: https://doi.org/10.7554/eLife.29845.006
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Figure 3. Link between protein burden and proteotoxic stress. (A) Impact of heat stress on protein burden. The bar plot shows the fitness cost of

yEVenus in wild type strain as a function of increasing temperature. Protein burden significantly increased with rising temperature, resulting in a 2.8-fold

difference when colonies were subjected to 40˚C, in comparison to the optimal incubation temperature (30˚C; t-test, p<0.001) The bars indicate

mean ±95% confidence interval, based on at least 12 technical measurements of 15 biological replicates for each condition. Source file is available as

Figure 3 continued on next page
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After applying several filtering steps (see Materials and methods), we identified 34 proteins that

bind to yEVenus (Supplementary file 3). Altogether, the list of putative interacting partners includes

five proteins with chaperone-related functions (Supplementary file 3). Notably, Sti1p and Ydj1p not

only binds to yEVenus, but were identified also in the genetic interaction assay. Both proteins are

involved in the activation of Ssa proteins, key components of the Hsp70 complex.

The above results indicate that as a globular protein, yEVenus binds weakly, but significantly to

certain molecular chaperones and to Sti1p in particular (Supplementary file 3). This raises the possi-

bility that the protein burden is linked to perturbation of the native physical interactions of Sti1p by

yEVenus. To investigate this issue, we performed a reciprocal co-IP assay with the aim to identify

quantitative changes in physical interactions of Sti1p in response to protein burden. Accordingly, we

used a strain that expresses a C-terminally epitope-tagged Sti1p (Sti1p-3xFLAG) and investigated it

both under low and high protein burden. Total protein extracts from mid-exponential growth phase

were immunopurified (IP) using anti-FLAG antibody coupled beads and the IP-purified proteins were

then subjected to LC-MS/MS analysis, as previously (Materials and methods).

The analysis focused on 18 proteins, all of which have been described to physically interact with

Sti1p in prior studies (Cherry et al., 2012). Our method confirmed half of these 18 protein interac-

tions under low protein burden, that is when yEVenus was expressed from a single-copy plasmid

(Figure 3D, Supplementary file 4). Remarkably, we observed a significant drop in protein-binding

affinity of Sti1p with as many as 8 out of the nine detected interaction partners under high protein

burden (Figure 3D, Supplementary file 4). Most notably, protein-binding affinity decreased by

70%, 75% and 55% in the cases of Ssa1, Ssa2p and Hsp90p, respectively. This is all the more signifi-

cant, as these proteins are exceptionally important and well-characterized interaction partners of

Sti1p (Chen and Smith, 1998; Song and Masison, 2005; Balchin et al., 2016). Finally, protein-bind-

ing between yEVenus and Sti1p was detectable under high protein burden only (Supplementary file

4). We speculate that promiscuous binding of Sti1p with certain globular proteins (such as yEVenus)

has no functional consequences unless the cellular dosage of the partner protein exceeds a critical

threshold. Collectively, these data suggest that protein burden promotes a partial disassociation of

interaction partners from Sti1p, putatively leading to partial disassociation of the Hsp70-Hsp90 chap-

erone complex.

Figure 3 continued

Supplementary file 5. Additional analysis of protein burden across five different yEVenus plasmids are shown in Figure 3—figure supplement 1A–C

(B) Impact of proteotoxic stress on protein burden. The bar plot shows the fitness cost of yEVenus in wild type strain as a function of azetidine-2-

carboxylic acid (AZC) concentration. AZC is a toxic analog of proline, incorporation of this compound into newly synthesized proteins leads to

misfolding in consequence of reduced protein stability. Incubation with sub-lethal dosage of AZC (2.5 mM) leads to a more than 4-fold increase in

protein burden (t-test, p<0.001). For the calculation of fitness cost of yEVenus, see Materials and methods. The bars indicate mean ±95% confidence

interval, based on at least 12 technical measurements of 15 biological replicates for each concentration. Source file is available as Supplementary file

5. (C) Protein aggregation propensity in yEVenus overexpressing genotypes. The bar plot shows the aggregation frequency in the wild type and in four

deletion mutant strains, with (yEVenus) or without (control) protein burden. The deleted genes are selected members of the chaperone system. Protein

burden by yEVenus promotes protein aggregation further in the chaperone deficient backgrounds. Aggregation frequency is 5–670% larger in the

chaperone deletion mutants under protein burden, in comparison with the corresponding isogenic control strain with empty vector, respectively. The

aggregation propensity in the wild type is at the same level either with or without protein burden. The frequency of cells with aggregated foci

corresponds to the level of protein aggregation. Aggregation frequency was calculated as follows: the number of cells containing fluorescent foci was

divided by the number of fluorescent cells in total, monitoring at least 2000 cells. For further details, see Materials and methods. The bars indicate

mean ±95% confidence interval, based on at least five technical measurements for each of the genotype. Student t-test was used to assess difference in

aggregation frequency between control and yEVenus overexpressing genotypes. */**/*** indicates p<0.05/0.01/0.001; n.s indicates p=not significant.

Source file is available as Supplementary file 5. Representative images of VHL-mCherry localization in yeast cells are shown in Figure 3—figure

supplement 1D. (D) Changes of Sti1p interaction partners in response to protein burden. The figure shows the scatterplot of the log(2) protein-binding

affinity of 18 putative interaction partners (Cherry et al., 2012) of Sti1p under low- and high protein burden, respectively. Protein-binding affinity to

Sti1p was estimated by calculating the peptide count fold change of Sti1p IP samples relative to the negative control IP samples both under low and

high protein burden (see Materials and methods). The red points mark proteins that specifically associate with Sti1p under low protein burden. The

continuous line represent x = y. Source file is available as Supplementary file 4.

DOI: https://doi.org/10.7554/eLife.29845.007

The following figure supplement is available for figure 3:

Figure supplement 3. Additional investigation of protein burden across different yEVenus plasmids and different chaperone-deficient mutants.

DOI: https://doi.org/10.7554/eLife.29845.008
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Discussion
Our work demonstrates that even gross accumulation of an unneeded gratuitous protein in the cell

has a relatively mild impact on fitness when no internal or external stresses are present (Figure 1A).

However, such robustness to protein burden was restricted to specific conditions only. We explored

the molecular mechanisms underlying robustness to protein overproduction. Our main findings are

as follows.

First, deletion of genes involved in translation, transcriptional control, and mitochondria-related

processes rendered yeast cells hypersensitive to protein overexpression. Our observation that trans-

lational and transcriptional perturbations modulate protein burden was validated further by chemical

and environmental stress screens, and is also consistent with prior studies (Kafri et al., 2016). There-

fore, protein burden varied substantially across genetic backgrounds and environmental stresses.

We note that mutants with impaired mitochondria exhibit reduced respiratory growth, and therefore

they have to rely on less efficient modes of ATP production. However, beyond ATP production,

mitochondria are involved in the synthesis of certain amino acids as well (Ahn and Metallo, 2015;

Zong et al., 2016). Therefore, future works should elucidate the exact molecular mechanisms under-

lying the elevated protein burden in cells deficient in mitochondrial functions.

Second, prior studies suggested that expression of an unneeded protein effectively decreases the

fraction of proteome allocable to ribosomes and useful biosynthetic proteins, thereby causing a

growth defect (Scott et al., 2010). In principle, mutations could therefore modulate protein burden

by simply increasing the proteome fraction of the unneeded protein. However, the fractional contri-

bution of yEVenus to the total proteome was not elevated in gene knock-out strains (Figure 1D, Fig-

ure 1—figure supplement 1A). This indicates that allocation models that rely on transcription and

translation only cannot fully account for protein burden.

Third, and most significantly, an interacting chaperone network shapes protein burden (Figure 4).

The Hsp70 complex is a key player in the maintenance of normal proteostasis. The soluble Ssa pro-

teins (members of the Hsp70 family) recognize and associate transiently with exposed hydrophobic

patches of misfolded proteins in the cytosol and prevent protein aggregation (Mayer, 2013;

Clerico et al., 2015). Deletion of specific activators (YDJ1, STI1, FES1 or SSE1) of Ssa proteins sub-

stantially elevated protein burden, and resulted in protein aggregation. Indeed, Ssa protein’s capac-

ity to bind and release client proteins heavily depends on these activators (Wegele et al., 2003). In

particular, the nucleotide exchange factors (Sse1p and Fes1p) are responsible for client-release and

thereby support the refolding or the proteasomal degradation of misfolded proteins (Gowda et al.,

2013). It is worth noting that due to partial functional redundancy of Ssa proteins (Hasin et al.,

2014), the corresponding SSA genes did not emerge in the screen. In agreement with expectation,

temperature stress, elevated mistranslation rate and a chemical misfolding agent all substantially

enhanced protein burden. We conclude that molecular chaperones have an important role in buffer-

ing protein burden.

Finally, we found evidence that yEVenus - a typical, globular fluorescent protein binds to Sti1p,

one of the key regulators of the Hsp70-Hsp90 complex (Song and Masison, 2005; Wolfe et al.,

2013). We hypothesize that Sti1p may be especially prone to promiscuous protein binding, as it has

an over 2-fold higher fraction of unstructured residues than the proteome average (data not shown).

Approximately, half of Sti1p putative physical interacting partners (Cherry et al., 2012) are involved

in the maintenance of normal proteostasis. The list includes members of the Hsp70-Hsp90 complex,

Hsp104 disaggregase, proteasome subunits and ubiquitin-associated proteins. Therefore, one might

expect that perturbation of Sti1p interactions by a highly abundant, weakly interacting protein

(Figure 3D) would have serious fitness consequences in times of proteotoxic stress. Future works

should elucidate this hypothesis further and specifically the role of promiscuous peptide binding in

protein burden.

Our work has important implications for future studies. The distribution of genomic expression

generally follows a highly skewed power-law like distribution with a small number of exceptionally

highly expressed genes (Ueda et al., 2004; Lu and King, 2009). Highly expressed genes contain

various cost-minimizing gene architectures (Frumkin et al., 2017). Such genes are under especially

severe selective constraints, possibly to avoid misfolding and consequent formation of protein

aggregates (Geiler-Samerotte et al., 2011). Even though highly expressed proteins are not particu-

larly prone to misfolding, they may still indirectly influence protein aggregation in the cell.
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Figure 4. Overview of the proteostasis network. Malfunction of the protein quality control system impairs the proteome balance by driving cellular

proteins into toxic metastable (partially folded or misfolded) conformations from their correctly folded native state (Balchin et al., 2016). Accumulation

of these folding intermediates could further overload this surveillance system and could lead to the collapse of the proteostasis network.

Hypothetically, overexpression of a gratuitous protein (such as the yEVenus) might not be tolerated in a misfolding sensitized background, as it could

add an extra-layer of threat to the cell. Our genome-wide genetic interaction screen (SGA) revealed the importance of a central regulatory complex to

buffer overexpression costs. This complex maintains the normal activity of the Ssa chaperones (members of the Hsp70 family) that act on misfolded

proteins. In addition, one member of this complex also acts on the ribosome-associated complex (RAC). Inactivation of the constituent members

(Hsp70-90 scaffold Sti1p, Hsp40-Ydj1p, NEF-Sse1p, and NEF-Fes1p, color-coded as red) of this complex exacerbated the cost of yEVenus

overexpression. In such genetic backgrounds, the clearance of misfolded proteins by protein refolding or proteasomal degradation is affected. In

agreement with the genetic perturbation screen, conditional induction of proteotoxic stress in the yEVenus overexpressing wild type strain also

exaggerated the cost of the overexpression. Remarkably, based on physical interaction assays, we found evidences that protein burden perturbs the

interaction network of Sti1p, putatively leading to a dysfunctional Hsp70-Hsp90 chaperone complex. As a consequence, downregulation of the

proteostasis network is expected, which would have serious fitness consequences in times of proteotoxic stress.

DOI: https://doi.org/10.7554/eLife.29845.009
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Specifically, our work raises the possibility that highly expressed proteins bind to key components of

the chaperone network which otherwise would be used to navigate folding of other native proteins

within the cell. As a consequence, the availability of active chaperone molecules decreases, leading

to increased propensity for damaging protein aggregation, especially in times of proteotoxic stress.

It is important to emphasize that yEVenus is a codon optimized fluorescent protein (Sheff and

Thorn, 2004), and is not particularly prone to misfolding and consequent toxicity (Kafri et al.,

2016). Therefore, this hypothesis is conceptually distinct and complementary to the issue of whether

aggregation-prone proteins impose a fitness cost through toxicity (Plata et al., 2010; Geiler-

Samerotte et al., 2011).

More generally, several molecular chaperones can buffer the damaging effects of protein muta-

tions (Csermely, 2001; Queitsch et al., 2002; Cowen and Lindquist, 2005; Paaby and Rockman,

2014). Chaperone overload by highly expressed proteins may influence this process. In a similar

vein, it appears that protein burden depends on genetic variation and environmental conditions as

well. Therefore, the cellular capacity to tolerate major fluctuations in genomic expression heavily

depends on the genetic makeup: the associated fitness costs should vary extensively across micro-

bial species occupying different environmental niches. Finally, we anticipate that our genome-wide

approach uncovering the determinants of protein burden will help the design of improved host

strains for the efficient overproduction of recombinant proteins.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain
(Saccharomyces
cerevisiae)

Y7092 PMID: 16118434 SGA query strain,
mat alpha

Other non-essential gene deletion
collection (BY4741, MATa)

PMID:12140549 YSC1053 Open BioSystem
(Dharmacon)

Other synthetic genetic
array (SGA) technique

PMID: 16118434

Software, algorithm ImageJ software PMID: 22930834 RRID:SCR_003070

Software, algorithm Gene Onthology
term enrichment
with topGO (version 2.28)

PMID: 16606683

Software, algorithm org.Sc.sgd.db (version 3.3.0)
packages in R

Core Team, 2017 http://www.R-project.org

Software, algorithm Machine learning-based
phenotypic analysis

PMID: 21807964

Software, algorithm Advanced Cell Classifier PMID: 28647475 http://www.cellclassifier.org/

Software, algorithm Proteome Discoverer (v 1.4) Thermo Fisher
Scientific (Germany)

Recombinant DNA
reagent

pKT0090 plasmid PMID: 15197731 Addgene:Plasmid #8714 contains yEVenus

Recombinant DNA
reagent

YEplac181 plasmid PMID: 3073106 Addgene:Plasmid #8628 high copy plasmid

Recombinant DNA
reagent

YCplac111 plasmid PMID: 3073106 Addgene:Plasmid #53249 single copy plasmid

Recombinant DNA
reagent

pRS315 plasmid PMID: 2659436 ATCC 77144 low copy plasmid

Recombinant DNA
reagent

pFA6a-TEV-6xGly-3xFlag
-HphMX plasmid

Tim Formosa Addgene:Plasmid #44083

Recombinant DNA
reagent

pGAL-VHL-mCherry PMID: 18756251 galactose inducible
VHL-mCherry

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Commercial assay
or kit

mMACS GFP
Isolation Kit

Miltenyi Biotec
(Germany)

130-091-125

Commercial assay
or kit

mMACS DYKDDDDK
Isolation Kit

Miltenyi Biotec
(Germany)

130-101-591 *DYKDDDDK is also known
as FLAG tag

Yeast strains and plasmids
All strains used in this study were derived from the Y7092 Saccharomyces cerevisiae parental strain

(SGA query strain: MAT alpha; can1delta::STE2pr-Sp_his5, lyp1delta, his3delta1 leu2delta0, ura3-

delta0, met15delta0). The fluorescent yEVenus protein was transformed into the parental Y7092

strain on a high copy number plasmid (YEplac181, [Gietz et al., 1988]) by a standard protocol

(Gietz and Schiestl, 2007). The transformants were selected on leucine dropout synthetic complete

medium (SC-MSG, 1 g/l monosodium glutamate (Sigma-Aldrich, Germany), 1.7 g/l Yeast Nitrogen

Base (BD, Germany), supplemented by amino-acid mix without leucine).

Plasmid construction
To measure the fitness cost of protein overexpression, yEVenus, a non-toxic protein with no enzy-

matic activity and optimized codon usage was selected (Sheff and Thorn, 2004). The corresponding

gene was integrated into a high copy expression vector. Heterologous promoters frequently perturb

the transcription of other genes, by binding/titrating essential transcription factors, causing a skewed

distribution of transcription factors. To minimize this problem, expression of yEVenus was driven by

the native promoter of Hsc82p. Hsc82p is one of the most abundant cellular proteins in yeast

(Borkovich et al., 1989; Ghaemmaghami et al., 2003). In contrast to many other chaperones (such

as Hsp82p), it is expressed constitutively and shows only minor variation across stress conditions.

The high copy hc-Venus plasmid was constructed in three steps. First, the genomic HSC82 gene

of the Saccharomyces cerevisiae strain BY4741 including its promoter sequence was amplified from

genomic DNA using restriction site containing oligonucleotides (B_HSC_promoter, B_HSC82_termi-

nator). The product was cut with BamHI and PstI endonucleases, and was ligated to BamHI and PstI

digested YEplac181 (Gietz et al., 1988) plasmid, generating the hc HSC82 construct. The promoter

region was also PCR amplified with B_HSC_promoter primer and HSC-promoter-HSP-orf-reverse

primer, which product was BamHI digested and ligated into a BamHI and StuI digested hc_HSC82

plasmid. The resulting plasmid (pHSC_promoter plasmid) was designed to facilitate the insertion of

virtually any ORF using its NheI and PstI restriction sites. The yEVenus ORF along with the ADH1 ter-

minator was amplified from the pKT0090 plasmid (Sheff and Thorn, 2004) using NheI-Venus_ATG

and Adh1_term_primer_pst1 oligonucleotides. The given PCR product was NheI and PstI digested

and ligated to the identically digested pHSC_promoter plasmid. The generated plasmid (hc_Venus)

was used to express yEVenus in S. cerevisae, under the control of the strong constitutive HSC82 pro-

moter. For the selection of the plasmid, LEU2 marker was used in a leucine dropout synthetic

medium. The control strains carry the original backbone plasmid (YEplac181) without the fluorescent

protein.

To investigate the effect of plasmid copy number variation on protein burden, was inserted both

into the BamHI-PstI digested single (YCplac111, [Gietz et al., 1988]) and low copy plasmid (pRS315,

[Sikorski and Hieter, 1989]).

Finally, to ensure that the key results are insensitive to the exact promoter used for controlling

the expression of yEVenus, we constructed four extra isogenic plasmids with different, naturally

occurring promoters in the yeast genome. These promoters drive the expression of cytosolic pro-

teins (Gpp1p, Tal1p, Pdc1p, and Tdh3p), all which are as highly abundant as the constitutively

expressed Hsp90p (HSC82, source: PeptideAtlas 2013 dataset [Wang et al., 2012]). Specifically, the

pHSC82 region was eliminated from the hc_Venus plasmid after SacI-NheI digestion. Next, the pro-

moter regions of GPP1, TAL1, PDC1, and TDH3 were amplified from wild type genomic DNA using

restriction site-containing oligonucleotides (frw_SacI, rev_NheI). Finally, the PCR products (pGPP1,

pTAL1, pPDC1, and pTDH3) were inserted into the SacI-NheI digested hc_Venus plasmid backbone.
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Fluorescence level showed only minor variation across the five high copy plasmid constructs (Fig-

ure 3—figure supplement 1A).

Cellular quantification of yEVenus protein
To quantify the yEVenus protein within the proteome, whole cell extracts were prepared from wild

type cells, in the presence and absence of the yEVenus plasmid. Single colonies were inoculated into

leucine dropout SC-MSG liquid medium, and were grown until saturation at 30˚C. The saturated cul-

tures were diluted and grown to mid-exponential phase (OD600 = 0.8), and 108–109 cells were used

to extract total protein using established protocol (Visweswaraiah et al., 2011). Whole cell extract

(WCE) concentration was determined by using Bicinchoninic Acid Kit (Sigma-Aldrich), according to

the manufacturer’s instructions. Whole cell extracts from the control and overexpression strain were

separated on a 4–20% gradient Tris-Glycine gel (Lonza, Germany) under denaturing (SDS, sodium

dodecyl sulfate) conditions, along with a dilution series (100–800 ng) of a standard protein (1 mg/ml

bovine serum albumin, BSA, Sigma-Aldrich). Densitometry analysis of the protein bands on SDS-

polyacrylamide gel was conducted by ImageJ software (Schneider et al., 2012). A standard curve

was established by plotting the pixel numbers of BSA dilution series bands versus BSA concentra-

tions. The yEVenus band (27 kDa) intensity was corrected by subtracting the intensity of the equal-

sized protein band in the control strain. Based on the standard curve, the pixel number of the yEVe-

nus band (27 kDa) was converted into concentration, and the ratio of the quantified yEVenus protein

to the loaded whole cell extract was calculated.

Synthetic genetic array analysis
To identify genes mediating yEVenus burden, we performed a synthetic genetic array (SGA) screen

(Tong and Boone, 2006). The query mutation (in our case the yEVenus carrying plasmid) was

crossed to an ordered array of ~5000 viable, non-essential gene deletion mutants (MATa; YKO col-

lection, Open BioSystem, Dharmacon Inc, Lafayette, Colorado, United States, [Giaever et al.,

2002]). The method applies a series of replica pinning steps onto solid medium in an automated

manner, using the following series of steps: (a) selection for MATa/a diploids (SC-MSG medium (1

g/l monosodium glutamate, 1.7 g/l Yeast Nitrogen Base, supplemented by amino-acid mix) with

G418 (200 mg/ml, Sigma-Aldrich) was used), (b) induced sporulation by reducing carbon and nitro-

gen levels in the nutrient, (c) selection for MATa meiotic progeny (can1D::MFA1pr-HIS3, lyp1D) using

canavanine (50 mg/L, Sigma-Aldrich) and thialysine (S-(2-Aminoethyl)-L-cysteine hydrochloride, 50

mg/L, Sigma-Aldrich) containing medium, (d) selection for the query mutation (leucine dropout

medium), and finally selection for the gene deletions (G418 containing medium; KanMX4 cassette

confers resistance against G418). Finally, the array of meiotic progeny harboring both mutations

(yEVenus plasmid and gene deletion) was scored for fitness (see below). To evaluate genetic interac-

tions, an array of ‘single’ mutants was also constructed, where the query strain harbors the control

high copy plasmid (YEplac181), without the fluorescent protein ORF.

The HIS3 (YOR202W) deletion strain (his3::KanMX4) was used as wild type control, for the follow-

ing reasons: (1) fitness of this strain is indistinguishable from the BY4741 parental wild type strain

(Qian et al., 2012); (2) it possesses the same selection marker (required for the SGA method) as all

other single gene deletion strains; (3) it carries the KanMX4 cassette in the nonfunctional his3D1

allele.

Quantitative fitness measurements
We developed a robust high-throughput and precise workflow for fitness measurements based on

colony size. Solid media were prepared using 2% agar (2% was previously found to be optimal for

reproducible colony size measurement, data not shown). The ordered arrays of strains at 384-density

were replicated onto solid medium with a robotized replicating system. The system consists of a

Microlab Starlet liquid-handling workstation (Hamilton Bonaduz AG, Switzerland), equipped with a

384-pin replicating-tool (S&P Robotics Inc, Toronto, Ontario, Canada) and a custom-made steriliza-

tion station for the replicating-tool. After 48 hr of acclimatization to the medium at 30˚C, plates
were replicated again onto the same medium and photographed after 48 hr of incubation at 30˚C.
Digital images were processed to calculate colony sizes. We took special care to control for potential

systematic biases in colony growth, such as uneven media composition, changes in physical
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parameters of incubation, or competition for nutrients between neighboring colonies

(Szamecz et al., 2014). Colonies located next to the edges/corners of the plates and colonies with

low circularity (i.e. circularity <0.8) were removed from further analysis. Genotype fitness was esti-

mated by the mean fitness of six replicate colonies. The replicate number used is comparable to

(eight replicates for Kuzmin et al, in preparation) or even higher than the number of replicates other

studies (four replicates for ([Hoke et al., 2008; Baryshnikova et al., 2010; Costanzo et al., 2010])

used to estimate fitness based on colony size.

Genetic interactions score was calculated as e = fab � (fa �fb), where fa and fb are quantitative fit-

ness measures of the two single (deletion or yEVenus overexpression) mutants, while fab is the fitness

of the double mutant (deletion and yEVenus overexpression). Negative (e <0) and positive (e >0)

interaction scores indicate that the fitness defect of the double mutant is higher and lower than

expected by the multiplicative model, respectively. We applied the confidence threshold of |e|>0.05

and p<0.05 to define significantly interacting gene pairs. p-values were calculated using the boot-

strap method (Efron and Tibshirani, 1994), resampling fa, fb, and fab separately. We tested the null

hypothesis that e = 0.

Functional enrichment analysis
Based on the systematic genetic-genetic interaction screen, the list of genes showing negative inter-

action with the yEVenus overexpression (i.e. their deletions increased the fitness effect of overex-

pression) were retrieved and tested for Gene Onthology term enrichment with topGO (version 2.28)

(Alexa et al., 2006) and org.Sc.sgd.db (version 3.3.0, [Carlson, 2016]) packages in R programming

environment (Core Team, 2017). To focus on the important GO terms, we restricted our search to

the GOSlim categories maintained by the SGD project (Cherry et al., 2012). A GO category was

termed as enriched significantly, if the genes annotated to a particular GO term were significantly

overrepresented (Fisher’s exact test, odds ratio >1, p<0.05, FDR-corrected p<0.1) in the given gene

set using the complete list of screened genes as background.

Fitness estimates under environmental stress
Genotype fitness was estimated under control (no-stress) and different stress environments, as

above. Unless otherwise indicated, all conditions used leucine dropout SC-MSG medium. The follow-

ing non-lethal stress conditions were used: translation inhibition (0.0018–0.18 mg/ml

cycloheximide, AppliChem GmbH, Germany), transcription inhibition (0.30 mg/ml mycophenolic acid

(MPA), Santa Cruz Biotechnology, Germany), heat stress (37˚C and 40˚C), proteotoxic stress (1–2.5

mM azetidine-2-carboxylic acid (AZC), Santa Cruz Biotechnology), amino acid limitation (auxotrophic

amino acids were supplied at normal concentration to the medium, while the non-auxotrophic amino

acids were serially diluted (i.e. 0x - 2x of the regular concentration)). Fitness cost of yEVenus protein

overproduction (proxy for protein burden) is defined by 1 - WV/WC, where WV and WC indicate abso-

lute fitness values (i.e. colony sizes) of the genotypes with yEVenus and control plasmids,

respectively.

Evaluation of fluorescence level across genotypes
The fluorescence level of the final SGA array strains was evaluated by measuring yEVenus signal in

liquid medium. Briefly, the array of colonies were inoculated into liquid leucine dropout SC-MSG

medium, and kinetic runs were initiated in a Synergy 2 fluorescence plate reader

(Biotek, Winooski, Vermont, United States) for 48 hr, using the following filters: 500/27 (excitation),

528/20 (emission). During the kinetic run, the absorbance (OD600) and yEVenus fluorescence (lex515

nm / lem528 nm) of the growing cultures were monitored simultaneously, with time points taken

every 1.5 min. For each time points, the OD600 normalized yEVenus fluorescence (FLOD) was calcu-

lated. The fluorescence of a given strain was assessed by calculating the median of the five highest

FLOD values.

Quantitative aggregation assay
In order to quantitatively measure and compare the level of protein aggregation in the double

mutants to the corresponding single mutants (i.e. deletion), an established method

(Kaganovich et al., 2008) was applied. This method examines the condition of the protein quality-
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control machinery of the cell, based on the aggregation of a fluorescently tagged (mCherry,

lex587nm/lem610nm) human protein (von-Hippel-Lindau, VHL). This human protein is prone to mis-

folding in the absence of its cofactor (elongin BC), which is not present in S. cerevisiae. Fully func-

tional quality-control machinery can stop aggregation of VHL-mCherry, leading to disperse cytosolic

localization of the fluorescence. On the other hand, an overload of the control machinery promotes

VHL protein aggregation, while leaving the fluorescent tag functional. In this case, the red fluores-

cence appears as a puncta inside the cell, due to the sequestration of aggregated proteins into ded-

icated compartments. All mutants carrying the plasmid (pGAL-VHL-mCherry-Ura) were grown until

saturation in leucine and uracil dropout SC-MSG medium, containing 2% raffinose as carbon source.

To induce VHL-mCherry production, the saturated cultures were diluted into leucine and uracil drop-

out SC-MSG medium, containing 1% raffinose and 2% galactose. After 14 hr of induction, cell fluo-

rescence was detected by high content microscopy, using the following filter sets: excitation: 560–

580 nm, emission: 590–640 nm. Images were acquired by employing an Operetta high-content

screening microscope (PerkinElmer, Waltham, Massachusetts, United States). Samples were grown

and images were acquired in black optical 96-well plates (Greiner Bio-One, Austria) using a 60x

high-numerical aperture objective. Five image stacks were made in each well, each of which consists

of 7 z-stacks ranging from �1.5 mm to 1.5 mm relative to the focal plane with 0.5 mm step size. The

following custom developed image and data analysis pipeline was used. First, an image filter was

applied to amplify spots and project a z-stack. Images were corrected for illumination inhomogenei-

ties (Smith et al., 2015), single cells were segmented and 118 cellular features were measured

based on morphology, shape and intensities. Machine learning-based phenotypic analysis was per-

formed (Horvath et al., 2011; Piccinini et al., 2017) using supervised learning and the ratio of phe-

notypic classes was determined. The ratio of cells containing aggregation loci was calculated using

at least 2000 cells.

Identification of protein–protein interactions
To reveal the in vivo physically interacting protein partners of yEVenus, whole cell extracts were pre-

pared from wild type cells in both the presence and absence of the yEVenus overexpression plasmid,

and then a GFP co-immunoprecipitation (GFP co-IP) assay was performed. First, single colonies were

inoculated into leucine-dropout SC-MSG liquid medium, and were grown until saturation at 30˚C.
The saturated cultures were diluted and grown to mid-exponential phase (OD600 = 0.8), and 108–109

cells were collected, flash frozen and used to extract total protein using an established protocol

(Visweswaraiah et al., 2011). Protein concentration of the whole cell extract (WCE) was determined

by using Bradford Protein Assay (Bio-Rad, Hercules, California, USA), according to the manufac-

turer’s instructions. Total protein extracts (2 mg) were immunopurified (IP) using 40 ml anti-GFP anti-

body-coupled 50 nm superparamagnetic beads (mMACS GFP Isolation Kit, Miltenyi

Biotec, Germany). The unbound material was removed by washing the beads with 2 ml (equal to 50x

beads volume) detergent-free buffers as follows: three times with 1x TBS and once with 25 mM ABC

(NH4HCO3) buffer. The immunopurified proteins were desalted (Hubner et al., 2010) after on-bead-

digestion with trypsin (Promega, Germany). The LC-MS/MS analysis was performed by using a nano-

flow RP-HPLC on-line coupled to a linear ion trap-Orbitrap (Orbitrap-Elite, Thermo Fisher

Scientific, Germany) mass spectrometer as in a previous study (Kobayashi et al., 2015) with the fol-

lowing modification: the 20 most abundant, multiply charged ions were selected from each MS sur-

vey for MS/MS analysis.

Raw data were converted into peak lists using Proteome Discoverer (v 1.4, Thermo

Fisher Scientific). First, we performed a search against the Swissprot and Uniprot databases

(Pundir et al., 2017), taking into consideration of the sequence of yEVenus. Search parameters and

acceptance criteria were set as previously published (Kobayashi et al., 2015). Close homologues

were only reported if at least three unique peptides matched to the protein.

Spectral counting was used to estimate relative abundance of individual proteins in the samples:

peptide counts of the individual proteins were normalized to the total number of peptide identifica-

tions in each sample (Horvath et al., 2017). Proteins (i) with reproducible detection (|log2fold-

change| < 0.67 between biological replicates), (ii) with at least two identified peptides, (iii) with at

least 5% coverage and (iv) with a median-normalized protein binding affinity score above a previ-

ously defined cutoff value (2 according to [Li et al., 2016]) were considered as proteins that specifi-

cally associate with yEVenus. Protein-binding affinity to yEVenus was estimated by calculating the
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peptide count fold change of yEVenus IP (wild type strain with yEVenus plasmid) samples relative to

the negative control IP samples (wild type strain with control plasmid).

Reciprocal co-immunoprecipitation (co-IP) was performed in order to investigate physical interac-

tion partners of Sti1p. First, a PCR-based C-terminal epitope-tagging of Sti1p was performed using

established protocols (Funakoshi and Hochstrasser, 2009). Briefly, the transformation cassette was

amplified from the pFA6a-TEV-6xGly-3xFlag-HphMX plasmid (a gift from Tim Formosa, Addgene

plasmid # 44083) with primers containing homology to the C-terminal of STI1. Transformants were

selected on YPD containing 300 mg/ml hygromycin (Santa Cruz Biotechnology). Correct clones were

verified by colony-PCR and subsequent capillary sequencing of the C-terminal of STI1. Next, the sin-

gle copy (low protein burden) or high copy (high protein burden) yEVenus plasmid was transformed

into the Sti1p-FLAG-tagged strain. Finally, the yEVenus expressing strains were subjected to co-IP

assay.

Whole cell extraction (WCE), immunoprecipitation (IP) and washing steps were performed as

above, with the following modification: to reduce the effect of protein burden, a more stringent

washing step was applied using the manufacturer’s (mMACS DYKDDDDK Isolation

Kit, Miltenyi Biotec) ‘Wash 1’ buffer (150 mM NaCl, 1% Igepal CA-630, 0.5% sodium deoxycholate,

0.1% SDS, 50 mM Tris-HCl, pH 8.0). The LC-MS/MS and raw data analysis were the same as above.

Close homologues were only reported if at least three unique peptides matched to the protein. The

effect of protein burden on Sti1p interacting partners was investigated by comparing the protein

binding affinity of these partners under low and high protein burden. Binding affinity scores below

the cutoff value indicate weaker, non-specific associations of proteins with Sti1p. Protein-binding

affinity to Sti1p was estimated by calculating the peptide count fold change of Sti1p IP (IP with spe-

cific antibody to FLAG) samples relative to the negative control IP (IP without specific antibody (pro-

tein A)) samples both under low and high protein burden. Proteins i) with at least two identified

peptides; ii) with at least 5% coverage and iii) with a median-normalized protein-binding affinity

score above a previously defined cutoff value (two according to [Li et al., 2016]) were considered as

proteins that specifically associate with Sti1p under low protein burden.

Additional information

Funding

Funder Grant reference number Author

Magyar Tudományos Akadé-
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mia

Postdoctoral Fellowship
Programme Postdoc2014-85
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Szamecz B, Boross G, Kalapis D, Kovács K, Fekete G, Farkas Z, Lázár V, Hrtyan M, Kemmeren P, Groot Koerkamp
MJ, Rutkai E, Holstege FC, Papp B, Pál C. 2014. The genomic landscape of compensatory evolution. PLoS
Biology 12:e1001935. DOI: https://doi.org/10.1371/journal.pbio.1001935, PMID: 25157590

Tong AHY, Boone C. 2006. Synthetic genetic array analysis in Saccharomyces cerevisiae. In: Methods in
Molecular Biology. 313 p. 171–192.

Trotter EW, Kao CM, Berenfeld L, Botstein D, Petsko GA, Gray JV. 2002. Misfolded proteins are competent to
mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. Journal of Biological Chemistry
277:44817–44825. DOI: https://doi.org/10.1074/jbc.M204686200, PMID: 12239211

Ueda HR, Hayashi S, Matsuyama S, Yomo T, Hashimoto S, Kay SA, Hogenesch JB, Iino M. 2004. Universality and
flexibility in gene expression from bacteria to human. PNAS 101:3765–3769. DOI: https://doi.org/10.1073/
pnas.0306244101, PMID: 14999098

Vind J, Sørensen MA, Rasmussen MD, Pedersen S. 1993. Synthesis of proteins in Escherichia coli is limited by the
concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA
levels. Journal of molecular biology 231:678–688. DOI: https://doi.org/10.1006/jmbi.1993.1319, PMID: 7685
825

Visweswaraiah J, Dautel M, Sattlegger E. 2011. Generating Highly Concentrated Yeast Whole Cell Extract Using
Low-Cost Equipment.

Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, von Mering C, Mering Cvon. 2012.
PaxDb, a database of protein abundance averages across all three domains of life. Molecular & Cellular
Proteomics 11:492–500. DOI: https://doi.org/10.1074/mcp.O111.014704, PMID: 22535208

Wegele H, Haslbeck M, Reinstein J, Buchner J. 2003. Sti1 is a novel activator of the Ssa proteins. Journal of
Biological Chemistry 278:25970–25976. DOI: https://doi.org/10.1074/jbc.M301548200, PMID: 12716905

Wolfe KJ, Ren HY, Trepte P, Cyr DM. 2013. The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by
regulating spatial quality control of amyloid-like proteins. Molecular Biology of the Cell 24:3588–3602.
DOI: https://doi.org/10.1091/mbc.E13-06-0315, PMID: 24109600

Yang JR, Zhuang SM, Zhang J. 2010. Impact of translational error-induced and error-free misfolding on the rate
of protein evolution. Molecular Systems Biology 6:421. DOI: https://doi.org/10.1038/msb.2010.78, PMID: 2095
9819

Zong WX, Rabinowitz JD, White E. 2016. Mitochondria and Cancer. Molecular Cell 61:667–676. DOI: https://doi.
org/10.1016/j.molcel.2016.02.011, PMID: 26942671

Farkas et al. eLife 2018;7:e29845. DOI: https://doi.org/10.7554/eLife.29845 23 of 23

Research article Computational and Systems Biology Genomics and Evolutionary Biology

http://www.ncbi.nlm.nih.gov/pubmed/2659436
https://doi.org/10.1038/nmeth.3323
http://www.ncbi.nlm.nih.gov/pubmed/25775044
https://doi.org/10.1074/jbc.M505420200
https://doi.org/10.1074/jbc.M505420200
http://www.ncbi.nlm.nih.gov/pubmed/16100115
https://doi.org/10.1534/genetics.107.085399
http://www.ncbi.nlm.nih.gov/pubmed/18245823
https://doi.org/10.1371/journal.pbio.1001935
http://www.ncbi.nlm.nih.gov/pubmed/25157590
https://doi.org/10.1074/jbc.M204686200
http://www.ncbi.nlm.nih.gov/pubmed/12239211
https://doi.org/10.1073/pnas.0306244101
https://doi.org/10.1073/pnas.0306244101
http://www.ncbi.nlm.nih.gov/pubmed/14999098
https://doi.org/10.1006/jmbi.1993.1319
http://www.ncbi.nlm.nih.gov/pubmed/7685825
http://www.ncbi.nlm.nih.gov/pubmed/7685825
https://doi.org/10.1074/mcp.O111.014704
http://www.ncbi.nlm.nih.gov/pubmed/22535208
https://doi.org/10.1074/jbc.M301548200
http://www.ncbi.nlm.nih.gov/pubmed/12716905
https://doi.org/10.1091/mbc.E13-06-0315
http://www.ncbi.nlm.nih.gov/pubmed/24109600
https://doi.org/10.1038/msb.2010.78
http://www.ncbi.nlm.nih.gov/pubmed/20959819
http://www.ncbi.nlm.nih.gov/pubmed/20959819
https://doi.org/10.1016/j.molcel.2016.02.011
https://doi.org/10.1016/j.molcel.2016.02.011
http://www.ncbi.nlm.nih.gov/pubmed/26942671
https://doi.org/10.7554/eLife.29845

