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ABSTRACT 
 

Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. 
Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) 
has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to 
explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a 
hepatocellular carcinoma cell line (Huh7). Methods: MTT assay was used to determine the effect of 
nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. Results: MTT 
assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability.  
RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads 
to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 
and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 
pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant  
reduction in luciferase activity. Conclusion: The data from the present study lead us to develop a deeper 
understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, 
thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic 
agent. DOI: 10.22034/ibj.22.3.171 
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INTRODUCTION 

 

elomerase is a ribonucleoprotein complex with 

ability of synthesizing DNA at the end of 

chromosomes, playing pivotal roles in cell 

development, aging, and tumor genesis
[1]

. This enzyme 

comprises two constitutional subunits: an RNA 

component (hTER or hTERC) serving as a template for 

telomerase DNA synthesis and a catalytic protein 

(hTERT) with reverse transcriptase activity
[2,3]

.  

 Telomerase function is essential for self-renewal and 

proliferation of some normal somatic cells, including 

stem cells, male germ cells, and activated lymphocytes, 

but its action is not detectable in most somatic 

tissues
[1]

. A plethora of studies have revealed that 

hTERT is permanently expressed in 70-90% of cancer 

cells functioning as a limiting factor for telomerase 

activity. Thus, mechanisms underlying the regulation 

T 
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of the hTERT gene are of great significance for cancer 

diagnosis and therapy
[1-4]

. The hTERT promoter 

harbors numerous binding sites for activating and 

inhibitory regulatory elements, including a variety of 

transcription factors, tumor suppressor, and oncogene 

proteins, hormones, and cytokines
[5,6]

.  

Transforming growth factor-β1 (TGFβ1) signaling 

pathway exists in species ranging from flies and worms 

to mammals. It has dual functions in tumor as 

suppression and promotion, depending on the tumor 

type and stage. It controls different cellular phenomena 

containing cell proliferation, recognition, differen-

tiation, and apoptosis and notably functions as a potent 

tumor suppressor at the early stages of tumor genesis
[7]

.  

TGFβ1 signaling pathway has been shown to impede 

the hTERT gene expression and telomerase activity 

thorough its downstream factors in a diversity of 

cancers, such as kidney cancer, breast cancer, 

colorectal cancer, and lung cancer
[8-10]

. TGFβ1 is 

known to be as one of outstanding cytokines 

implicated in inhibiting the hTERT gene expression
[8]

. 

Gene expression can be controlled by Smad pathway, 

which is triggered by the binding of ligand to TGF-β 

receptors and consequently by the formation of 

Smad2/3/4 complex and translocation to the nucleus. 

TGF-β signaling can also activate MAPK pathways by 

applying other growth factors (non-Smad pathway)
[11]

. 

Upon activation through TGFβ1 receptors, R-Smads 

(receptor-regulated Smads) form a complex with co-

mediator Smads, followed by translocation of the 

complex into the nucleus in order to regulate 

transcription of target genes. I-Smads (inhibitory 

Smads) can hamper this pathway via competition with 

R-Smads for binding to TGFβ1 receptors or 

recruitment of ubiquitin ligases to induce degradation 

of TGFβ1 receptors and other Smad proteins
[12]

.  

It has been demonstrated that TGFβ1 signaling 

pathway imposes its inhibitory action on the hTERT 

promoter by using several mechanisms. Studies have 

confirmed that TGFβ1-mediated repression of hTERT 

transcription is primarily triggered by Smad3 via direct 

binding to a specific motif on the hTERT 

promoter
[9,10,13]

. On the other hand, E2F1 has been 

proven to be a prominent mediator of TGFβ1 

inhibitory effect on the hTERT gene expression
[8,14]

. 

Due to the documented role of telomerase in 

carcinogenesis, inhibition of the activity of this enzyme 

in cancer cells has received considerable attentions in 

cancer therapy
[15-17]

.  

Curcumin, a yellow-colored polyphenol pigment 

derived from the rhizome of the perennial herb 

Curcuma longa (well-known as turmeric), has long 

been used in Ayurveda medicines and has a diverse 

range of biological activities such as antiviral, anti-

oxidant and anti-inflammatory properties
[18,19]

. 

Curcumin with the antioxidant and anti-

inflammatory properties has been considered as a 

therapeutic agent in the control of liver cancer, which 

is highly affected by oxidative stress and inflammation 

condition
[20]

. Furthermore, within the past decades, a 

large body of evidence has underlined the therapeutic 

capability of curcumin versus cancer.
[21-25]

. In spite of 

the pharmacological safety and efficiency of curcumin 

as a potential agent for cancer treatment, its limited 

bioavailability, low solubility, poor pharmacokinetics, 

and low stability in aquatic environments has been 

highlighted as a serious obstacle for clinical 

applications
[18,26]

. To overcome this hurdle, various 

nano-formulations, including liposomes, micelles, 

adjuvants, and phospholipid complexes have been 

exploited to enhance serum half-life and tissue 

permeability of curcumin
[26,27]

. Our previous studies 

showed the capacity of PEGylated lipid-based 

nanocurcumin to inhibit the proliferation of cancer 

cells in vitro and in vivo
[28-30]

.  

In this study, we aimed to evaluate the suppressive 

effect of nano-formulation of curcumin developed in 

our laboratory on the hTERT gene expression via the 

induction of TGFβ1 signaling pathway in Huh7 cells, 

as a hepatocellular carcinoma cell line. The expression 

analysis of the genes belonging to TGFβ1 signaling 

pathway after treatment with nanocurcumin revealed 

that this agent can mediate the suppression of 

telomerase via triggering TGFβ1 pathway, representing 

the promise of this formulation of curcumin to be used 

against cancer cells.   

 

 

MATERIALS AND METHODS 

 

Cell culture 

Huh7 cells (Pasteur Institute of Iran, Tehran) were 

cultivated in Dulbecco’s modified Eagle’s medium 

(DMEM; Gibco, USA) supplemented with 10% (v/v) 

fetal bovine serum (FBS; Gibco, USA) and antibiotics 

(100 U/ml penicillin and 100 U/ml streptomycin; 

Gibco, USA). Afterwards, the cells were incubated in a 

humidified atmosphere containing 5% CO2 at 37 °C for 

24, 48, and 72 h.  

 

3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay 
Nanocurcumin was prepared as previously 

reported
[28]

. The viability of Huh7 cells treated with 

nanocurcumin 24, 48, and 72 hours post exposure was 

evaluated thorough MTT assay according to the 

manufacturer’s protocol (Sigma-Aldrich, USA). 

Briefly, Huh7 cells were seeded in a 96-well plate in 
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triplicate wells and grown in 200 μl of DMEM medium 

for 24 hours. Then the cells were exposed to a fresh 

medium containing concentration ranges (0-60 μM) of 

nanocurcumin for 24, 48, and 72 hours. With the 

completion of treatment period, 20 μl MTT solution (5 

mg/ml in PBS) was added to each well, and the cells 

were incubated at 37 °C for 4 hours. Thereafter, the 

medium was removed, and the cells were lysed by 

adding 200 μl dimethylsolfoxide (DMSO) capable of 

dissolving formazan crystals produced by viable cells. 

The optical absorbance was measured at 540 nm using 

a 96-well plate ELISA reader (TECAN, Switzerland), 

and the effective concentration of nanocurcumin at 

which 50% of Huh7 cells were viable (IC50) was 

determined by the standard curve method
[31]

. Each 

experiment was repeated at least three times. 

 

RT-PCR 

To analyze gene expression, Huh7 cells were seeded 

in six-well plates and cultured overnight. The cells 

were then treated with 20, 15, and 12.5 µM 

concentrations of nanocurcumin in triplicate wells for 

24, 48, and 72 hours, respectively. For reverse 

transcription reactions, total RNA was isolated from 

treated cells, using Trizol reagent (Invitrogen, USA) 

according to the manufacturer's protocol. cDNA was 

synthesized from 1 µg total RNA using PrimeScript
TM

 

1
st
 strand cDNA Synthesis (Takara, Japan) with oligo 

dT (Invitrogen, USA). Primer sequences used for PCR 

reactions were as follows: hTERT (F: 5'-TTTGGTGG 

ATGATTTCTTGTTGG-3'; R: 5'-CACTGTCTTCCG 

CAAGTTC-3'), TGFβ1 (F: 5'-ACAATTCCTGGCGA 

TACCTC-3';  R: 5'- AGTGTGTTATCCCTGCTGTC-

3'), Smad3 (F: 5'-GGAGGAGAAATGGTGCGAG 

AAG-3'; R: 5'- CACAGGCGGCAGTAGATGAC-3'), 

Smad7 (F: 5'-CGGAAGTCAAGAGGCTGTGT-3'; R: 

5'-CATCGGGTATCTGGAGTAAGGAG-3'), E2F1 

(F: 5'-AAGTCCAAGAACCACATCCAG-3'; R: 5'-

TGCGTAGTACAGATATTCATCAGG-3'), GAPDH 

(F: 5'-GTGAACCATGAGAAGTATGACAAC-3'; R: 

5'-CATGAGTCCTTCCACGATACC-3'). RT-PCR 

was carried out using Ampliqon Taq DNA Polymerase 

2 Master Mix Red (Denmark) according to the 

manufacturer’s protocol with the optimized amount of 

cDNA for amplification of each gene in PCR reactions. 

The number of amplification cycles for any primer set 

was determined in order to be in the exponential phase. 

PCR products were subjected to electrophoresis on a 

1.5% agarose gel and then visualized with ethidium 

bromide.  The amplification products for each sample 

were normalized by using the GAPDH gene signal, and 

ImageJ software (version 1.51q) was then exploited to 

analyze the results of RT-PCR. Each experiment was 

performed at least three times. 

Recombinant plasmid construction and transfection 
To create recombinant vector containing the hTERT 

promoter region (interacting with TGFβ1 signaling 

pathway)
[8,9,32]

, PCR was performed (Ampliqon Taq 

DNA Polymerase 2 Master mix Red, Denmark) on 

blood-extracted genomic DNA as template using 

forward 5'-CGGGGTACCCCGCAGCTGCGCTGTC-

3' and reverse 5'-CCCAAGCTTGGGCAGCGCTGCC 

TG-3' primers, including KpnI and HindIII restriction 

sites (bold sequences), respectively. The digested 

fragments with KpnI and HindIII restriction enzymes 

were gel purified (GeneAll
®
 Expin

TM
 Combo GP, 

Korea) and then inserted into the KpnI and HindIII 

sites of the digested promoterless PGL4.14 plasmid 

(Promega, USA) by T4 DNA ligase. The cloning 

procedure was confirmed by colony PCR and 

sequencing. For transfection, Huh7 cells (~6  10
4 

cells 

per well) were seeded in 24-well plates in triplicate 24 

hours prior to experiment. Then 1 μg recombinant 

PGL4.14 plasmid with 2 µl lipofectamine 2000 were 

transfected into Huh7 cells using lipofectamine 2000 

according to the manufacturer’s instruction (Invitrogen, 

USA), and cells were then maintained in an incubator 

with 5% CO2 at 37 °C for 6 hours. After this 

incubation, the media were replaced with a fresh 

DMEM containing 10% fetal calf serum and 1% 

penicillin-streptomycin, and the plates were incubated 

in an incubator with 5% CO2 at 37 °C for 24 h. 

Transfected cells were then treated with 20 µM 

concentration of nanocurcumin and incubated for an 

additional 24 hours. Afterwards, the cells were 

harvested in the cold CCLR lysis buffer, and then 10 μl 

cell lysate was employed to assay luciferase activity by 

luminometer (Berthold Detection Systems GmbH, 

Germany). All experiments were repeated at least three 

times
[33]

. 
 

Statistical analysis 

All experiments were analyzed by one-way ANOVA 

and Student’s t-test using GraphPad Prism 5. Data 

were presented as mean ± SD and for statistically 

significant differences. A value of p < 0.05 was 

considered statistically significant. 
 

 

 

RESULTS 
 

The effects of polymeric nanocurcumin on the 

viability of Huh7 cells 

The safety of nanocarriers has been previously 

evaluated on various cancer cell lines in our 

laboratory
[24-26]

. MTT assay was conducted to 

investigate the viability of Huh7 cells  24,  48,  and  

72  h  following  treatment  with various concentrations   
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Fig. 1. MTT assay showing the effect of nanocurcumin on the 

viability of Huh7 cells in a dose- and time-dependent manner. 

IC50 of nanocurcumin-treated Huh7 cells was determined as 20, 

15, and 12.5 µM for 24, 48, and 72 h post exposure, 

respectively. 

 

(0-60 μM) of nanocurcumin. The concentration of 

nanocurcumin  in which 50% of Huh7 cells survived 

was determined as 20, 15, and 12.5 µM for 24, 48, and 

72 h post exposure, respectively (Fig. 1). The best 

results were obtained from 72 hours experiments with 

12.5 µM IC50. The data obtained thorough MTT assay 

revealed that nanocurcumin acts in a dose- and time-

dependent manner on the viability of Huh7 cells 

because dose deduction of nanocurcumin is significant, 

in both times of 48 and 72 (p < 0.0001). This result 

leads us to the speculation that the increase of cellular 

exposure time as well as concentration of 

nanocurcumin significantly diminishes the growth and 

survival rate of Huh7 cells.  

Nanocurcumin-mediated suppression of hTERT 

expression through TGFβ1 family members 

To study the suppressive effect of nanocurcumin on 

the hTERT gene expression through induction of 

TGFβ1 pathway, several doses of nanocurcumin were 

examined for gene expression analysis (data not 

shown). The results of the expression analysis of 

TGFβ1 and hTERT exhibited that there is not any 

significant alteration following 24 hours (p > 0.05), 

whereas a significant enhancement of expression 

occurs 48 h post exposure (p < 0.05; Figs. 2 and 3). 

Also, 72-h exposure of Huh7 cells to nanocurcumin led 

to the elevation of TGFβ1 expression (p < 0.001) and 

reduction of hTERT expression (p < 0.001; Figs. 2 and 

3). Since inhibitory effect of nanocurcumin on the 

hTERT gene was observed 72 h post exposure, this 

incubation time was selected for analyzing the 

expression of TGFβ1 pathway members (Smad3 and 

Smad7) and E2F1 as a mediator of TGFβ1 with 

inhibitory function on hTERT. The results 

demonstrated a significant augmentation in Smad3 and 

E2F1 (p < 0.01), fundamental mediators of TGFβ1 

with inhibitory function on hTERT, and a decline in 

Smad7 (principal suppressor of TGFβ1 signaling 

pathway) gene expression (p < 0.05) 72 h following 

treatment with nanocurcumin (Fig. 4). 

 

Nanocurcumin-induced inhibitory role of TGFβ 

pathway on telomerase by luciferase assay 

Previous reports on the hTERT promoter have 

revealed the presence of a 255 to 300 bp region, 

proximal  to  start  site,  which  is   involved  in  TGFβ- 
 

 

 

 

 
 
 

 
 

                                                  
 

 

 
 

 

Fig. 2. Semi-quantitative PCR analysis of TGFβ1 expression in Huh7 cells. The expression analysis of TGFβ1 in Huh7 cells post 

treatment with nanocurcumin indicated no significant alteration after (A) 24 h (p > 0.05), but a significant elevation was observed 

following (B) 48 and (C) 72 h (* p < 0.05 and *** p < 0.001, respectively).  
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Fig. 3. Semi-quantitative PCR RT.PCR analysis of hTERT expression in Huh7 cells. The expression analysis of  

hTERT in Huh7 cells post treatment with nanocurcumin showed an increase after (B) 48 h (* p < 0.05) and a decrease following (C) 72 

h (*** p < 0.001). There was not detected any significant alteration (A) 24 h post exposure.  

 

 

mediated inhibition of telomerase activity
[9,10,28]

. To 

investigate the effect of nanocurcumin on the activity 

of hTERT promoter, the relevant promoter region was 

cloned into PGL4.14 (a promoterless vector containing 

luciferase reporter gene). The resulting construct was 

transfected into Huh7 cells, and the cells were then 

exposed to 20 μM concentration of nanocurcumin 24 h 

post transfection. Measurement of luciferase 

expression was indicated as relative light unit. The 

results of the transfection assay revealed that the 

exposure of Huh7 cells to nanocurcumin triggers a 

significant reduction in luciferase activity (p < 0.001) 

24 h post treatment (Fig. 5). 

 

 

DISCUSSION 

 

Curcumin, a natural herbal product, has received 

attentions as a potential agent in cancer therapy. This 

therapeutic capacity is rooted in anticancer properties 

of curcumin through which affect numerous molecular 

targets in malignant cells
[34-36]

. Telomerase is viewed 

as a prominent molecular target of curcumin in cancer 

cells
[23-25]

,
 

which plays critical roles in cell 

immortalization and carcinogenesis thorough the 

maintenance of chromosome ends
[1,37]

. Meanwhile, 

TGFβ1 is considered as a crucial effector in a signaling 

pathway known to be implicated in blocking 

telomerase activity
[8,9,32,38]

. Therefore, exploring the 

suppressive effects of curcumin on the hTERT gene 

expression by constituents of TGFβ1 pathway is of 

particular importance for translation into the clinic. 

Recently, it has been noted that TGFβ1 signaling 

pathway mediates fibrogenesis in chronic diseases of 

the liver, kidney, lung, heart, and skin through 

overproduction and deposition of extracellular matrix 

components. Consistently, numerous studies have 

spotlighted anti-fibrogenic properties of curcumin by 

down-regulation of TGFβ1/Smad3 pathway
[39-43]

. 

Previous studies have underlined that the 

concentration of curcumin affects its antifibrogenic as 

well as anticarcinogenic properties. Curcumin exerts 

antifibrogenic effects at low concentrations (10 ≤ 

μM)
[44]

, whereas it triggers apoptosis in cancer cells at 

high doses (10 ≥ μM)
[45,46]

. In spite of the recognized 

anti-fibrogenic role of curcumin via the inhibition of 

TGFβ1 pathway, to the best of our knowledge, there is 

not any report in the literature undertaken to study 

anticarcinogenic features of curcumin through 

induction of TGFβ1 pathway, as a potent inhibitor of 

the hTERT gene expression
[47,48]

. 

The current work reports on the augmentation of 

TGFβ1 expression and reduction of hTERT expression 

in nanocurcumin-treated Huh7 cells 72 h post 

exposure, implying  the  fact   that  nanocurcumin  can 

lower telomerase expression via stimulating TGFβ1 

signaling pathway in Huh7 cells. Expression analysis 

of the hTERT gene demonstrated an expression 

increase and decrease 48 h and 72 h post exposure, 

respectively. It has been confirmed that anti-neoplastic 

agents can generate genomic lesions and oxidative 

stresses provoking apoptosis in cancer cells
[45,49]

. 

However, dose and time exposure play essential roles 

in the response of cancer cells to anti-cancer 

compounds. Interestingly, a number of investigations 

have  exhibited   that   genotoxic  stresses  prompted  at  
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Fig. 4. The results of the expression analysis of downstream effectors of TGFβ1 signaling pathway in Huh7 cells 72 h post treatment 

with nanocurcumin. The Figure illustrates the elevation of (A) Smad3 and (C) E2F1 expression (** p < 0.01) and the reduction of (B) 

Smad7 expression (* p < 0.05).  
 

 

long-time low-dose exposure of cancer cells to anti-

neoplastic agents could enhance the expression level of 

the hTERT mRNA. The elevated levels of the hTERT 

mRNA and subsequent increase of telomerase activity 

may be correlated with a survival advantage for cancer 

cells
[50-53]

. Consistently, our data suggest that up-

regulation of the hTERT mRNA levels 48 h after 

treatment with nanocurcumin, as an anti-neoplastic 

compound
[45,49,54]

, could raise the survivability of Huh7 

cells.  

Recently, it has been well documented that the rise of 

reactive oxygen species (ROS) production by curcumin 

suppresses telomerase activity, which in turn triggers 

apoptosis in cancer cell lines
[1]

. Therefore, we develop 

the hypothesis that nanocurcumin-driven enhancement 

of oxidative stress and ROS formation in Huh7 cells 72 

h post exposure seems to disrupt the initial resistance 

of hepatocellular carcinoma cells and ultimately leads 

to the repression of the hTERT expression. 

Concentrations of more than 10 µmol of nanocurcumin 

have oxidant properties but concentrations of less than 

this amount of nano- curcumin  have   antioxidant   

properties
[55]

.  Therefore, longer period of exposure can 

increase of the concentration of nanocurcumin inside 

the cell and generates more ROS. These contradictory 

alterations in the hTERT gene expression upon 

nanocurcumin-triggered genotoxic stress are 

presumably due to the fact that telomerase activation 

depends on the dose and duration of treatment. Various 

factors have been revealed to act at downstream of 

TGFβ1 to regulate telomerase activity. However, 

Smad3 (an R-Smad) and E2F1 are highlighted as the 

pivotal downstream mediators of TGFβ1 signaling     

             
 

   

 
Fig. 5. Luciferase assay through transfection of Huh7 cells 

with recombinant PGL4.14 plasmid harboring a region of the 

hTERT promoter. This region contains sequences previously 

shown to be able to interact with downstream mediators of 

TGFβ1 pathway. Transfection of Huh7 cells with the 

recombinant plasmid caused a significant reduction in  

luciferase activity (*** p < 0.001) 24 h post exposure to 20 µM 

concentration of nanocurcumin. Relative light unit was used as 

the unit to quantitatively measure the expression level of 

lucifearse reporter gene. Promoterless PGL4.14 vector was 

employed as control.  
 
 

 

pathway for  preventing the  hTERT  expression
[8,9,14]

. 

Smad7 (an I-Smad) has been recognized to function as 

an inhibitory factor for Smad3 and negatively control 

the pathway
[12]

. The present study shows that 

nanocurcumin leads to the up-regulation of Smad3 and 

E2F1 and also down-regulation of Smad7. This finding 

reinforces the notion that nanocurcumin affects 

different mediators of TGFβ1 pathway ultimately 
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resulting in hTERT repression. On the other hand, 

previous investigations have indicated the presence of 

a 255- to 300-bp region within the hTERT promoter, 

conferring TGFβ1 pathway prohibitive function on the 

hTERT gene expression
[8,9,32]

.  

To reveal an answer to the question that whether 

nanocurcumin can induce regulatory effects on the 

hTERT promoter through the induction of TGFβ1 

signaling pathway, we constructed a recombinant 

PGL4.14 vector containing the relevant hTERT 

promoter region and transfected the resultant construct 

into Huh7 cells. The results suggested a significant 

suppression of luciferase activity post treatment with 

curcumin. This observation provides an insight into the 

inhibitory mechanism of nanocurcumin on the hTERT 

promoter through stimulation of TGFβ1 signaling 

pathway. It should be also noted that the precise 

mechanisms by which nanocurcumin impedes 

telomerase activity in a TGFβ1 signaling pathway-

dependent manner remain to be clarified and 

necessitate further studies to decipher the interplays of 

nanocurcumin and TGFβ1 intracellular pathway 

implicated in inhibiting the hTERT gene expression. 

However, these data could shed light on the capability 

of nanocurcumin for TGFβ1 pathway-mediated 

regulation of the hTERT gene, thus representing 

potential of this nanoformulation of curcumin in the 

development of a novel approach for cancer therapy. 
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