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Abstract: Acute kidney injury (AKI) is the most common condition in hospitalized patients.
As ischemia/reperfusion-induced AKI (IR-AKI) is as a major contributor to end-stage disease,
an effective therapeutic intervention for IR-AKI is imperative. Erythropoietin (EPO) is a potent
stimulator of erythroid progenitor cells and is significantly upregulated during hypoxia. Here,
we investigated the renoprotective effects of EPO in an IR-AKI mouse model. Mice were assigned to
sham, EPO only, and IR only groups, and the IR group was treated with EPO prior to injury. EPO was
administered twice at 30 min prior to bilateral renal artery occlusion, and 5 min before reperfusion,
with all mice sacrificed 24 h after IR-AKI. The serum was harvested for renal functional measurements.
The kidneys were subjected to histological evaluation, and the biochemical changes associated
with renal injury were assessed. EPO significantly attenuated the renal dysfunction associated with
IR-AKI, as well as tissue injury. Apoptotic cell death and oxidative stress were significantly reduced
in EPO-treated mice. Macrophage infiltration and expression of ICAM-1 and MCP-1 were also
significantly reduced in EPO-treated mice. Furthermore, the expression of inflammasome-related
factors (NLRP1, NLRP3, and caspase-1 cleavage), via the activation of the COX-2 and NF-κB signaling
pathways were significantly reduced following EPO treatment. To our knowledge, this is the first
study to demonstrate that inflammasome-mediated inflammation might be a potential target of EPO
as a treatment for ischemic AKI.
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1. Introduction

Acute kidney injury (AKI) is the most common condition in hospitalized patients [1].
As ischemia/reperfusion-induced AKI (IR-AKI) is as a major contributor to end-stage disease, an
effective therapeutic intervention for IR-AKI is imperative.

Renal inflammation is a universal response to both infectious and noninfectious insults.
Experimental models suggest that pathogen-associated molecular patterns (PAMPs), and the
uncontrolled release of danger-associated molecular patterns (DAMPs) from damaged or dying
cells drive inflammatory responses, and subsequent tissue and organ injury. Inflammasomes are
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multiprotein complexes that regulate cytokine maturation, inflammation, and cell death via the
activation of certain caspases [2]. Five receptors are known to assemble inflammasomes, which are the
nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) proteins: NLRP1, NLRP3, and
NLRC4; as well as the absent in melanoma 2 (AIM2)-like receptors, AIM2 and pyrin [3]. The NLRP3
inflammasome is a cytosolic complex consisting of NLRP3, ASC, and caspase-5. BID is a pro-apoptotic
inflammasome-related protein. NLRP3 is the most well-studied of the inflammasome-related proteins
and is activated by DAMPs, which regulate the secretion of pro-inflammatory cytokines such as IL-1β
and IL-18. These inflammasome components have been directly implicated in renal inflammation
injury [4].

Erythropoietin (EPO) is a potent growth factor of erythroblasts that is significantly upregulated
during hypoxia. Recombinant human EPO, first developed in 1989, is one of the most important factors in
the treatment of patients with chronic kidney disease. Treatment with erythropoiesis-stimulating agents
has led to significant improvements in patients’ quality of life [5,6]. Furthermore, the anti-inflammatory
and antioxidant effects of EPO in AKI have been demonstrated in renal cell and animal models [7].
Here, we investigated the renoprotective mechanisms of EPO in IR-AKI mice, as well as the role of the
inflammasome in mediating these effects.

2. Results

2.1. EPO Ameliorates IR-Induced Renal Dysfunction and Tissue Damage

Serum blood urea nitrogen (BUN) and serum creatinine (Cr) levels were markedly elevated in
the IR group, and pre-treatment with EPO significantly attenuated BUN and Cr elevation in IR mice
(Figure 1A). To confirm IR-induced tissue injury, hematoxylin and eosin (H&E) staining was performed.
Kidneys from the IR group showed extensive tubular injury, characterized by tubular atrophy, cast
formation, and loss of brush border. These pathohistological changes were significantly attenuated in
the IR group treated with EPO. The sham and EPO groups exhibited no changes in renal morphology
(Figure 1B,D). Apoptosis-mediated tubular injury is implicated in IR-induced AKI [8]. EPO significantly
decreased IR-induced apoptosis in tubular epithelial cells, as reflected by TUNEL-positive signals
(Figure 1C,D).
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Figure 1. Effects of Erythropoietin (EPO) administration on renal function and morphological changes
in IR-AKI. EPO (500 IU/kg body weight) was administered into the tail vein. Mice were sacrificed 24 h
after ischemic injury for blood and kidney sampling. The serum blood urea nitrogen (BUN) and serum
creatinine (Cr) levels were measured (A), and histological changes and renal apoptosis were examined
by H&E staining and TUNEL assay, respectively (B–D). Tissue damage was quantified as described in
the Materials and Methods section (B). Quantitative analysis of TUNEL-positive cells was performed
(C). Scale bar, 100 µm. Data are means ± SEM. *p < 0.05.

2.2. EPO Administration Significantly Attenuates Inflammatory Cell Infiltration

Macrophage infiltration is a well-defined feature of tissue inflammation in IR-AKI [9].
Intracellular adhesion molecule-1 (ICAM-1) and macrophages/monocytes chemotactic protein-1
(MCP-1), are the common inflammation-involved factors in AKI, including ischemic AKI [10], and are
associated with the infiltration of macrophage in ischemic AKI [11]. EPO administration significantly
decreased macrophage infiltration in the EPO+IR group compared to the IR only group (Figure 2A).
The expression levels of ICAM-1 and MCP-1 were also significantly reduced in the EPO+IR group
(Figure 2B,C).
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Figure 2. Effects of EPO on macrophage infiltration after IR injury. To verify macrophage infiltration,
immunohistochemical staining of F4/80 was performed (A). F4/80-positive signals were found in the
interstitial areas of kidneys after IR. Immunohistochemical staining of the inflammatory mediators
ICAM-1 (B), and MCP-1 (C), was also examined. Each signal was analyzed by densitometry. Scale bar,
50 µm. Data are means ± SEM. *p < 0.05.

2.3. EPO Reduces Oxidative Stress and NF-κB Pathway Activation

Oxidative stress induced by damaged tissues, as well as the migration of inflammatory cells into
these tissues, is a potent activator of the nuclear factor kappa B (NF-κB) signaling pathway, and a
major driver of pathologic inflammation [12]. Immunohistochemical staining of 8-OHdG, a reactive
oxygen species (ROS)-induced DNA damage marker, was performed to investigate the effect of EPO
on IR-induced oxidative stress in the kidney. 8-OHdG-positive signals were detected in the nuclei of
tubular epithelial cells in the IR only group (arrow in Figure 3A), and these signals were significantly
decreased by EPO treatment (Figure 3A). We also examined the activation of the NF-κB signaling
pathway and COX-2 expression as a target of NF-κB signaling. Marked induction of COX-2 and
p-NF-κB protein expression was detected in the IR kidney tissues. EPO reduced the expression of these
proteins (Figure 3B–D).
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Figure 3. EPO decreases IR-induced oxidative stress and NF-κB pathway activation. Sections were
stained with anti-8-OHdG as a marker for oxidative stress. Signals were analyzed by densitometry (A).
Kidney extract was prepared 24 h after IR injury. COX-2 and NF-κB protein expression were analyzed
by Western blot (B). The histograms show the results of densitometric analysis of bands normalized to
β-actin (C,D). Scale bar, 50 µm. Data are presented as mean ± SEM. *p < 0.05.

2.4. EPO Decreased Inflammasome Activation

Next, we examined the expression of inflammasome-related factors. The NLRP3 inflammasome
is an important mediator of ischemic AKI [13,14]. Significant increases in NLRP-1 and NLRP-3
expression were observed in the kidneys of IR mice, and these increases were significantly attenuated
in the IR+EPO group (Figure 4A,C,D). Cleaved caspase-1 expression was also ameliorated by EPO
administration (Figure 4A,E). Vince et al. demonstrated that mitochondrial apoptotic effectors trigger
NLRP3 inflammasome [15]. We investigated the expression levels of the mitochondrial apoptotic
machinery-related factors such as Bax, Bcl-2, and Bcl-xL (Figure 4B,F–H). The expression of Bax,
a mitochondrial pro-apoptotic effector, was increased, whereas Bcl-2 and Bcl-xL, mitochondrial
anti-apoptotic effectors, were decreased in the IR only group. However, these expression levels were
reversed in the EPO + IR group.
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Figure 4. EPO decreases inflammasome expression and changes mitochondrial apoptotic effectors
expression. Renal extract was prepared 24 h after ischemia/reperfusion injury (IRI). Expression levels of
NLRP-1, NLRP-3, and cleaved caspase-1 (A) and Bax, Bcl-2, and Bcl-xL (B) were analyzed by Western
blot. Quantitative analysis of NLRP-1 (C), NLRP-3 (D), cleaved caspase-1 (E), Bax (F), Bcl-2 (G), and
Bcl-xL (H) were performed, with results normalized to β-actin. Data are presented as mean ± SEM.
*p < 0.05.

3. Discussion

This study showed that EPO protected against IR-AKI via the inactivation of
inflammasome-dependent signaling pathways, as well as the inhibition of oxidative stress. EPO not
only protected against IR-induced histologic and biochemical changes, but also against the loss of
renal function.

EPO has shown protective effects in several experimental AKI models, through various mechanisms
including the regulation of microvascular injury [7], the reduction in tubulointerstitial injury
(independent of its hemopoietic effects) [16], anti-inflammatory and anti-apoptotic effects [17], decreased
fibrocyte accumulation [18], and the modulation of macrophage polarization [19,20]. Notably, EPO has
shown efficacy in animal models of IR-AKI [21], as well as in an in vitro hypoxia-reoxygenation
study [22], via the regulation of PI3K/Akt signaling.

The cellular targets of EPO include NF-κB, COX-2, and mitogen-activated protein kinase (MAPK).
EPO was shown to prevent sepsis-related AKI in a rat model by inhibiting NF-κB and upregulating
endothelial nitric oxide synthase (eNOS) [23]. Similarly, recombinant human EPOsuppressed activity
in the NF-κB and inducible nitric oxide synthase (iNOS) pathways in a rhabdomyolysis-AKI rat
model [20]. Additional anti-apoptotic effects of EPO were shown to be mediated by the NF-κB pathway
in an IR mouse model [24]. Finally, the inhibition of COX-2 ameliorated IR-AKI in both rats [25] and
mice [26]. In this study, EPO administration ameliorated renal apoptosis, NF-κB activation, and COX-2
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expression by IR. Our data suggest that EPO decreases IR-induced renal apoptosis via the regulation
of the NF-κB pathway.

In AKI, macrophages exacerbate the inflammatory response, as well as the associated cytotoxic
effects, via the generation of ROS and proinflammatory cytokines [27]. ROS, released by damaged
tissues and inflammatory cells, are a potent inducer of NF-κB activation [12]. This activation of NF-κB
plays an important role in disease progression, by promoting the synthesis of inflammatory mediators,
leading to the transcription of adhesion molecules such as ICAM-1 and chemotactic factors such as
MCP-1 [28]. The inhibition of ICAM-1 expression results in decreased leukocyte adhesion and renal
inflammation in an IR-AKI model [29]. This study showed that EPO administration decreased renal
oxidative stress, which may have resulted from a reduction in macrophage infiltration. Furthermore,
EPO ameliorated the levels of other inflammatory mediators, such as ICAM-1 and MCP-1. This could
be due to the inactivation of NF-κB because of decreased oxidative stress.

The NLRP3 inflammasome is activated in both acute and chronic kidney disease. The inhibition of
NLRP3, via NLRP3 inflammasome knockout or cathepsin-mediated NLRP3 inhibition, has been shown
to confer significant protection against IR-AKI in mice [9,13]. Similarly, caspase-1, a downstream target
of NLRP3, has also been shown to play an important role in IR-AKI [30]. IR-induced activation of the
NLRP3 inflammasome results in prolonged caspase-1 cleavage [14]. Although the NLRP3 inflammasome
is an important mechanism in IR-AKI, and candidates for blocking NLRP3 inflammasome activation
such as hydroxychloroquine are being developed for IR-AKI [9], no studies have examined whether EPO
can inhibit activation of the NLRP3 inflammasome in IR-AKI. Our results showed that EPO-mediated
protection against IR-AKI was associated with significant decreases in caspase-1 cleavage, as well as
in NLRP1 and NLRP3 inflammasome activation. This suggests that the EPO-induced suppression of
caspase-1 cleavage via the inflammasome has potential as a mechanism of renal protection after IR injury.
Recently, it has been reported that the mitochondrial apoptotic effectors trigger NLRP3 inflammasome
through caspase-3 and -7 activation [15]. They showed that in macrophage, BAX/BAK, the mitochondrial
apoptotic effectors, activate caspase-3 and 7 and activated caspase-3 and 7 caused potassium ion efflux
and ultimately, triggered NLRP3 inflammasome formation. We examined if the mitochondrial apoptotic
machinery could be another cellular target of EPO on suppression of inflammasome activation in
IR-AKI. EPO ameliorated the expression of Bax and preserved the expression of Bcl-2 and Bcl-xL. Thus,
these data suggest that EPO protects against IR-AKI by inhibition of the mitochondrial apoptotic
effectors to trigger inflammasome.

As mentioned above, various events such as apoptosis, inflammation, hypoxic injury, and oxidative
stress by production of reactive oxygen species, are involved in the pathogenesis of IR-AKI [31–33].
It is advantageous to inhibit these events in the prevention and treatment of IR-AKI. In light of our data
in this study, EPO protects against IR-AKI in two ways. Firstly, EPO decreases macrophage-involved
inflammation as follows. IR-AKI begins from macrophage infiltration. Infiltrated macrophage generates
ROS and produces proinflammatory cytokines in damaged tissues. ROS and proinflammatory cytokines
activate the NF-κB signaling pathway that promotes the transcription of adhesion molecules like
ICAM-1 or MCP-1. These adhesion molecules facilitate the macrophage migration again. Ultimately,
tubular epithelial cells are in apoptotic cell death and kidney dysfunction is incurred. In this study,
although we cannot explain exactly which steps are first for EPO working, we cannot rule out the
reduced macrophage infiltration. Secondly, NLRP3 among inflammasome components is well known
to various kidney disease including IR-AKI. The protective effect of EPO on AKI is very well-described;
however, it is not for inflammasome, even reported in acute lung injury [34]. According to our data,
EPO significantly decreased the expression levels of the inflammasome-related factors NLRP1, NLRP3,
and cleaved caspase-1. Moreover, EPO also reduced the expression of the mitochondiral apoptotic
effects to trigger NLRP3 inflammasome.

The pathogenesis of IR-AKI contains multiple complex steps and mechanisms. Therefore, targetting
a single step and a single mechanism is not helpful to treat IR-AKI. To our knowledge, this is the first
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report to indicate that EPO might be a potential option for multiple targets including the suppression
of the inflammasome-mediated inflammation as a prevention and treatment measure for ischemic AKI.

4. Materials and Methods

4.1. Ethics Statement

This study was approved on 16 February 2016 by the Gyeongsang National University Institutional
Animal Care and Gyeongsang National University Institutional Ethics Committee (GNU160216-M0009).

4.2. Ischemia/Reperfusion-Induced AKI

Male C57BL/6 mice (10 weeks of age) were maintained in a 12-h light/dark cycle in a temperature-
and humidity-controlled facility. Standard mice chow and water was provided ad libitum. Mice were
assigned to sham, EPO only, IR only, and EPO administered prior to IR groups. EPO (500 unit/kg;
EPOKINE®, Erythropoietin-α, CJ Healthcare) was administered twice at 30 min prior to bilateral renal
artery occlusion and 5 min before reperfusion and the mice were then sacrificed at 24 h after IR-AKI.
Mice were anesthetized with IP Avertin (2,2,2-tribromoethanol, Sigma-Aldrich, St. Louis, MO, USA).
The renal pedicles were bilaterally clamped for 40 min with microaneurysm clamps after a midline
incision. The time of ischemia was chosen to obtain a reversible model of ischemic AKI and avoid
animal mortality. After clamp removal, kidneys were observed for restoration of blood flow by the
return to their original color. The abdomen is closed in two layers. Sham surgery consisted of the
same surgical procedure except that clamps were not applied. During the first 24 h of the reperfusion
period, the animals were kept in an incubator at 29 ◦C. Animals were sacrificed at 24 h after ischemia.
Blood and kidney tissues were harvested. All experiments were performed in triplicate with n = 7
animals in each group.

4.3. Histopathology

Tissues were fixed in 4% paraformaldehyde in 0.1 M PBS, embedded in paraffin, and cut into 5-µm.
The sections were stained with H&E. The semi-quantitative scoring for H&E staining was examined
on the degree of interstitial injury that assigned points (0 to 3) for the extent of interstitial fibrosis and
tubular atrophy (defined as luminal dilation, loss of brush border and flattened tubular epithelial cells).
Tissue injury was scored by grading the percentage of affected under a high-powered field (×400): 0,
0%; 1, <30%; 2, 31% to 60%; 3, 61% to 100%. All scorings were summed and represented as average
values on a graph, and signals were analyzed using NIS-Elements BR 3.2 (Nikon, Tokyo, Japan).

4.4. TUNEL Assay

The degree of apoptosis was assessed using a TUNEL assay. Detection of DNA fragmentation
was performed using a kit from Roche Applied Sciences (Indianapolis, IN, USA). A semiquantitative
analysis was performed by counting the number of TUNEL-positive cells per field, in the renal tissue, at
×400 magnification. At least 10 areas in the cortex per slide were randomly selected. The mean number
of brown colored cells in these selected fields was expressed as the density of TUNEL-positive cells.

4.5. Immunoblotting

The samples were obtained from the kidneys for immunoblotting. The tissues were homogenized
in RIPA buffer (#89900. Thermo scientific. Waltham, MA, USA). Amounts of protein were measured
using the BCA assay kit (Pierce, Rockford, IL, USA), according to the manufacturer’s protocol.
Proteins (50 µg) were loaded and electroblotted. The blots were probed with primary antibodies against
monoclonal anti-caspase-1 (Abcam) and polyclonal anti-NLRP1 (Cell signaling, Danvers, MA, USA),
NLRP-3 (Abcam, Cambridge, UK), COX-2 (Cell signaling), and NF-κB (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) at 4 ◦C overnight. The primary antibody was visualized by a secondary antibody
and an ECL kit (Amersham Pharmacia Biotech, Piscataway, NJ, USA). The β-actin antibody (Sigma,
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St. Louis, MO, USA) served as the loading control. The densitometric analysis was performed for
quantitative analysis of all data.

4.6. Immunohistochemistry

After deparaffinization, the sections were incubated with primary antibodies against monoclonal
anti-ICAM-1 (BD Bioscience, Franklin Lakes, NJ, USA), MCP-1 and polyclonal anti-F4/80 (Santa Cruz),
MCP-1 (Santa Cruz), 8-OHdG (Abcam, Cambridge, UK), followed by biotin-conjugated secondary
IgG (diluted 1:200; Vector Laboratories, Burlingame, CA, USA), avidin–biotin–peroxidase complex
(ABC Elite Kit; Vector Laboratories), and DAB. Next, we visualized the sections by light microscopy
and captured and analyzed digital images using NIS-Elements BR 3.2 (Nikon, Japan).

4.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism software (version 8.0; GraphPad
Software Inc., La Jolla, CA, USA). Data were evaluated using one-way ANOVA with Tukey’s multiple
comparison test (for comparison all groups). All statistical testes used p < 0.05 to indicate significance.
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Abbreviations

AKI Acute kidney injury
BUN Blood urea nitrogen
EPO Erythropoietin
Cr Serum creatinine
eNOS Endothelial nitric oxide synthase
ICAM-1 Intracellular adhesion molecule-1
iNOS Inducible nitric oxide synthase
IRI Ischemia/reperfusion injury
MCP-1 Monocytes chemotactic protein-1
NF-κB Nuclear factor kappa B

NLRP
Nucleotide-binding oligomerization domain
(NOD)-like receptor (NLR) proteins

ROS Reactive oxygen species
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