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Objective: Blast exposure (BE) and mild traumatic brain injury (mTBI) have been

independently linked to pathological brain changes. However, the combined effects of

BE and mTBI on brain structure have yet to be characterized. Therefore, we investigated

whether regional differences in cortical thickness exist between mTBI Veterans with and

without BE while on deployment. We also examined whether cortical thickness (CT)

and cognitive performance differed among mTBI Veterans with low vs. high levels of

cumulative BE.

Methods: 80 Veterans with mTBI underwent neuroimaging and completed

neuropsychological testing and self-report symptom rating scales. Analyses of

covariance (ANCOVA) were used to compare blast-exposed Veterans (mTBI+BE, n= 51)

to those without BE (mTBI-BE, n = 29) on CT of frontal and temporal a priori regions of

interest (ROIs). Next, multiple regression analyses were used to examine whether CT and

performance on an executive functions composite differed among mTBI Veterans with

low (mTBI+BE Low, n = 22) vs. high (mTBI+BE High, n = 26) levels of cumulative BE.

Results: Adjusting for age, numer of TBIs, and PTSD symptoms, the mTBI+BE

group showed significant cortical thinning in frontal regions (i.e., left orbitofrontal cortex

[p = 0.045], left middle frontal gyrus [p = 0.023], and right inferior frontal gyrus

[p = 0.034]) compared to the mTBI-BE group. No significant group differences in CT

were observed for temporal regions (p’s > 0.05). Multiple regression analyses revealed a

significant cumulative BE× CT interaction for the left orbitofrontal cortex (p= 0.001) and

left middle frontal gyrus (p = 0.020); reduced CT was associated with worse cognitive

performance in the mTBI+BE High group but not the mTBI+BE Low group.

Conclusions: Findings show that Veterans with mTBI and BE may be at risk for

cortical thinning post-deployment. Moreover, our results demonstrate that reductions in
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CT are associated with worse executive functioning among Veterans with high levels

of cumulative BE. Future longitudinal studies are needed to determine whether BE

exacerbates mTBI-related cortical thinning or independently negatively influences gray

matter structure.

Keywords: cortical thickness, cortical thinning, mTBI, head injury, blast, blast TBI, blast exposure, subconcussive

blast exposure

INTRODUCTION

The use of improvised and other explosive devices—such
as rocket propelled grenades and mortar rounds—during
the conflicts in Afghanistan and Iraq has led to a stark
increase in the prevalence of combat-related blast exposure
(BE) in the military population. Indeed, more than 60% of
United States (U.S.) service members returning from the Middle
East reported two or more BEs during their deployment
(1). Similarly, among a convenience sample of Operation
Enduring Freedom/Operation Iraqi Freedom/Operation New
Dawn (OEF/OIF/OND) Veterans, nearly 80% reported at least
one close range BE (within 100m) while overseas (2). Such BE,
combined with the improvement of combat protective gear and
medical response methods, has led to unprecedented rates of
certain non-lethal blast-related injuries within returning service
members. Although musculoskeletal injuries, hearing loss, and
vestibular dysfunction are common consequences of BE, of
particular concern are the high rates at which BE results in mild
traumatic brain injury (mTBI) among OEF/OIF/OND Veterans
(3, 4).

The physical mechanisms of blast-related neurotrauma are
complex and likely distinct from those mechanisms involved
in pure blunt-force injuries. Conceptually, explosive detonation
results in an over-pressurized shockwave—or primary blast
wave—that transmits through the skull and directly interfaces
with, displaces, or damages neural tissue (5, 6). This primary
blast wave may also cause rapid physical displacement of blood
from the abdominal area to the cranial vault, damaging the
cerebrovasculature and blood brain barrier (7–9). Additionally,
the percussive forces associated with BE may cause blunt-
force injury by propelling debris into a soldier’s skull, and/or
causing the skull to make impact with other solid objects. Both

Abbreviations: ACC, anterior cingulate cortex; ANOVA, analysis of variance;

ANCOVA, Analysis of covariance; AOC, alteration of consciousness; BDI-II, Beck

Depression Inventory-II; BE, blast exposure; CT, cortical thickness; DKEFS, Delis-

Kaplan Executive Function System; DTI, diffusion tensor imaging; IFG, inferior

frontal gyrus; LOC, loss of consciousness; LTL, lateral temporal lobe; MFG, middle

frontal gyrus; mTBI, mild traumatic brain injury; ROIs, regions of interest; MTL,

medial temporal lobe; mTBI+BE, mTBI Veterans who were exposed to blast;

mTBI-BE, mTBI Veterans were not exposed to blast; mTBI+BE Low, Veterans

with mild traumatic brain injury with low blast exposure; mTBI+BE High,

Veterans withmild traumatic brain injury with high blast exposure; MRI, magnetic

resonance imaging; NSI, Neurobehavioral Symptom Inventory; OEF/OIF/OND,

Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn;

OFC, orbitofrontal cortex; PCL-M, PTSD Checklist-Military; PTA, posttraumatic

amnesia; PTSD, posttraumatic stress disorder; rsfMRI, resting state functional;

SFG, superior frontal gyrus; WCST, Wisconsin Card Sorting Test; WRAT-4, Wide

Range Achievement Test 4.

blast and blunt forms of injury are thought to account for
the acute clinical signs and symptoms of mTBI (i.e., loss of
consciousness [LOC], alteration of consciousness [AOC], and
posttraumatic amnesia [PTA]). Further, the quantification of
BE itself is challenging given that the intensity of explosive
forces resulting in mTBI is difficult to operationalize and
characterize. While it has been established that high-pressure
BE may cause extensive neural damage in humans (10), the
majority of OEF/OIF/OND Veterans are exposed to significantly
smaller thresholds of BE—from different proximities—which
also originate from various types of explosives, highlighting the
difficulty in characterizing the nature and extent of blast-related
injury in this population.

During the past decade, considerable efforts have been
placed on characterizing the pathophysiological consequences,
or precise neural and white matter changes, associated with
mTBI. Advanced neuroimaging techniques (i.e., diffusion tensor
imaging [DTI], resting state functional [rsfMRI]) have revealed
that a host of structural and functional brain changes occur
in military service members with blast-related mTBI [for
review see (11)]. These include macro- and microstructural
white matter alterations, cortical thickness and volumetric
reductions, as well as functional network and connectivity
changes. Across the various neuroimaging findings among mTBI
samples, frontal and temporal regions appear to be especially
vulnerable, although widespread, diffuse damage has also been
observed (11–13). Importantly, the nature of brain changes
may fundamentally differ based on the manner in which
the injury was sustained (e.g., blast/blunt force combination,
blast only, blunt only), although the precise independent
contributions of each mechanism are especially challenging to
disentangle given that they frequently co-occur at the time of
injury.

While BE may frequently result in an mTBI, low level—
or subconcussive—BE may exert its own negative influence on
the brain. For example, studies of OEF/OIF deployed service
members have shown that BE, independent of diagnosis of
mTBI, was associated with an increased likelihood of having
decreased white matter microstructural integrity compared to
controls (14, 15). These results were further corroborated
by another study that examined serum markers of neuronal
injury (e.g., ubiquitin C-terminal hydrolase-L1, αII-spectrin
breakdown products, and glial fibrillary acidic protein) in
members of the New Zealand Defense Force who did not
experience an mTBI while participating in explosives training
(16). Indeed, results revealed that (1) several participants
showed increased levels of serum biomarkers of neuronal injury
(i.e., ubiquitin C-terminal hydrolase-L1, αII-spectrin breakdown
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products) after low-level, subconcussive BE, and (2) higher
levels of a serum biomarker composite were significantly
associated with poorer performance on a neurocognitive
composite. Similarly, (17) found that instructors, relative to
students, endorsed more severe neurological symptoms, worse
recognition memory, and fMRI differences after a 2-week
period of subconcussive BE during a breacher basic training
course; the authors attributed these differences to the fact
that instructors, by nature of their profession likely have
greater cumulative lifetime levels of blast exposure. Importantly,
results from human studies align well with animal models
with respect to neuropathological and neurobehavioral changes,
although the subconcussive effects of BE can be difficult to
operationalize and model in both human and animal studies.
Nevertheless, experimental manipulation of peak pressure in
mice and rats has revealed that even low levels induce neuronal
loss, white matter alterations, cell signaling disruptions, and
behavioral changes (18–20). Moreover, ultrastructural brain
changes, poorer motor and memory performance, as well as
increased anxiety levels, have been observed in mice exposed
to primary low-intensity blast in the absence of head motion
(21).

Recent research suggests that cumulative BE warrants careful
consideration in Veteran samples, as several studies have revealed
a dose-response relationship between BE, neurologic changes,
and poor behavioral outcomes. For example, Ivanov et al. (22)
recently found that a greater number of BEs (whether they
resulted in a head injury or not) was significantly associated
with reduced white matter microstructural integrity of the
cingulum bundle. Similarly, using F-fluorodeoxyglucose (FDG)
positron emission tomography (PET), greater cumulative BE
was significantly associated with decreased neuronal activity
in several regions of both the cerebrum and cerebellum of
previously deployed military service members (23). Finally,
greater cumulative BE has also been linked to negative
behavioral outcomes, including poorer performance on verbal
memory (24) and worse post-concussive symptom reporting
(25). Combined, this literature not only suggests that BE itself
may be detrimental to brain structure and function, but that
individuals with greater cumulative levels of subconcussive
BE may acquire more significant brain pathology, and thus
be at an increased risk for worse clinical and functional
outcomes.

Given that the combination of BE and mTBI may be
especially deleterious to brain structure and cognition, we
examined such effects by: (1) investigating regional gray matter
morphological differences (i.e., cortical thickness) in vulnerable
frontal and temporal regions in mTBI Veterans who were
and were not exposed to blast (mTBI+BE vs. mTBI-BE); and
(2) determining the relationship between cortical thickness
and cognitive outcomes across different levels of BE. We
hypothesized that BE would be associated with increased cortical
thinning, and that reduced cortical thickness would be associated
with worse cognitive performance in those with higher levels of
cumulative BE. To our knowledge, this study represents the first

to explore the neural and cognitive consequences of BE within
the context of mTBI.

METHODS

Participants and Procedures
This sample included 80 OEF, OIF/OND Veterans with a history
of mild TBI who were divided into those who were blast-exposed
(n = 51, mTBI+BE) and those with no blast exposure (n = 29,
mTBI-BE). Participants were recruited from posted paper and
television advertisements located throughout the VA San Diego
Healthcare System (VASDHS). Study procedures consisted of
neuropsychological testing and the completion of a TBI clinical
interview, self-report questionnaires, and magnetic resonance
imaging (MRI) brain scans. Neuropsychological testing, clinical
interviews, and questionnaire completion took place at the
Veterans Medical Research Foundation located at the La Jolla
VASDHS campus. MRI scans occurred at the University of
California, San Diego (UCSD) Center for Functional MRI. This
study was carried out in accordance with the recommendations
of Institutional Review Boards (IRB) of the VASDHS and
University of California, San Diego. The protocol was approved
by VASDH and UCSD IRBs. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Diagnosis of mild TBI was based upon the guidelines detailed
in the (26), which was defined as an LOC < 30min, AOC up
to 24 h, and/or PTA < 24 h. A “total number of lifetime TBIs”
was created by summing the total number of injuries determined
to have met VA/DoD criteria for mTBI for each participant.
Additionally, a “most significant TBI” variable was created by
directly comparing the presence and duration of LOC vs. AOC
for each mTBI; injuries where an LOC was sustained were
consideredmore severe than those with an AOC only. Finally, the
“months since most recent TBI” was determined by calculating
the difference between each participants’ testing and their last
reported mTBI.

The TBI clinical interview assessed head injuries sustained
prior to, during, and following any military deployment.

Under the direct supervision of a neuropsychologist (DS,

LDW), trained graduate-level students and/or post-baccalaureate

research assistants administered TBI history interviews. This

interview allows for comprehensive assessment and staging of

up to 10 lifetime brain injuries and was adapted from the VA
Semi-Structured Clinical Interview for TBI (27). During the

interview, each participant was queried about the context (e.g.,

military vs. non-military event) and mechanism (blast-related
vs. blunt/mechanical force) of each reported head-injury. Since
medical records pertaining to injuries sustained overseas and
in combat settings are frequently not available or documented,
we relied on retrospective self-report of critical information
related to the presence and duration of any reported loss of
consciousness (LOC), alteration of consciousness (AOC), and/or
posttraumatic amnesia (PTA) to determine whether the injury
met diagnostic criteria for mild TBI. However, patient’s VA
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medical charts were reviewed for consistency of head injury
reporting during our comprehensive clinical interview.

Participants were first queried about the number of times they
were exposed to any blast detonation(s) that occurred within
100 meters (i.e., the distance of a professional football field)
while on deployment. For each reported BE, details about the
location, context (combat vs. non-combat), and direction (i.e.,
front, back, left, right) from which the BE was initiated were
coded. Next, BE was categorized as a concussive (i.e., reported
LOC, AOC, or PTA) or subconcussive (i.e., did not result in
clinical symptoms of LOC, AOC, or PTA) injury. Participants
with mTBI (due to blunt or blast-related mechanisms of injury)
who also reported experiencing at least one subconcussive BE
during their military service were considered to belong to the
mTBI+BE group. mTBI participants who denied any exposure
to blast while on deployment were considered to belong to the
mTBI-BE group, and by nature of operationalization only had
blunt mTBIs. Given that we were also interested in exploring
the negative effects of cumulative BE on brain structure and
function, the median number of subconcussive BEs that occurred
within 100 meters was calculated and used to further divide
the mTBI+BE group into those with low (n = 22, mTBI+BE
Low) vs. high (n = 26, mTBI+BE High) levels of subconcussive
BE. Importantly, these dichotomizations are sample specific,
as cumulative levels of blast exposure may differ across other
samples, branches, or professions within the military.

The following exclusion criteria were applied to the study
sample: (1) history of any TBI that was classified as moderate
(LOC > 30min but <24 h, AOC > 24 h, PTA > 1 day but <7
days) or severe (LOC ≥ 24 h, AOC > 24 h, or PTA ≥ 7 days);
(2) history of any neurological disorder (e.g., epilepsy, multiple
sclerosis, stroke, chronic fatigue syndrome) other than TBI; (3)
history of a major mental illness (e.g., schizophrenia, bipolar,
or psychotic disorder) other than depression or post-traumatic
stress disorder; (4) current substance/alcohol abuse as per
Diagnostic and Statistical Manual of Mental Disorders—Fourth
Edition, Text Revision (DSM-IV-TR) criteria (28); (5) current or
prior history of substance/alcohol dependence as per DSM-IV-
TR criteria; (6) a positive toxicology screen as measured by the
Rapid Response 10-drug Test Panel; (7) any contraindications
to MRI scanning (e.g., pregnancy, presence of metal); (8) any
gross abnormalities, visible lesions, cortical contusions on T1
structural MRI scans, and (9) poor performance as defined by
established cut-offs on the Test ofMemoryMalingering [TOMM;
(29)] or Forced Choice Recognition trial of the California Verbal
Learning Test-2nd Edition [CVLT-II; (30)].

Self-Report Symptom Rating Scales
Participants completed self-report symptom rating scales. The
PTSD Checklist (PCL-M) was used to capture current levels
of posttraumatic stress (31). The Beck Depression Inventory-
II (BDI-II) was used to capture current levels of depressive
symptoms (32). The Neurobehavioral Symptom Inventory
(NSI) was used to assess current levels of post-concussive
symptoms (33).

Executive Functions Factor
Participants were administered the following neuropsychological
tests which emphasized executive functions, given that this
cognitive domain is most commonly affected in mTBI samples:
Trail Making and Verbal Fluency tests from the Delis-Kaplan
Executive Function System [D-KEFS; (34)] and Wisconsin
Card Sorting Test [WCST; (35)]. Additionally, the Reading
subtest of the Wide Range Achievement Test 4 [WRAT4;
(36)] was administered. Three mTBI+BE participants did not
complete all of the neuropsychological testing and thus were
excluded from secondary cognitive analyses. Raw scores were
converted to demographically corrected standardized scores (e.g.,
scaled scores or T-scores) using accompanying normative data
for the following neuropsychological variables: WCST Total
Errors, WCST Perseverative Errors, DKEFS Verbal Fluency
Switching Total Correct, DKEFS Verbal Fluency Accuracy, and
DKEFS Number-Letter Switching. Next, the five variables were
reduced into one executive functions factor using principal
component analysis with Varimax rotation. The executive
functions factor was determined to have acceptable internal
consistency (α = 0.722).

Neuroimaging Data Acquisition
Participants were scanned on a 3-Tesla General Electric MR750
system with an eight-channel head coil. A high-resolution T1
anatomical scan was acquired in the sagittal plane using a 3D
FSPGR sequence with the following parameters: FOV = 24 cm,
256 × 192 matrix, TR = 8.1ms, TE = 3.192ms, flip angle = 12◦,
TI = 550ms, bandwidth = 31.25 kHz, and 172 1.2mm
slices. After image acquisition, all T1 images underwent visual
inspection for quality control purposes in an effort to ensure any
artifacts that might affect image processing (e.g., motion, field
inhomogeneity) were minimal.

Neuroimaging Processing
Cortical surfaces on all T1 images were reconstructed and
parcellated into regions of interest (ROIs) using FreeSurfer 5.1
recon-all processing pipeline (37). FreeSurfer—a freely available
cortical and subcortical segmentation and parcellation software
suite—utilizes a series of automated imaging algorithms to (1)
remove non-brain tissue, (2) conduct a Tailarach transformation,
(3) segment cortical and subcortical white and gray matter
structures, (4) perform nonparametric nonuniform intensity
normalization of intensity values, (5) tesselate gray and white
matter boundaries, (6) topology correct, (7) surface deform
intensity gradients to optimally place gray/white and gray/CSF
borders at the location where the greatest shift in intensity
defines the transition to the other tissue class (38, 39). Next,
data undergoes surface inflation and spherical registration to
match individual cortical folding patters to expected cortical
geometry across subjects. This produce a mesh of the pial and the
white matter surfaces (38, 39). Cortical thickness was calculated
as the measure of the distance (in millimeters) between the
gray/white matter boundary to the gray matter/cerebral spinal
fluid boundary at each vertex on the cortical surface. Importantly,
cortical thinning is thought to represent trauma-induced
synaptic pruning or apoptosis. FreeSurfer’s measurement of
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cortical thickness has been validated using both manual (40)
and histological analysis techniques (41). The Desikan-Killiany
atlas was used to parcellate and label each hemisphere into
32 independent regions (42). The weighted average of several
smaller ROIs [see (42) for these precise subdivisions] were used
to obtain a mean cortical thickness value for each hemisphere in
the following frontal and temporal lobe ROIs: (1) superior frontal
gyrus (SFG), (2) middle frontal gyrus (MFG), (3) inferior frontal
gyrus (IFG), (4) orbitofrontal cortex (OFC), (5) anterior cingulate
cortex (ACC), (6) medial temporal lobe (MTL), and (7) lateral
temporal lobe (LTL). See Figure 1 for a depiction of the ROIs
utilized in this study.

Statistical Analyses
Analyses of variance (ANOVAs) were performed to determine
whether the groups (mTBI+BE vs. mTBI-BE) differed on basic
demographic variables, quantitative TBI injury characteristics,
and self-report symptom rating scales. Chi-squared analyses were
utilized to examine group differences on categorical demographic
and TBI injury variables. Analyses of covariance (ANCOVAs)
were used to determine whether the groups differed on cortical
thickness ROIs. Regression analyses were used to determine
whether cortical thickness was associated with cognition. All
statistical analyses were conducted using the Statistical Package
for the Social Sciences (SPSS) version 21 (SPSS IBM, New York,
USA).

FIGURE 1 | Depiction of cortical regions of interest utilized in the current

study. (A) Yellow, Superior Frontal gyrus; Red, Middle Frontal Gyrus; Purple,

Inferior Frontal Gyrus; Light Blue, Lateral Temporal Lobe. (B) Blue, Anterior

Cingulate Cortex; Green, Oribitofrontal Cortex; Orange, Medial Temporal Lobe.

RESULTS

Sample Demographic and Injury
Characteristics
The mTBI+BE group reported an average of 11.25 BEs
(Median = 4, Range = 1–149). Participant demographics are
presented in Table 1. The mTBI+BE group did not differ from
the mTBI-BE group on age, ethnicity, education, or psychiatric
symptomatology (all p-values > 0.05). However, the mTBI+BE
group had a significantly higher proportion of men (p = 0.001),
greater number of lifetime TBIs (p < 0.001), and more severe
post-concussive symptoms (p < 0.02) relative to the mTBI-BE
group. The mTBI+BE group also had a higher proportion of
blast-related TBIs for their most significant injury (p < 0.001)
and differed by branch of service (p < 0.001) relative to the
mTBI-BE group.

Cortical Thickness Differences Across
mTBI+BE vs. mTBI-BE Groups
A series of ANCOVAs were performed in order to determine
whether the groups differed in cortical thickness of lateralized
frontal ROIs. ANCOVAs controlling for age, sex, PCL-M total
score, and total number of TBIs revealed a main effect of
group such that the mTBI+BE group displayed significantly
thinner cortices relative to the mTBI-BE group for the left MFG
[F(1,74) = 5.38, p = 0.023, ηp

2
= 0.07], left OFC [F(1,74) = 4.17,

p = 0.045, ηp
2
= 0.05], and right IFG [F(1,74) = 4.66, p = 0.034,

ηp
2
= 0.07]. There was a trend toward significance with the

mTBI+BE group displaying thinner cortices than the mTBI-BE
group for the right SFG [F(1,74) = 3.65, p = 0.06, ηp

2
= 0.05].

Results revealed no significant differences in cortical thickness
between the groups for the right and left ACC (p’s >0.167), left
IFG (p= 0.305), right OFC (p= 0.17), and right MFG (p= 0.23).

A second series of ANCOVAs were performed in order to
determine whether the groups differed in cortical thickness of
temporal ROIs. ANCOVAs controlling for age, sex, PCL-M total
score, and total number of TBIs revealed there were no significant
group differences for the lateralized MTL (p’s > 0.237) and LTL
(p’s > 0.245).

Cortical Thickness and Cognitive
Associations in the mTBI+BE Group
A set of multiple linear regressions was performed in an effort
to determine whether, independent of age and PTSD symptoms,
there was a significant association between cortical thickness
of the ROIs that differed between the mTBI+BE and TBI-BE
groups and our executive functions factor. We chose to focus
on brain-behavior relationships in the ROIs that significantly
differed between the groups (i.e., left orbitofrontal cortex, left
middle frontal gyrus, and right inferior frontal gyrus) in an effort
to minimize multiple comparisons while better understanding
the behavioral significance of the observed brain differences for
all subsequent analyses. In each model, age, PCL-M total score,
and a brain ROI were entered as independent variables, whereas
the executive functions factor was the dependent variable. Results
revealed no significant associations for any of the ROIs and our
executive functions factor (all p-values > 0.07).
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TABLE 1 | Sample characteristics, mean (SD).

Overall sample

(n = 80)

mTBI+blast

(n = 51)

mTBI-blast

(n = 29)

F or χ2 p

Age 31.64 (7.28) 31.25 (7.45) 32.31 (7.05) 0.39 0.53

Education 13.83 (1.58) 13.80 (1.58) 13.86 (1.62) 0.03 0.88

WRAT-4 reading standard score

Missing

101.59 (11.77)

2

102.10(11.53)

0

100.63 (12.43)

2

0.27 0.61

Sex (% Male) 89% 98% 72% 14.45 0.001a

ETHNICITY

Caucasian

African American

Hispanic

Asian

Native American

50%

9%

30%

10%

1%

55%

4%

29%

10%

2%

42%

17%

31%

10%

0%

5.19 0.27b

BRANCH OF SERVICE

Navy

Army

Marines

Air Force

29%

28%

38%

6%

14%

35%

47%

4%

55%

14%

21%

10%

18.91 0.000b

PCL-M Total 46.96 (18.64) 49.73 (18.65) 42.11 (17.91) 3.17 0.08

BDI-II Total 21.64 (12.45) 21.66 (12.42) 21.59 (13.19) 0.000 0.98

NSI total

Missing

36.08(17.85)

6

38.98 (17.25)

5

29.68 (17.23)

1

6.21 0.02

Total number of TBIs 2.61 (1.45) 3.06 (1.49) 1.83 (0.85) 10.97 0.000

% with single vs. multiple TBI history 23%, 77% 12%, 80% 41%, 59% 9.30 0.002a

Months since most recent TBI

Missing

58.72 (42.03)

1

58.24 (43.42)

1

59.55 (40.23)

0

0.02 0.90

MOST SIGNIFICANT INJURY

% LOC

% AOC

62%

38%

61%

39%

65%

35%

0.18 0.67

MOST SIGNIFICANT TBI TYPE

% Blast

% Blunt

% Blast with Secondary/Tertiary Blunt

23%

67%

10%

35%

49%

16%

0%

100%

0%

21.90 0.000a

WRAT4, Wide Range Achievement Test 4; TBI, traumatic brain injury; LOC, loss of consciousness; AOC, alteration of consciousness; PTA, post-traumatic amnesia.
aFischer’s Exact Test.
bLikelihood Ratio.

Bold values indicate significant p-values.

Cortical Thickness and Cognitive
Associations by BE Thresholds in the
mTBI+BE Group
Secondary multiple regression analyses were performed in order
to determine whether BE thresholds moderated the association
between cortical thickness and performance on the executive
functions factor. The mTBI+BE group was dichotomized into
those with low (n = 22, mTBI+BE Low) and high (n = 26,
mTBI+BE High) BE via a median split of the total number
of self-reported blast exposures (Median = 4). Three subjects
did not complete all neuropsychological testing and thus
were excluded from subsequent analyses. For each model, the
executive functions factor was entered at the dependent variable;
independent variables included age, the PCL-M total score, BE
grouping (mTBI+BE High vs. mTBI+BE Low), and cortical
thickness of the relevant ROI. Results revealed a significant left
OFC × blast exposure interaction on the executive functions
factor (β = 6.39, t = 3.42, p = 0.001). Examination of
simple main effects revealed that there was a significant positive

correlation between cortical thickness of left OFC and the
executive functions factor (r = 0.60, p = 0.001, n = 26) in the
mTBI+BE High exposure group, but no such association in the
mTBI+BE Low exposure group (r = −0.23, p = 0.29, n = 22).
Similarly, a significant left MFG × blast exposure interaction on
the executive function factor was observed (β = 5.67, t = 2.42,
p= 0.02). Examination of simple main effects revealed that there
was a significant positive correlation between cortical thickness
of the left MFG and the executive functions factor (r = 0.43,
p = 0.03, n = 26) in the mTBI+BE High exposure group,
but no such association in the mTBI+BE Low exposure group
(r = −0.29, p = 0.19, n = 22; see Table 2 and Figure 2). Finally,
there was no significant right IFG x blast exposure interaction on
the executive functions factor (β =−1.785, t =−9.23, p= 0.36).

DISCUSSION

We explored whether BE was associated with reduced cortical
thickness as well as the influence of cumulative BE on cognition
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TABLE 2 | Multiple linear regression models for cortical thickness × blast exposure grouping (mTBI+BE high vs. mTBI+BE low) on executive functions factor.

R2 F B Std. error β t p

LEFT ORBITOFRONTAL CORTEX

0.43 6.38 – – – – <0.001

Age – – −0.031 0.02 −2.28 −1.89 0.06

PCL-M total score – – −0.022 0.01 −0.040 −3.41 0.001

Low vs. high blast grouping – – −12.41 3.65 −6.25 −3.40 0.001

Left OFC cortical thickness – – −5.74 2.20 −0.098 −2.61 0.01

Low vs. high blast grouping × left OFC cortical thickness – – 4.75 1.39 6.39 3.42 0.001

LEFT MIDDLE FRONTAL GYRUS

0.32 3.99 – – – – 0.005

Age – – −0.39 0.02 −0.028 −2.13 0.04

PCL-M total score – – −0.019 0.01 −0.034 −2.66 0.01

Low vs. high blast grouping – – −11.15 4.62 −5.61 −2.41 0.02

Left MFG cortical thickness – – −6.56 3.14 −0.093 −2.09 0.04

Low vs. high blast grouping × left MFG cortical thickness – – 4.52 1.86 5.67 2.43 0.02

Bold values indicate significant p-values.

FIGURE 2 | mTBI+BE Low vs. High × Cortical Thickness on Executive Functions Factor Interaction. (A) One the left side is a depicition of the left oribitofrontal cortex.

On the right is the association between thickness of left orbitofrontal cortex and performance on an executive functions factor. The circles and dotted line represent

the mTBI+BE Low group, whereas the triangles and solid line represent the mTBI+BE High group. (B) One the left side is a depicition of the left middle frontal gyrus.

On the right is the association between thickness of left middle frontal gyrus and performance on an executive functions factor. The circles and dotted line represent

the mTBI+BE Low group, whereas the triangles and solid line represent the mTBI+BE High group.

in Veterans with history of mTBI. Results showed that, relative
to those with mTBI who had not been exposed to blast while
on deployment, Veterans with both BE and mTBI demonstrated
significantly thinner cortices in frontal regions of the cerebrum.
Moreover, in those with greater cumulative BE, reduced cortical

thickness was significantly associated with poorer performance
on tasks of executive function. These findings suggest that there
is an association between cortical thinning and concomitant
cognitive impairment post-deployment Veterans with mTBI and
BE.
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Although cortical thinning has previously been demonstrated
within Veteran mTBI samples (43–45), no known studies
have explored whether the combination of BE and mTBI
negatively influences gray matter structure. As hypothesized,
we found that those with both mTBI and BE showed greater
frontal cortical thinning relative to those with mTBI alone.
Results suggest that among Veterans with mTBI, BE —even
at subconcussive levels—there may be an increased risk for
negative brain changes. From a pathophysiological perspective,
it remains unclear as to whether subconcussive BE exerts its
own negative influence on gray matter structure or merely
exacerbates mTBI-related cortical thinning. Findings from the
animal literature have shown that BE of varying intensities (with
associated head oscillation) results in neuronal loss (46) and the
accumulation of tau, a protein associated with neurodegenerative
diseases such as Alzheimer’s disease or chronic traumatic
encephalopathy in humans (47, 48). While speculative, we
suspect that independent and interactive processes co-occur
to produce poorer outcomes. Although there is considerable
heterogeneity in both mTBI and blast-related injury, a synergistic
effect may occur, particularly in overlapping areas of damage.
There is a critical need for future, longitudinal studies to explore
the precise mechanisms underlying gray matter changes due to
BE in humans.

Previous behavioral and neuroimaging studies in Veterans
have largely focused on characterizing the distinct effects of
(1) blunt vs. blast-related mTBI, (2) subconcussive primary BE
vs. pure blast mTBI (i.e., concussive injury due to primary
BE without blunt injury), and/or (3) mTBI due to blunt or
blast mechanisms vs. controls (15, 22, 49–52). While some of
these studies have found cognitive, symptom, or neuroimaging
differences across groups (15, 22, 51, 52), others have failed
to find any categorical differences (15, 49, 50, 53). Our results
suggest that failure to consider BE may explain—at least to some
degree—the disparate findings observed across prior studies.
Indeed, although findings of this study suggest that BE is an
important factor influencing outcomes, few studies report or
explore BE in their observed findings. This is especially important
given that a recent study of military service members showed
that approximately two-thirds of their mTBI sample reported BE
while on deployment (4). Although no direct comparisons in
symptom reporting between those with mTBI who were and were
not BE were made, it is possible that the high prevalence of BE
may have resulted in brain changes that contributed to the large
proportion of individuals reporting postconcussive symptoms
that persisted beyond the expected 3 month recovery window.

Interestingly, several recent studies have demonstrated that,
independent of mTBI, close-range BE (i.e., within 10m) is
associated with both altered functional connectivity (54, 55)
and verbal memory deficits in OEF/OIF/OND Veterans (24).
That is, at least with respect to very close-range blast, similar
blast-related brain and behavioral associations were observed in
Veterans with or without mTBI. However, although proximity
may be a critical factor with respect to the intensity and severity
of blast-related neural injury, the close-range BE group within
these studies reported a significantly greater number of BEs
relative to the distance BE group (24, 54, 55). Thus, these

findings may be reflective of cumulative BE, as opposed to (or in
addition to) distance, as secondary analyses within one of these
studies revealed that multiple distance BEs was also associated
with reduced verbal memory performance (24). Finally, it is
worthwhile to note that a greater proportion of Marines were
represented in our mTBI+BE group, and others have shown
that both Army and Marines service members are more likely
to sustain close-range BE (24). Future research is needed to
in order to (1) clarify how cumulative BE may differ as a
function of occupation, combat, gender, training, or weaponry
utilized and (2) quantify distinct thresholds of BE that may have
negative brain or behavioral consequences in Veteran service
members.

Results from our study also revealed that reduced cortical
thickness was significantly associated with poorer performance
on our executive functions factor in those with mTBI who
had higher levels of cumulative BE, but not in those with
mTBI who had lower levels of cumulative BE. While animal
studies have shown that exposure to a single blast is sufficient
to evoke neuronal loss and white matter degradation, recent
work has shown that the severity of these brain changes
are especially pronounced in mice with multiple BEs (23).
Moreover, when compared to sham-exposed control mice,
impaired motor performance was only observed in mice with
multiple, as opposed to a single BE. It is possible that a certain
threshold of neuronal damage must be reached before behavioral
relationships are observed. A recent case study revealed that
a Veteran with repeated BEs that never met clinical criteria
for mTBI demonstrated significant white matter alterations, as
well as impairments in processing speed, recognition memory,
working memory, and executive function when compared to
a reference control group (56). Critically, these results align
with those of the present study in that they demonstrate that
cumulative BE is associated with poorer behavioral outcomes—
with greater numbers of BEs being more deleterious than a single
blast.

The translation of animal studies of BE to explorations in
humans has proven quite difficult and is not without serious
limitations. Animal studies take place in controlled settings
where distinct models of TBI (e.g., fluid percussive injury,
controlled cortical impact, close head-injury) and/or types of
explosives (e.g., live wire, shock tube, pressure generators)
can be manipulated. Unfortunately, these factors are difficult
to characterize in humans, as blast or blunt mechanisms of
injury may independently or simultaneously occur, the precise
quantification of blast intensity is virtually impossible given the
combat setting, and preexisting vulnerabilities (e.g., substance
use, individual differences in brain architecture and volume) may
be at play.

One recent human neuropathological study tried to account
for some of these factors by directly comparing brain specimens
of male service members with chronic (n = 5) or acute/severe
BE (n = 3) to civilians with impact, or blunt-related TBI
(n = 5), prior exposure to opiates (n = 5), or no
neurological conditions (57). Interestingly, both BE groups,
which also consisted primarily of patients with antemortem
PTSD diagnoses, demonstrated significantly greater astroglial
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scarring relative to the civilian groups. While intensity or severity
of blast exposure could not be corroborated with objective
data, the authors provide some evidence of distinct blast-related
pathology relative to the other groups.

In another human neuropathological study (58), the authors
compared brain specimens of Veterans with history of BE
(n = 5) to several control groups—controls with history
of opiate overdose (n = 6), controls with anoxic-ischemic
encephalopathy (n = 6), controls with history of non-blast TBI
(n = 5), and healthy controls (n = 7). The authors found
evidence for increased amyloid precursor protein (APP)-positive
axonopathy in blast-exposed Veterans relative to the control
groups, providing additional support that BE results in distinct
neuropathological patterns. Nevertheless, precise quantification
of BE in humans is difficult, and other factors that predate
military experience may also play a contributory role in our
observed findings.

It is important to note that the current study has several
limitations that warrant discussion. First, as is the case with
most military TBI studies, we relied heavily upon retrospective
self-report of both BE and head injury events that may have
occurred many months or years prior; therefore, these events are
subject to recall bias and could not be confirmed with medical
documentation or field records at the time of injury. Similarly,
while we conducted comprehensive TBI and BE interviews,
many of the mTBI-BE group had been deployed to a combat
zone and it is possible that some of members of the mTBI-BE
group may failed to recall BEs that occurred within (or beyond)
100m. Secondly, this was a cross-sectional research study, and
results do not demonstrate that there have been changes in
cortical thickness, only that thinner cortices were observed in
Veterans with mTBI who were BE relative to those without BE.
In other words, these are merely observed associations in one
sample of Veterans and future longitudinal studies are needed
to disentangle whether our observations represent changes
or are merely the result of pre-injury differences in cortical
thickness across the groups. There is evidence of neurological
and psychiatric symptoms differences between BE and non-BE
controls (59). Thus, additional comparison of BE and non-BE
Veteran controls with no TBI history may help in clarifying the
independent and/or synergistic effects of BE on mTBI, and we
are currently collecting blast-related information for a subset of
Veteran controls in order to clarify this possible relationship.
Additionally, the mTBI+BE group was composed of mixed
mechanisms of injury (i.e., blunt or blast-related mTBI) and
had multiple TBIs relative to the mTBI-BE group. Although we
controlled for the total number of TBIs in our analyses, it is
difficult to disentangle the unique contributions of subconcussive
blast, mTBI, and repetitive mTBI on cortical thinning in the
present study. Moreover, although PTSD has also been linked
to cortical thinning (60, 61) and cognition in Veteran mTBI
samples (62), our mTBI+BE and mTBI-BE groups did not differ
on this variable and we controlled for PTSD symptom severity in
our analyses. Finally, additional work in this area should infuse
other imaging metrics (e.g., arterial spin labeling) that may be
more sensitive to blast-related brain changes, especially since
mounting experimental animal evidence shows that blast-related

head injury is associated with greater vascular pathology when
compared to traditional blunt force TBI.

CONCLUSION

This is the first known study to demonstrate that the
combination of BE and mTBI (due to either blast or blunt
force mechanisms of injury) negatively influences gray matter
structure. Additionally, our results provide preliminary evidence
that mTBI Veterans with both high levels of BE and reduced
cortical thickness demonstrate reduced executive functioning,
which is striking given that our sample is comprised of
those with mild neurotrauma who are, on average, many
years removed from their head injury event. Taken together,
these findings suggest that Veterans with both mTBI and
exposure to higher levels of blast may be at increased risk
for both cerebral and behavioral changes post-deployment.
Future prospective studies are needed to disentangle (1)
the precise pathophysiological mechanisms underlying cortical
thickness changes associated with BE, mTBI, and these comorbid
conditions, and (2) the extent to which outcomes may differ
based on distance, intensity, or severity of BE, and (3) the
negative consequences of repetitivemTBI as opposed to repetitive
subconcussive BE.
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