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Abstract

Identifying bacterial strains in metagenome and microbiome samples using computational 

analyses of short-read sequence remains a difficult problem. Here, we present an analysis of a 

human gut microbiome using on Tru-seq synthetic long reads combined with new computational 

tools for metagenomic long-read assembly, variant-calling and haplotyping (Nanoscope and Lens). 

Our analysis identifies 178 bacterial species of which 51 were not found using short sequence 

reads alone. We recover bacterial contigs that comprise multiple operons, including 22 contigs of 

>1Mbp. Extensive intraspecies variation among microbial strains in the form of haplotypes that 

span up to hundreds of Kbp can be observed using our approach. Our method incorporates 

synthetic long-read sequencing technology with standard shotgun approaches to move towards 

rapid, precise and comprehensive analyses of metagenome and microbiome samples.

As yet, only a small fraction of the microbial world has been isolated and studied in the 

laboratory and little is known about species that cannot be cultured1. Metagenomics has 

begun to shed light on this unculturable ‘microbial dark matter’ by sequencing the DNA of 

microbial communities directly from the environment2. Metagenomic analyses of soil3, 

water4 and human microbiome5 samples have already increased our understanding of the 

microorganisms present in these environments.

Although short-read sequencing technologies have enabled high-throughput metagenomic 

studies, the limited read lengths combined with the complexity of microbial samples 
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(hundreds to thousands of species) can make it difficult to accurately identify bacterial 

strains, recover whole genomes, catalog sample diversity and assess the abundance of 

species and strains.

Many approaches have been proposed to overcome these problems. Binning de novo 
assembled contigs using metrics such as tetranucleotide frequencies6, genomic coverage 

under different DNA extraction methods7 or abundance correlations between samples from 

multiple individuals8 have all been used to identify species and recover their genomes. 

However, each approach has limitations: tetranucleotide frequencies may vary within the 

same species6, closely related bacteria have similar DNA extraction efficiencies7, and 

establishing abundance correlations among individuals may require a large number of 

samples8. Metagenomic contigs can also be scaffolded using chromatin-level contact 

probability maps generated by the high-throughput chromosome conformation capture (Hi-

C) technology9; however, Hi-C has high input-DNA requirements and the performance of 

this scaffolding method has not yet been assessed on bona fide high-complexity 

metagenomes. An alternative technology, single-molecule real-time sequencing10, has been 

used to sequence 16S rRNA amplicons11, but has seen limited application to whole 

metagenomes.

Recently, Tru-seq synthetic long-read sequencing has been developed to increase the 

effective read length available using the Illumina platform from hundreds to more than ten 

thousand base pairs. This method uses a modified library-preparation protocol, in which 

kilobase-long DNA fragments are extracted, diluted, amplified, and reassembled from 

regular short reads12. Synthetic long-read sequencing has been used in metagenomics for 

assembly validation13 and for studying environmental metagenomes14. Here, we report the 

first study of the human gut microbiome using synthetic long reads.

We present three improvements compared with previous technologies. First, we demonstrate 

that long reads, in conjunction with Lens, an algorithm developed for this study, reveal 

extensive haplotype diversity among individual bacterial strains of the same species. This 

level of resolution was inaccessible using previous technologies, which at best studied 

microorganisms at the strain level. Second, we use long reads to assemble de-novo hundreds 

of megabases of genomic sequence in contigs of complete operons and whole bacterial 

chromosomes. Finally, we determine microbial composition accurately.

Results

Sequencing the gut microbiome using synthetic long reads

We applied our long read sequencing approach to two metagenomic datasets: the human 

microbiome project staggered mock metagenomic community5 (mock metagenome), and a 

sample from the gut of a healthy male adult individual (human gut metagenome). The mock 

metagenome is a synthetic community of 20 organisms with known reference genomes 

(Supplementary Table 1) that is widely used for validation. We generated three Tru-seq 

synthetic long read libraries (2.9 Gbp of sequence, N50 read length of 9.2 kbp; 

Supplementary Figure 1) for this dataset, in addition to 3.1 Gbp of standard 101-bp paired-

end Illumina short read libraries (Supplementary Table 2). For the human gut metagenome, 
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we generated seven Tru-seq synthetic long read libraries (8.3 Gbp of sequence, N50 read 

length of 8.6 kbp; Supplementary Figure 2), and complemented this data with 8.1 Gbp of 

standard Illumina libraries (Supplementary Table 3). The similar sequencing amounts of 

short and long reads for both samples helped assess the benefits of using longer read lengths.

We maped the long reads to the known reference genomes of the mock community using the 

MUMmer aligner. Accuracy was high, with less than 0.5% of reads misassembled 

(Supplementary Table 4). However, we observed differences in coverage between short- and 

long-read technologies, with long reads covering ~ 15% fewer base pairs overall than short 

reads (Supplementary Tables 5, 6; Supplementary Figure 3). In particular, four organisms 

were highly covered (>98%) by short reads but long read coverage was substantially less 

thorough (<75%), suggesting that long reads have more sequence bias. Interestingly, six 

organisms had at least 10% of their genomes covered by long reads but not by short reads, 

suggesting that the two technologies can be complementary (Supplementary Table 7). We 

also found that abundance estimates were substantially different between the technologies 

(sometimes by more than an order of magnitude), indicating that long reads on their own 

may be insufficient for abundance estimation (Supplementary Figure 4). Differences in 

coverage have been previously linked to the long reads’ increased sensitivity to GC content 

during the PCR amplification step12,19. We suggest that for best results, both types of data 

should be used.

Assembly of bacterial operons and chromosomes

We assembled long reads from the human gut metagenome sample using Nanoscope, a new 

bioinformatics pipeline we created. Nanoscope automates metagenomic assembly, species 

identification, substrain analysis, and abundance estimation from a combination of short and 

long read data (Figure 1; Supplementary Code). It is available online as a free open-source 

tool (https://github.com/kuleshov/nanoscope).

Nanoscope starts by invoking the Soapdenovo20 and Celera21 assemblers to independently 

assemble the short and long read libraries, before merging the results using Minimus222. 

This method produced contigs for more than 650 Mbp of the human gut metagenome (N50 

length of 49 kbp; Table 1); these were longer and more complete than ones assembled from 

either long reads (600 Mbp of sequence; N50 length of 38 kbp; Celera assembler) or short 

reads (232 Mbp of sequence; N50 length of 8.6 kbp; Soapdenovo2 assembler) alone. 

Twenty-two of the contigs we obtained were longer than 1 Mbp (Supplementary Figure 5), 

indicating that multiple organisms could be assembled completely or almost completely. The 

longest contig we recovered was 3.9 Mbp; its length and number of predicted ORFs23 were 

comparable to that of a closely related complete bacterial genome (see below). For 

comparison, long reads by themselves produced 19 contigs longer than 1 Mbp, whereas the 

longest contig from short reads alone was 410 Kbp. This indicates that synthetic long reads 

assemble a small number of complete chromosomes in addition to dozens of contigs that are 

almost an order of magnitude longer than ones obtained from short reads.

We also assessed our assembly strategy using the mock metagenome. Our merged assembly 

of long- and short-reads recovered 42 Mbp of sequence (of 83 Mbp total) into contigs with 

an N50 length of 92 kbp (Table 1, Supplementary Table 8). This assembly was quite 

Kuleshov et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kuleshov/nanoscope


accurate, with approximately one misassembly per 400 kbp on average (Supplementary 

Table 9), a rate that compares favorably to accuracies reported by previous empirical studies 

of de-novo assembly algorithms24. Using only long reads resulted in much shorter contigs 

(33 Mbp of sequence; N50 length of 43 kbp), suggesting that for low-complexity 

metagenomes, combining short- and long-read technologies might substantially improve 

assembly quality. We assembled on this dataset one contig longer than 1Mbp and three 

contigs longer than 500 Kbp, all of these were assembled using long reads alone, suggesting 

that short reads mainly improved assembly completeness rather than contiguity.

One of the potential advantages of long-read sequencing is the recovery of complete 

bacterial operons (clusters of functionally related genes that are transcribed together). By 

using the known positions of operons in the reference genomes of the species in the mock 

metagenome25, we confirm that operon recovery is feasible with a combined assembly of 

short- and long- reads (Supplementary Table 10). Our combined assembly recovered 4,500 

operons, which represents more than half of all the known operons in the mock metagenome 

and twice the number that can be obtained using short reads alone. Interestingly, long and 

short reads by themselves reconstructed only about 2,500 operons each, and many could be 

assembled from only one dataset (Supplementary Figures 6, 7). We attribute this discrepancy 

to differences in coverage between short and long reads.

In particular, long reads enabled us to recover long flagellar operons present in E. coli 
(Supplementary Table 11); these operons are clinically relevant as flagella contribute to 

pathogenicity. We assembled complete sequences of 11 flagellar operons from three 

bacterial species (E. coli, R. sphaeroides, P. aeruginosa; Supplementary Table 12), which 

comprised half of the known flagellar operons in the mock metagenome. We also recovered 

multiple flagellar operons from the gut metagenome (Supplementary Table 13). For 

example, a 2.3 Mbp contig belonging to the genus Acinetobacter was found to contain 10 

flagellar operons, the longest of which contained 11 genes.

Identification of substrains in the gut microbiome

We assessed variation among the bacterial strains whose genomes we assembled using Lens, 

a new tool that we created. (Table 2). In brief, we mapped long reads to assembled contigs 

using the BWA aligner; at many positions, read and contig sequences differed, which we 

interpreted as variation among recently diverged strains of the same species. We used Lens 

to determine and phase single-nucleotide variants (SNVs) and short indels based on this 

alignment; Lens performed these tasks via new algorithms that do not make any assumptions 

on either the read length or the ploidy of the organism (see Supplementary Methods; 

Supplementary Code; https://github.com/kuleshov/lens).

Lens found extensive intraspecies variation in almost every bacterial species in the human 

gut metagenome (Figure 2 (a); Supplementary Figures 8, 9), which in total contained more 

than 200,000 variants (Supplementary Methods). Lens assembled these variants into 5,024 

haplotypes distributed across about 2,204 genomic regions with an N50 length of 19 kbp 

(Supplementary Figure 10); each region contained on average 3.93 bacterial haplotypes. 

More than 95% of regions overlapped with ORFs, and the longest region we found spanned 

112 Kbp or 242 variants and contained four distinct haplotypes.

Kuleshov et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kuleshov/lens


We observed that significantly fewer variants were present in essential genes26 compared to 

non-essential genes, as expected from evolutionary pressure (Supplementary Table 14; p < 

0.02). We repeated the same analysis on the mock metagenome and also uncovered a small 

number of genomic variants (few were expected, as the sample is synthetic; see 

Supplementary Table 15); as in the gut metagenome, significantly fewer variants were found 

in essential genes26 (Supplementary Table 14; p < 1e-3). We used the variant annotation 

package SNPEff27 to predict the deleteriousness of each mutation in the genome of E. coli 
(Supplementary Table 16), and found that most variants had low to moderate effects. Only 

six variants had high effect and were all found in non-essential genes rhsB, ydfK, icd, and 

perR. These observations suggest that the variants Lens uncovers are not attributable to 

noise.

To evaluate the correctness of the phased haplotypes, we determined whether they satisfy 

perfect phylogeny28. A tree over haplotypes satisfies perfect phylogeny if all strains evolved 

from a common ancestor, and during this process, each position mutated at most once. 

Although this criterion is not applicable to distantly diverged species, it is useful when 

organisms undergo short evolutionary distances, as in the case of bacterial subspecies. In the 

human gut metagenome, most (85%) of the genomic regions harboring at least four 

haplotypes satisfied perfect phylogeny (for three haplotypes or less, perfect phylogeny 

always holds). When the model is not met (such as when certain positions have mutated 

twice), it is possible to measure the extent to which it is violated by estimating the number 

of positions that can be excluded to make perfect phylogeny hold. We were able to place 

more than 92% of all gut metagenome regions in perfect phylogeny by excluding at most 5% 

of positions within each region (Supplementary Figures 10, 11). These observations support 

the hypothesis that the variants we find correspond to distinct bacterial strains that have 

evolved from one another. Our approach is the first, to our knowledge, to uncover substrain 

resolution and offers a snapshot of how strains evolve in vivo.

Assessing strain abundance with long reads

Nanoscope uses the FCP software package29 to assign taxonomic labels to assembled 

contigs. FCP determines labels using either a homology-based approach (based on the 

lowest common ancestor or LCA algorithm), or a composition-based30 approach (a Naïve 

Bayes or NB classifier trained on k-mer frequencies). In principle, longer contigs should be 

easier to label because they contain more species-specific sequences and they should map 

with less ambiguity to known reference genomes.

In the human gut metagenome, 61.4% of contigs assembled from long reads could be 

labeled using the LCA method, compared with 46.5% of contigs derived from short reads 

(Supplementary Table 17). Similarly, 89.8% of contigs assembled using long reads could be 

labeled by the NB method, compared to 11.0% of contigs assembled using short reads. To 

assess the accuracy of these assignments, we used the mock metagenome. LCA assigned 

contigs with 100% accuracy on both long and short reads, whereas NB had accuracies of 

99% and 98% on contigs obtained from long and short reads respectively (Supplementary 

Tables 18–21).
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By examining the taxonomic labels assigned to the longest contigs in the gut metagenome, 

we were able to identify which bacteria could be assembled completely or almost 

completely (Supplementary Table 22). Five of the ten longest contigs belonged to the genus 

Bacteroides, and the longest 3.9 Mbp contig was from the genus Odoribacter. Many contigs 

– including one measuring 2.3 Mbp – could not be assigned accurate labels; these contigs 

correspond to either unknown species, or to species whose genomes have not yet been fully 

assembled (Supplementary Tables 23, 24). Notably, the above 2.3 Mbp contig did not match 

any known reference genome by more than 3.2 Kbp; however, we found that contigs from a 

fragmented draft assembly of a species from the genus Acinetobacter mapped to the 2.3 

Mbp contig completely (Supplementary Figure 12). This suggests that we were able to 

recover the genome of that bacterium at a higher level of quality than a previous study that 

used metagenomics samples from 396 different individuals8. We observed similar mapping 

results for other unclassified contigs as well.

Finally, we determined the abundance of each bacterium by mapping short reads to gut 

metagenome contigs and then using the above taxonomic labels to propagate the resulting 

coverage estimates to each identified bacterium (Supplementary Methods). We found 178 

species in the human gut metagenome and these species greatly varied in their abundance: 

some comprised as much as 5% of the metagenome, and others as little as 0.02% (Figure 3; 

Supplementary Table 25). Interestingly, different species were recovered by short and by 

long reads: short reads helped finding two relatively high-abundance bacteria, whereas long 

reads uncovered 51 species (mostly of low abundance) that were missed by short reads 

(given the same amount of sequencing). Moreover, by combining both short and long reads, 

58 additional low-abundance bacteria could be identified. Finally, we found that on the mock 

metagenome, abundance estimates were highly concordant with those obtained from 

mapping short reads directly to the 20 known reference genomes (rˆ2 = 0.97; Supplementary 

Figure 13; Supplementary Table 26). This serves as an indicator of the accuracy of our 

approach.

Discussion

Including synthetic long reads in metagenomic analyses significantly improves the 

delineation of complex metagenomic samples relative to short-read sequencing. Although 

synthetic long reads have sequencing biases that affect coverage in specific genomic regions, 

these biases can be overcome using a small amount of additional shotgun sequencing. The 

resulting approach offers three main advantages over existing methods. First, we recover 

long bacterial contigs (up to megabases in length) that span operons that could not be 

recovered by short read sequencing alone. Second, analysis of long reads produces kilobase-

long haplotypes that can reveal evolutionary trends in microbial communities. Finally, 

longer sequencing read lengths enable identification of bacteria at abundances as low as 
0.02% that are undetected by short reads.

Our approach is of course not without limitations. Synthetic long read technologies rely on a 

dilution step that attempts to reduce the number of copies of each repeat to at most one per 

well; genomes of bacteria at high abundances of 10% or more may not be sufficiently 

diluted, and several repeat copies may remain in a single well, preventing the subassembly 
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of their long reads. This may explain why some gut metagenome bacteria at ~5% abundance 

were not identified by long reads alone. A related issue is the presence of short tandem 

repeats, which may also prevent subassembly. A third shortcoming of our approach is the 

reliance on a PCR step, which could introduce bias (see Supplementary Figures 3–4) and 

error. However validation using the mock metagenome and comparison with short shotgun 

reads indicates that this error does not exceed 2–3% (Supplementary Methods).

Despite these limitations, our approach can more readily shed light on the configuration of 

complete operons, and facilitate the identification of pathogenic strains (especially in a 

mixed population). For instance, we assembled multiple kilobase-long flagellar operons that 

affect motility and thus play a role during infection. Furthermore, the substrain resolution 

enabled by our methods could assist in understanding how evolution shaped strains over 

time in situ. Finally, the ability to identify low-abundance bacteria will help reveal the 

complete composition of environmental samples and discover new species.

These results are comparable in many ways to previous methods that required hundreds of 

human subjects8, multiple DNA extraction methods7 or tetranucleotide binning with a mix 

of Sanger and mate-pair sequencing6 (Table 3). Our method, on the other hand, requires only 

a single metagenomic sample, does not involve binning, and is superior at identifying 

bacterial strains. It is also feasible that long reads might work in tandem with previous 

approaches, since longer contigs will increase the accuracy of their statistical components. 

Similarly, longer contigs might improve the accuracy of scaffolding techniques such as ones 

based on Hi-C34. Finally, our approach is most closely related to single-molecule real-time 

sequencing (SMRT), an alternative long-read technology10. To compare our two methods, 

we assembled a publically available dataset for the mock metagenome (Supplementary 

Materials) using the MHAP assembly strategy33. This produced long contigs with fewer 

misassemblies than ones we obtained from synthetic long reads; however, the SMRT contigs 

also had a 5x higher indel rate and only 88% of SNVs called using Lens in these contigs 

could be confirmed with short reads (compared to 99% for synthetic long reads). It thus 

appears that SMRT reads produce excellent draft metagenomic assemblies, but their high 

error rate makes it difficult to identify and phase variants in the metagenome.

Finally, synthetic long reads were recently used by Sharon et al. to analyze a soil 

metagenome sample14. By focusing on a set of marker genes, they showed that the 

community comprised a combination of closely related strains and rare species. Our work 

demonstrates that long reads can produce much longer contigs than ones described by 

Sharon et al. (Table 3); in addition, owing to the lack of need for a marker gene set, our 

analysis pipeline can find additional species, including a phylum that marker genes did not 

reveal on the Sharon et al. environmental dataset (see Supplementary Material for full 

discussion).

In conclusion we reveal that the human gut microbiome is more complex than previously 

thought, particularly in terms of subspecies diversity. The rapid evolution of bacterial strains 

at the subspecies level could affect human physiology16. Armed with more complete 

inventories of microbiomes, it might be possible to strengthen associations between human 

and bacterial phenotypes.
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Online Methods

Metagenomic sample preparation

Mock microbioal DNA, HM-277D Staggered v5.2H, was obtained from BEIresources. Gut 

microbiome DNA was isolated from the frozen feces of a healthy subject using PowerSoil 

DNA Isolation Kit (MO BIO Laboratories, Inc.). Both DNA samples were sequenced using 

Illumina Tru-seq synthetic long reads technique (three and seven libraries for mock and gut 

microbiome samples, respectively) and the standard shortgun technique, with each library 

sequenced on one full lane of HiSeq. All libraries were prepared according the 

manufacturer’s standard protocol. Shotgun sequence reads for both the mock and the gut 

metagenomic samples were subsampled at random to produce subsampled libraries 

containing the same amount of base pairs as the in the Tru-seq synthetic long read libraries. 

The results were assembled on the Illumina Basespace platform, according to standard 

protocol.

We used Ovation Ultralow DR Multiplex Systems 1–8 (0330-32, NuGEN Technologies, 

Inc.) for whole genome library preparation. Briefly, 100 ng of intact gDNA was diluted into 

120 μL of 1X low EDTA-TE buffer and transferred to Covaris snap cap microtube and 

Fragmented to 300 bp following Covaris recommended settings. Fragmented DNA was 

purified using Agencourt RNAClean XP bead, provided by Nugen Library preparation kit. 

The sheared DNA was then subjected to end repair and adaptor ligation. Adaptor ligated 

libraries were purified with Agencourt RNAClean XP bead and amplified using 18 PCR 

cycle of 94°C for 30 sec, 60°C –for 30 sec, and 72°C for 1 min. Agencourt RNAClean XP 

bead was used for amplified Library Purification and libraries Fragment distribution was 

validated on Bioanalyzer DNA Chip 1000.

Overview of the Nanoscope pipeline

In order to facilitate the analysis of synthetic long read data for in the context of 

metagenomics, we have developed a bioinformatics pipeline called Nanoscope (Figure 1). 

Nanoscope takes as input a set of long read libraries together with optional (but highly 

recommended) short read libraries. It then performs a four-stage analysis of this data that 

includes de-novo assembly, variant calling and haplotyping, taxonomic identification, and 

abundance estimation.

Nanoscope starts by invoking the Soapdenovo20 and Celera21 assemblers to independently 

assemble the short and long read libraries, before merging the results using Minimus222. In 

the next step, it invokes a variant calling and phasing algorithm called Lens to analyze the 

assembled contigs for strain variation. Lens reveals hundreds to thousands of sites where 

individual bacteria of the same strain differ from each other and then phases these variants 

into bacterial haplotypes. A typical contig might harbor more than a dozen different strain 

haplotypes, each of which may contain thousands of sequence variants. Variants and 

haplotypes are determined using a simple model (see the section on Lens below) that, unlike 

previous approaches35,36, does not make any assumptions on the length of sequencing reads 

or the ploidy of the organism; we have found that these factors may confuse existing 

bacterial variant callers and lead to suboptimal results.
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Finally, Nanoscope invokes the FCP software package29 to assign taxonomic labels to 

assembled contigs and to estimate bacterial abundances. The latter task is done by mapping 

short reads to assembled contigs and by aggregating the coverage over all contigs assigned 

to the same species. Computing abundances from short reads avoids certain biases inherent 

to synthetic long reads; mapping reads to contigs enables estimation of abundances for 

bacteria whose genomes are not present in standard databases. At each stage, Nanoscope 

uses the popular Quast tool41 to assess its performance and to generate reports.

Nanoscope differs from existing metagenomic pipelines42,43 because it includes additional 

programs for dealing with synthetic long reads (most notably, the Celera and Minimus2 

assemblers). We modified the source code of some of these packages to handle longer 

genomic sequences (see Supplementary Material); all programs used by Nanoscope have 

also been tuned for longer read lengths. The source code of Nanoscope is publically 

available in an open-source repository.

The Lens haplotyper and variant caller

Lens is a new variant calling and phasing tool specialized for metagenomes and synthetic 

long reads. It is based on algorithms that, unlike previous approaches35,36, do not make any 

assumptions on the length of sequencing reads or the ploidy of the organism; we have found 

that these factors may confuse existing bacterial variant callers and lead to suboptimal 

results (see Supplementary Material). At a high level, Lens does two things: starting from an 

alignment of long reads to assembled contigs (or to bacterial reference genomes), it first 

determines positions at which the reads and the reference differ; these positions are 

indicative of multiple closely related strains of the same bacterium. Then, Lens phases these 

variants into long haplotypes, each haplotype being defined in this context as a set of 

variants that co-occur within the same bacterial substrain.

The Lens haplotyper leverages the fact that each long read originates from a single 

organism, and therefore all variants within a read must belong to the same substrain. By 

connecting reads at their overlapping variants, Lens places the variants into multi-kilobase-

long haplotypes in a process that is reminiscent of single-individual haplotyping (SIH) 

techniques37. In our setting, the number of true haplotypes is an unknown parameter that 

may be greater than two, making the phasing problem considerably more difficult. Although 

there exist well-known phasing algorithms for polyploid genomes (e.g. plants or cancer 

genomes), they all assume a fixed, known ploidy38,39, with the notable exception of some 

recent methods developed while this paper was under review 44,45; Lens on the other hand 

infers the ploidy directly from the data. More precisely, Lens assembles haplotypes using an 

approximate greedy procedure (see Supplementary Material); this choice is in part due to the 

fact that the SIH problem (of which ours is a generalization) is computationally 

intractable40. In brief, Lens sorts aligned reads from left to right and in turn uses each read 

to either extend an existing haplotype or to form a new one, depending on the read-

haplotype overlap and on the cost of forming a new cluster (both are tunable parameters for 

the algorithm). Our high-level approach may in principle have applications outside 

metagenomics, such as in cancer genome phasing.

Kuleshov et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by NIH/NHGRI grant T32 HG000044. V.K. was supported by an NSERC post-graduate 
fellowship. We thank Illumina, Inc. for their assistance in sample preparation.

References

1. Rinke C, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 
2013; doi: 10.1038/nature12352

2. Thomas T, Gilbert J, Meyer F. Metagenomics - a guide from sampling to data analysis. Microbial 
Informatics and Experimentation. 2012; 2:3. [PubMed: 22587947] 

3. Daniel R. The metagenomics of soil. Nat Rev Micro. 2005; 3:470–478.

4. Venter JC, et al. Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science. 2004; 
304:66–74. [PubMed: 15001713] 

5. Human Microbiome Project Consortium Structure function and diversity of the healthy human 
microbiome. Nature. 2012; 486:207–214. [PubMed: 22699609] 

6. Iverson V, et al. Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine 
Euryarchaeota. Science. 2012; 335:587–590. [PubMed: 22301318] 

7. Albertsen M, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage 
binning of multiple metagenomes. Nat Biotech. 31:533–538.

8. Nielsen HB, et al. Identification and assembly of genomes and genetic elements in complex 
metagenomic samples without using reference genomes. Nat Biotech. 32:822–828.

9. Burton JN, Liachko I, Dunham MJ, Shendure J. Species-Level Deconvolution of Metagenome 
Assemblies with Hi-C–Based Contact Probability Maps. G3: Genes|Genomes|Genetics. 2014; 
4:1339–1346. [PubMed: 24855317] 

10. Eid J, et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science. 2009; 
323:133–138. [PubMed: 19023044] 

11. Fichot E, Norman RS. Microbial phylogenetic profiling with the Pacific Biosciences sequencing 
platform. Microbiome. 2013; 1:10. [PubMed: 24450498] 

12. Kuleshov V, et al. Whole-genome haplotyping using long reads and statistical methods. Nat 
Biotechnol. 2014; doi: 10.1038/nbt.2833

13. Di Rienzi SC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging 
to a new candidate phylum sibling to Cyanobacteria. Elife. 2:e01102. [PubMed: 24137540] 

14. Sharon I, et al. Accurate, multi-kb reads resolve complex populations and detect rare 
microorganisms. Genome Res. 2015; 25:534–543. [PubMed: 25665577] 

15. Castillo-Rodal AI, et al. Mycobacterium bovis BCG substrains confer different levels of protection 
against Mycobacterium tuberculosis infection in a BALB/c model of progressive pulmonary 
tuberculosis. Infect Immun. 2006; 74:1718–1724. [PubMed: 16495544] 

16. Lieberman TD, et al. Parallel bacterial evolution within multiple patients identifies candidate 
pathogenicity genes. Nat Genet. 2011; 43:1275–1280. [PubMed: 22081229] 

17. Welch RA, et al. Extensive mosaic structure revealed by the complete genome sequence of 
uropathogenic Escherichia coli. Proc Natl Acad Sci USA. 2002; 99:17020–17024. [PubMed: 
12471157] 

18. Gire SK, et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 
2014 outbreak. Science. 2014; 345:1369–1372. [PubMed: 25214632] 

19. McCoy, et al. Illumina TruSeq Synthetic Long-Reads Empower De Novo Assembly and Resolve 
Complex, Highly-Repetitive Transposable Elements. PLoS ONE. 2014; 9:e106689. [PubMed: 
25188499] 

Kuleshov et al. Page 10

Nat Biotechnol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Li R, et al. De novo assembly of human genomes with massively parallel short read sequencing. 
Genome Res. 2009; doi: 10.1101/gr.097261.109

21. Myers EW, et al. A Whole-Genome Assembly of Drosophila. Science. 2000; 287:2196–2204. 
[PubMed: 10731133] 

22. Sommer D, Delcher A, Salzberg S, Pop M. Minimus: a fast, lightweight genome assembler. BMC 
Bioinformatics. 2007; 8:64. [PubMed: 17324286] 

23. Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. 
Nucleic Acids Res. 2010; 38:e132. [PubMed: 20403810] 

24. Magoc T, et al. GAGE-B: an evaluation of genome assemblers for bacterial organisms. 
Bioinformatics. 29:1718–1725. [PubMed: 23665771] 

25. Mao F, Dam P, Chou J, Olman V, Xu Y. DOOR: a database for prokaryotic operons. Nucleic Acids 
Res. 37:D459–D463. [PubMed: 18988623] 

26. Chen W, Minguez P, Lercher MJ, Bork P. OGEE: an online gene essentiality database. Nucleic 
Acids Res. 40:D901–D906. [PubMed: 22075992] 

27. Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide 
polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; 
iso-3. Fly. 6:80–92. [PubMed: 22728672] 

28. Gusfield D. Efficient algorithms for inferring evolutionary trees. Networks. 1991; 21:19–28.

29. Parks D, MacDonald N, Beiko R. Classifying short genomic fragments from novel lineages using 
composition and homology. BMC Bioinformatics. 2011; 12:328. [PubMed: 21827705] 

30. Alneberg J, et al. Binning metagenomic contigs by coverage and composition. Nat Meth. 11:1144–
1146.

31. Schloissnig S, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013; 
493:45–50. [PubMed: 23222524] 

32. Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human 
gut microbiome species. Cell. 2015; 160:583–594. [PubMed: 25640238] 

33. Berlin K, et al. Assembling large genomes with single-molecule sequencing and locality-sensitive 
hashing. Nat Biotechnol. 2015; 33:623–630. [PubMed: 26006009] 

34. Burton JN, et al. Chromosome-scale scaffolding of de novo genome assemblies based on 
chromatin interactions. Nat Biotechnol. 2013; 31:1119–1125. [PubMed: 24185095] 

35. Walker BJ, et al. Pilon: an integrated tool for comprehensive microbial variant detection and 
genome assembly improvement. PLoS ONE. 2014; 9:e112963. [PubMed: 25409509] 

36. Nijkamp JF, Pop M, Reinders MJT, de Ridder D. Exploring variation-aware contig graphs for 
(comparative) metagenomics using MaryGold. Bioinformatics. 2013; 29:2826–2834. [PubMed: 
24058058] 

37. Duitama J, et al. Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of 
Single Individual Haplotyping techniques. Nucleic Acids Res. 2012; 40:2041–2053. [PubMed: 
22102577] 

38. Berger E, Yorukoglu D, Peng J, Berger B. HapTree: a novel Bayesian framework for single 
individual polyplotyping using NGS data. PLoS Comput Biol. 2014; 10:e1003502. [PubMed: 
24675685] 

39. Aguiar D, Istrail S. Haplotype assembly in polyploid genomes and identical by descent shared 
tracts. Bioinformatics. 2013; 29:i352–60. [PubMed: 23813004] 

40. Gusfield D. Inference of haplotypes from samples of diploid populations: complexity and 
algorithms. J Comput Biol. 2001; 8:305–323. [PubMed: 11535178] 

41. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome 
assemblies. Bioinformatics. 2013; 29:1072–1075. [PubMed: 23422339] 

42. Treangen T, et al. MetAMOS: a modular and open source metagenomic assembly and analysis 
pipeline. Genome Biology. 2013; 14:R2. [PubMed: 23320958] 

43. Schloss PD, et al. Introducing mothur: Open-Source, Platform-Independent, Community-
Supported Software for Describing and Comparing Microbial Communities. Applied and 
Environmental Microbiology. 75:7537–7541. [PubMed: 19801464] 

Kuleshov et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Niklas N, et al. cFinder: definition and quantification of multiple haplotypes in a mixed sample. 
BMC Res Notes. 2015; 8:422. [PubMed: 26346608] 

45. Pulido-Tamayo S, et al. Frequency-based haplotype reconstruction from deep sequencing data of 
bacterial populations. Nucleic Acids Res. 2015; 43:e105. [PubMed: 25990729] 

Kuleshov et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The Nanoscope pipeline and the Lens algorithm. Left: Nanoscope first assembles short and 

long reads using the Soapdenovo2 and Celera assemblers and merges the results with 

Minimus2; it then assigns taxonomic labels to contigs with the Fragment Classification 

Package (FCP) and identifies bacterial strains with Lens; finally, it estimates abundances of 

detected bacterial species by mapping short reads to contigs and by aggregating the coverage 

over all contigs assigned to the same species. Right: The Lens algorithm identifies 

heterozygous variants in the assembled genomic contigs (a); these variants are supported by 

long reads (b) aligned to the contigs. Each long read originates from a single organism; thus 

the variants it supports must belong to the same substrain. By connecting reads at their 

overlapping variants, Lens places the variants into multi-kilobase-long haplotypes (c) 

associated with bacterial strains. The number of haplotypes is a priori unknown and is 

inferred from the data.
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Figure 2. 
Long reads aligned to assembled metagenomic contigs reveal extensive variation among 

bacterial strains. Top: Fragment of a 110 kbp long region within a metagenomic contig 

belonging to the species Odoribacter splanchnicus; the region harbors numerous strain 

variants that can be assembled into bacterial haplotypes. Bottom left: Fragment of a bacterial 

region containing 32 genomic variants that assemble into four bacterial haplotypes. Bottom 

right: These haplotypes can be placed in an evolutionary tree satisfying perfect phylogeny; 

for simplicity, we visualize this tree over 4 of the 32 positions in the region (upper left 

corner).
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Figure 3. 
Bacterial strains identified only by long reads (blue), only by short reads (magenta), by both 

technologies (green), and only by a combination of the two (black), ordered by abundance. 

Long reads identify 51 species that short reads do not detect; combining short and long reads 

identifies 58 additional species, including ones having the lowest abundance. A total of 178 

species are detected using all the methods.
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Table 1

Assembly of the human gut metagenome. Short and long read libraries were assembled with the Soapdenovo2 

and Celera assemblers, respectively. The results were merged using Minimus2 to produce a joint assembly. 

Long reads assemble into significantly longer contigs that contain about twice as many genes.

Short Long Joint

Number of contigs 92,247 24,199 34,786

Largest contig (Mbp) 0.63 3.94 3.94

Total length (Mbp) 233 610 656

N50 (Kbp) 8.7 37.3 49.2

Number of predicted genes 274,600 523,358 552,680

Average number of genes/contig 2.98 21.62 15.88
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Table 2

Overview of the variation among bacterial strains identified by the Lens algorithm. The human gut contains 

hundreds of thousands of variants, which are distributed across 2,204 genomic regions of up to 112 kbp in 

length. A region is defined as a maximal set of variants that can be phased by Lens using long reads.

Genomic variants 202,574

Genomic regions harboring haplotypes 2,204

Number of haplotypes 5,024

N50 region length (bp) 18,985

Max region length (bp) 112,271

Fraction of regions intersecting a gene 95%

Fraction of genes intersecting a region 4.4%
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