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Abstract: The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has
long been used in cancer research. However, this system cannot be fully translated into clinical
trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor
microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and
cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly
developed in research and have become essential for tumor research, tissue engineering, and basic
biology research. 3D culture has received much attention in the field of biomedicine due to its
ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework
where its components are deposited, degraded, or modified to delineate functions and provide a
platform where cells attach to perform their specific functions, including adhesion, proliferation,
communication, and apoptosis. So far, various types of models belong to this culture: either the
culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials
to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids.
In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus
on the different components of the natural extracellular matrix that can be used as supports in
3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard
supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding,
stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we
summarize the different methods of generating normal and tumor spheroids, citing their respective
advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following
characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue,
degradability, controllable microstructure and chemical components like the tumor tissue, favorable
nutrient exchange and easy separation of the cells from the matrix.

Keywords: three-dimensional (3D) culture model; extracellular matrix; hydrogel; tissue engineer-
ing; spheroids

1. Introduction

Cell culture systems, applied in biology, have contributed to reducing laboratory
animal use and ensured the progression of research, pharmaceutical discovery, and the
evolution of medicine [1]. Initially, cells were grown in two dimensions and attached to
polystyrene utensils or flat adherent surfaces (2D) but then researchers started to grow
them with attachment proteins in a synthesized extracellular matrix (ECM) (3D) [2]. The
two-dimensional (2D) in vitro cell culture system is a traditional application on flat sup-
port [3,4] for cell growth in a monolayer. Historically, this system has been applied in
research since the early 1900s [5,6], specifically in the co-culturing of cellular heterogene-
ity [7,8], and in oncological research as a tool to evaluate the biological performance of
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bioactive molecules [7]. On the other hand, this type of culture has many limitations since
it cannot ideally mimic physiological conditions and the natural microenvironment such as
structure, physiology, biological signals of living tissues, and cell-matrix interactions [9–14].
Indeed, the communication of cells with their ECM, which is absent in 2D, controls the cell
growth, proliferation, and function [15,16]. Cells cultured in 2D have been forced to mod-
ify various complex biological functions such as cell invasion, apoptosis, transcriptional
regulation and receptor expression [2,14,17], cell proliferation and anti-apoptosis [18,19].
To overcome these limitations, researchers are currently providing and developing new
in vitro 3D cell culture systems to boost research (healthy and tumor) [20,21]. The first 3D
cell culture model was provided in 1992 by Petersen and Bissell, who described 3D organ-
otypic structures to mimic breast structures in cancerous and non-cancerous cases [22].
This 3D system mimics the natural physiological properties and conditions, as well as
enhances the development of new treatments at the preclinical stage in the future [23–26].
It overcomes the problems associated with traditional 2D in vitro culture, provides more
valuable information about 3D cell-cell and cell-matrix interactions and presents a more
clinically representative response to therapeutic agents [24,26,27]. Moreover, such a new
type of culture will progressively evolve to have broader objectives to better assess the
biological and molecular pathways during malignant transformation [28–30]. The main
role of 3D culture is therefore to imitate the structure of the ECM of the tissue. ECM is a
scaffolding of non-cellular fibrillary proteins, various structural macromolecules (accessory
proteins), and adhesive molecules that provide structural and biochemical support to
cells and are essential to many basic processes [31–35]. In addition, it forms cell-binding
sites that control cell adhesion and migration [36]. From a structural point of view, it is
composed of:

(i) Interstitial ECM (stromal) contains biomolecules that can be organized into two
main classes (proteins, glycoproteins) and proteoglycans (polysaccharides) [37]. It
consists mainly of several protein molecules such as collagen I and III, self-arranged
polysaccharides in fiber networks of glycosaminoglycans (GAG) such as hyaluronic
acid (HA), proteoglycan (PG) and fibronectin [33,34,38–40];

(ii) Basement membrane located at the basal side of epithelial or endothelial cells in
normal tissues providing a physical barrier between epithelial cells and connective
tissue (stroma) of the organ (always allow gas diffusion and transport of signaling
molecules) [37,41,42].

These characteristics and ECM composition can be reached by 3D culture, and 3D
culture can be achieved either via scaffold-free structures (i.e., spheroids) or scaffold-based
structures (i.e., hydrogel-based supports and hard polymer material-based supports). Thus,
in this review, we will be explaining the different techniques to reach 3D culture system,
their advantages, and disadvantages.

2. 2D versus 3D Cell Culture

Cell-cell and cell-matrix interactions cannot be studied in 2D models in contrast to 3D
models that are able to mimic these conditions in vitro. So, 3D culture provides a pragmatic
pathophysiological microenvironment [11,13,26] and plays a potential role in cancer drug
discovery due to the lack of preclinical models relevant to 2D cultures [25,43–45]. Inserts
can be made up of biomaterials with properties like the ECM, and cells can also produce
certain ECM proteins like collagen. Differences in physical and physiological properties
between 2D and 3D cultures make 2D cells more sensitive to the effects of drugs than
3D cells since 2D cells are unable to maintain normal morphology as 3D cells can, and
due to the difference in the organization of surface receptors on the cell [46,47]. It should
be noted that there is growing evidence suggesting that cells cultured in a 3D system
behave differently from those cultured in a 2D system and retain important signals from
the ECM [28,48–55]. Appropriate 3D culture thus provides a more physiologically relevant
approach for the analysis of gene function and cell phenotype ex vivo [56]. In recent
years, reconstructed 3D culture has become a method of choice for summarizing the tissue
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architecture of benign and malignant tumors [49,57]. Thus, 3D culture can provide an
important tool for better understanding changes, interactions, and cellular and molecular
signaling during malignant transformation [13,58,59]. Table 1 summarizes the differences
between the characteristics of 2D and 3D culture models.

Table 1. Comparison between 2D and 3D culture models.

Characteristic 2D 3D References

Support for cell fixation Utensils (plastic, polycarbonate) Extracellular matrix in vitro [2]

Instructions for use Traditional culture Imitating the natural microenvironment [11–13,25,26,52]

Interaction and
communication Cell-cell (co-culture) Cell-cell and cell-matrix 3D interactions [53]

Cell forms Flat and extensible Natural cellular structure preserved [23,24,43,45]

Media cell interface Homogeneous exposure of all
cells to the media

Heterogeneous exposure (the upper layer
is more exposed than the lower layer) [26]

Cell junctions Less common More common (cell-cell communication) [3,10,12,54]

Cell differentiation Moderately and poorly
differentiated Well-differentiated [43,44]

Cell proliferation Higher proliferation rate than in
the natural environment

Medium or high proliferation rate
depending on cell type and 3D culture
technique

[45,50,51]

Treatment sensitivity Cells more sensitive to treatment Cells less sensitive to treatment [46,47]

Viability Sensitive to cytotoxins High viability and less sensitivity to
external factors [55]

Cost Cheap Expensive [7,8]

3. Extracellular Matrix Composition

The ECM forms the non-cellular physical support for the cellular constituents of all
tissues and organs. The components of the ECM encompass cellular and biomechanical
signals that maintain morphogenesis, differentiation, tissue homeostasis, integrity, and
elasticity [60,61].

The ECM is divided into two main parts: the structural interstitial matrix surrounding
the cells (collagen I and fibronectin) and the basement membrane (collagen IV, VIII and
X, laminins, nidogen, perlecan, and integrin receptors) separating the epithelium from
the surrounding stroma [62–66]. In mammals, ECM contains about 300 proteins (central
matrisome), having 43 collagen subunits, 36 proteoglycans (PG), and about 200 complex
glycoproteins [67]. The PG glycosaminoglycan (GAG) (proteoglycans that form the intercel-
lular interstitial gel) [67–69] and fibrous proteins (collagen, elastin, fibronectins, laminins)
form the essential macromolecules of ECM [60,66,70]. The shape and structure of PGs
vary according to their functions in ECM. Three parameters allow the classification of PGs:
central proteins, their localization, and their GAG composition (unbranched polysaccharide
chains, sulfated or not sulfated) [69]. Normal glandular epithelial tissues, including the
breast, are composed of a simple layer of epithelial cells that cover the internal cavity of
the canal, their apical pole that is in contact with the light-filled with liquid, and their
basal pole that rests on the basement membrane. Then, at the limit with the interstitial
ECM (stroma), the layer of myoepithelial basal cells rests [71]. Then the homeostasis of this
epithelial tissue depends on communication and reciprocal interactions with the stromal
microenvironment [72]. Moreover, ECM is a rich reservoir of growth factors and other
bioactive molecules (metabolic precursors). It is due to the signaling of this reserve that, on
the one hand, cell proliferation, cell differentiation, and delay of apoptosis take place [73],
and on the other hand, the reciprocal interaction of cells and the microenvironment is
possible [74–76]. In addition, ECM plays a basic role in the development and maintenance
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of epithelial tissues. For example, the ECM of human breast tissue is composed of protein
fibril complexes intertwined in a network of carbohydrate chains of GAGs.

From a structural point of view, protein components, including laminins, fibronectin,
and collagens, resist tensile forces, while carbohydrates, composed mainly of hyaluronan
chains, chelate water, and resist compressive forces. Thus, the ECM is a key regulator of
normal homeostasis and tissue phenotype [77].

Collagen is the most abundant structural protein in human tissues and constitutes
about 30% of the body’s total protein mass [42,66]. Generally, collagens, formed of
28 unique subtypes discovered [63,78,79], can be grouped either in fibrillar collagen (colla-
gens I-III, V, and XI) or non-fibrillary [67]. They regulate adhesion, cell migration [42], and
tensile strength to maintain homeostasis [80]. Basically, interstitial collagen is secreted by
fibroblasts, being able by this to organize the alignment of collagen fibrils (I and III) [81] in
the fibronectin, hyaluronic acid, metalloproteinases (MMP), growth factors promoting cell
differentiation, growth, and migration [79,82,83].

Hyaluronic acid (HA) is a non-sulfated linear GAG polysaccharide [69] with hy-
drophilic characteristics and is resistant to high compressive forces. HA adopts very
extensive conformations for the formation of hydrogels [60,84]. It is a natural component
essential for ECM to maintain compliance with compression and ensure ideal homeostasis
in combination with collagen [80]. In addition, its abnormal accumulation in ECM may
promote tumor migration [85,86].

Fibronectin is a multidomain protein that interacts with different components of ECM
to facilitate cell-ECM connection [66], thus forming a fibrillary network [87]. It is involved
first in guiding the direction of the organization of interstitial ECM through its reciprocal
assembly with type I collagen [87–91] and second in cell migration during development
and tumor metastases [72].

Laminins are glycoproteins involved in adhesion, differentiation, migration, pheno-
type maintenance, and have resistance to apoptosis [92]. It ensures the assembly of the
basement membrane as well as ECM-cell interactions [93–96].

4. Three-Dimensional Cell Culture Scales

Various methods have been developed to address the growing demand for cell culture
due to the lack of a single technology that fulfills the needs of all 3D cell cultures. 2D
culture omits the effect of ECM molecules. Yet, its density and packaging contribute
significantly to the creation of a 3D atmosphere. The 3D model is an in vitro reconstitution
of the ECM after being inspired by the native microenvironment. It keeps the geometric,
mechanical, and biochemical properties of the ECM [97]. It consists of different cells
integrated into a specialized environment arranged in a way that forms 3D tissues similar
to the natural tissue structure [98,99]. 3D culture models then make it possible to study
the morphology and cellular organization shaped by ECM interactions, which are altered
during oncogenic transformation. This makes the 3D models of in vitro tumors essential
tools to study the mechanisms of cancer growth and metastasis [55,100,101]. They are most
useful when they support tissue growth from primary human cells and include defined
and physiologically relevant components [49,57,102,103]. Appropriate 3D culture thus
provides a more physiologically relevant approach for the analysis of gene function and cell
phenotype ex vivo [56]. The engineering of 3D culture is based on different main principles:
the nature of the cells (the selected, isolated, appropriate strain cell line, primary cells, and
tissue origin), 3D artificial microenvironment (ECM imitation) in which they are grown,
scaffold-based of biomaterials (natural, synthetic, or hard), signaling molecules (proteins
and growth factors) and bioreactors (cell culture) that support a cellular environment that
is biologically active [104–106]. For these reasons, these parameters must be evaluated
before choosing the most relevant technique and appropriate model. Culture systems can
be either scaffold-based on natural or artificial solid scaffolding or scaffold-free, such as
spheroids (non-scaffold based) [104]. The details of scaffold-based 3D techniques overview
with these attributes are described in Table 2.
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Table 2. Scaffold-based 3D techniques overview with attribute.

Technique Protein-Based EMC Natural Hydrogels Synthetic Hydrogels Hard Polymer Scaffold

Product description Matrigel®
Collagen, hyaluronic

acid
TrueGel3D (polymers

with crosslinkers)

Polystyrene-
polycaprolactone

Alvetex
Biological relevance Effective +++ Effective +++ +/− +/−
Consistency/reproducibility Low − High ++ Very high+++ Very high +++
Risk of contamination Low − High++ Very high+++ Very high +++
Modularity/customization Low − Moderate + High ++ low −
Cell recovery +/− + ++ +++
Downstream analysis
(imaging, molecular
analysis)

+ ++ ++ ++

References [107–110] [111–115] [116–118] [119–123]

4.1. 3D Scaffolding Structures

In these techniques, the cells are grown in the presence of support which can be
hydrogel-based supports and hard polymer material-based supports, natural or synthetic,
of animal or vegetable origin. The polymer scaffolding offers a three-dimensionality
favorable to cellular behavior in the microenvironment [124,125]. It is the most used model,
especially collagen-based hydrogel, due to the major constituent elements of the basement
membrane. Hydrogels are cross-linked networks formed of hydrophilic polymers attached
through physical, ionic, or covalent interactions [126]. Their hydrophilic character allows
them to absorb water that penetrates successively between the polymeric chains and causes
swelling and thus the formation of the hydrogel [127]. Hydrogels can be natural (natural
polymers), synthetic (synthetic polymers) or hybrid (natural and synthetic) depending
on the biocompatibility advantage or the physico-chemical nature, respectively [128,129]
(Table 2). These polymer-modified structures can be used as a matrix for cell culture
in vitro or to make 3D spheroids [16]. The main advantage of hydrogels is that their
physico-chemical properties are adjustable and could appropriately mimic the biochemical
and mechanical properties of the true native ECM. Cells can be deeply seeded into a porous
hydrogel and easily recapitulate nutrition and oxygen (by diffusion) [127].

4.1.1. Hydrogels

Some used hydrogels such as those of collagen are expensive, present a lack of re-
producibility, and require extensive handling and specific equipment but present the
opportunity of cellular heterogeneity as well as spontaneous cell organization (can be
heterogeneous) [8,130,131] (Table 2). Another option is to work with other scaffolding
products, such as Hydrogel, which is a synthetic nanofiber peptide scaffolding. The stiff-
ness of the 3D culture can be controlled by adjusting the hydrogel concentration. Above
all, this system could be applied to study the interaction between any type of neoplastic
cells. It may even be possible to design more complex systems using more than two
different cell types [130,132]. Hydrogels are unique because of their ability to mimic ECM
while allowing soluble factors such as cytokines and growth factors to travel through
tissue-like gel [47]. There are different types of hydrogels: natural and synthetic. Natu-
ral gels (natural polymers) are, for example, fibrinogen, HA, collagen, Matrigel, gelatin,
chitosan, and alginate [133–135]. The hydrogels are, by definition, networks composed
of hydrophilic polymers that are not cross-linked, and this allows them to swell widely
by covalent bonds or to be held together by intramolecular and intermolecular physical
attractions [106,136,137], maintaining their 3D structure [138]. Due to their hydrophilic
and hydrated character, they can absorb a large amount (thousands of percent) of water or
biological fluids and inflater easily without dissolving, thus mimicking the structures and
physical properties of soft tissue ECM. They are then soft and rubbery after swelling and
resembling living tissues [106]. On the other hand, gels differ from hydrogels since they are
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semi-solid materials (can appear more solid than liquid) consisting of hydrophilic polymers
comprising small amounts of solids, dispersed in relatively large quantities of liquid [139].
Depending on the nature of the polymer, hydrogels can be classified into different natural
or synthetic categories and interconnected by physical and ionic interactions and even cova-
lent bonds (hydrogels based on ECM proteins, natural hydrogels, and synthetic hydrogels)
with distinct biochemical, physical and mechanical properties [111–115,138]. For this, they
were also explored as 3D models for cancer research. The use of 3D scaffolding models
based on scaffolding expands the range of options available to researchers [140–148].

• Protein-based EMC

These naturally formed biomaterials from biological polymers have been used in
the manufacture of 3D platforms for breast cancer culture, including Matrigel® [149–151],
collagen [152–159], HA [160–166], alginate [1,167–169], and gelatin [169–171] (Table 2).

The Matrigel® is the gold standard. It is a tissue formed of a mixture of gelatinous pro-
teins derived from the basement membrane isolated from the mouse sarcoma Engelberth–
Holm–Swarm (EHS) and commercially available under the brand name Matrigel® (BD Bio-
sciences) [107–110] (Table 2). This extract is liquid at 4 ◦C and turns into a gel at 37 ◦C
under physiological pH and ionic strength. It is then a ready-to-use solution that allows
user-defined use. Recently, it has been widely used in 3D experiments in cell biology to
assess cell migration, cancer cell behavior, and to create organoids in vitro, as it produces a
large amount of ECM rich in type I collagen, laminin-111, heparin sulfate proteoglycans
(perlecan) and nidogen [172]. Matrigel® is considered the best product on the market used
in the production of most 3D tests performed in cell biology [151,173–176]. The success
of Matrigel® is also due to its biological activity, which allows under normal culture con-
ditions the differentiation of several cell types and the formation of complex structures
such as mammary glands of acinous structures [173,177]. In addition, the bioactivity of
Matrigel® is due to the presence of soluble growth factors such as fibroblast growth fac-
tor (FGF), epidermal growth factor (EGF), transformative growth factor-β (TGF-β), and
matrix metalloproteinases (MMP), including MMP-2 and -9. Although easy to use, the
presence of these growth factors in unknown and uncontrollable quantities can have an
impact on research (positively or negatively) which is why many researchers may prefer
to manufacture their hydrogel systems using defined concentrations [24]. In addition, as
Matrigel® is produced and purified from an animal, there is a lack of control over its exact
composition and batch-to-batch variability in its contents [178]. Similarly, it presents diffi-
culties of handling when it is in a refrigerated liquid state [104]. Although the drawbacks
of Matrigel® are significant, Matrigel® is a widely available model for studying many
fundamental questions in cell biology, cell adhesion, and cancer research as a versatile
platform for in vitro 3D cell culture [151,173–176].

Most natural polymers are structural molecules derived from mammalian ECM. Many
different materials were used to develop in vitro 3D breast cancer scaffolding. They were
first used as a coating of tissue culture boxes to promote cell adhesion and spread after they
are incorporated into 3D materials in different forms (hydrogels, freeze-dried materials,
and surface coating of bulk inorganic materials such as elastin, collagens [152–154,179],
fibronectin, laminin (mainly laminin-111) [152,161,162,179], GAGs (chondroitin sulfate and
heparan sulfate, hyaluronan [162,165,166,179], alginate, and gelatin [167–171].

Classically, they are purified from ECM-rich animal tissues such as dermis and tendons
(collagen type I, elastin), cartilage (collagen type II and GAGs), tumors (laminins and
collagen IV), or directly from the blood (fibrin and fibronectin). On the other hand, with
progress, it is now possible to obtain some of these molecules from recombinant DNA
sources, which makes it possible to work with human ECM molecules, produced with
a high degree of purity and free of many pathogens, but they are more expansive [180].
Non-mammalian ECM molecules are also widely used in the design of biomaterials, mainly
for their ability to self-assemble in 3D structures, but due to their origin, they lack many
aspects of cell adhesion on their structures and should most often be supplemented with
adhesive molecules or peptides to obtain a biologically active material. These polymers are
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hydrogels based on chitin/chitosan (polysaccharide purified from the exoskeleton of fungi
or arthropods), agarose, or alginate (both polysaccharides purified from algae), and fibroin
(cocoon protein from silkworms and spiders) [181].

• Natural hydrogels

Collagen-based hydrogels are natural hydrogels. Collagen, as the main component of
ECM, plays a key role in the development and spread of cancer [40,106,182–184]. It affects
the tumor microenvironment [185,186] especially in breast cancer signaling [182,183], dif-
ferentiation and migration through cell-matrix interactions [187,188] (Table 2). Depending
on the type of tissue, collagen fibrils organize themselves in a variety of ways to form
collagen fibers suitable for the specific functions and properties of tissues [189]. The
mechanical properties, architecture, and biodegradability of collagen hydrogels can be
finely modulated by adjusting their concentrations [190,191] and preparation parame-
ters [136,137,192,193]. Thanks to its specificity of spatial organization and self-assembly
of collagen in acid solutions [194], the architecture of hydrogels can be controlled by the
manipulation of ionic force, pH, and temperature during frost polymerization [174,195].
The concentration of collagen increases gradually with the regulated evaporation of the
solvent, as well as modifies the organization of collagen molecules. The original collagen
solution to a solid hydrogel structure (i.e., the so-called “soil/frost transition”) retains the
tissue-like molecular organization of collagen molecules [196] (Figure 1a). In addition,
an increase in collagen concentration (i.e., the ionic strength of gels) leads to an increase
in fiber density and a reduction in pore size but has no effect on fiber diameter [195]. In
contrast, increasing temperature and pH accelerates polymerization, reduces fiber diam-
eter and pore size, and also increases the mechanical properties of hydrogel [174,195]
(Table 3). As a result, many collagen-based 3D models of in vitro cancer culture have been
developed [11,152–155,158,197–202].

Figure 1. Scanning Electron Microscopy micrographs of the longitudinal sections of freeze-dried
scaffolds of (a) collagen-based and (b) collagen-HA based (adapted from [219]).

Polysaccharide-based hydrogels are natural hydrogels. Proteoglycans (PGs) have
a protein that is covalently bound to GAG chains. Thanks to the polyanionic profile of
GAGs (due to the sulfate groups), they attract water, thus causing the swelling of the
GAG [220] (Figure 1b). This swelling can then open pathways of invasion and migration
of cells that resemble the state of invasion and cancer metastases [221] (Table 2). These
PGs are directly involved in cellular functions and the release of active molecules (growth
factors, cytokines) [221]. Hyaluronic acid (HA) is a major category of structural macro-
molecular components of ECM. It is an unsulfated GAG. The polyanionic nature of GAG
attracts water, causing GAG to swell. Concerning HA hydrogel, this natural polysac-
charide can be chemically modified to similarly mimic native tumor tissue by adding
acrylate or thiol groups that have cross-linked to form a network with a pore size of 70 to
100 nm [220]. Similarly, their sulfation pattern contributes to the binding of growth factors
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to GAGs [222–224]. Indeed, GAGs provide hydration and compressive strength by binding
to water as well as are involved in different biological processes such as tumor progression,
angiogenesis, and cell development [33,35,39]. It is not only a structural component of
the tumor ECM but also a biologically active molecule that has been used extensively in
the formation of 3D in vivo tumor models [225]. This use is because of its biodegradable,
non-immunogenic, non-inflammatory [205] hydrodynamic and swelling characteristics to
fill most of the extracellular interstitial spaces of tissues in the form of hydrated gels [33,35]
and promote cancer progression [226] (Table 3). These properties make HA an ideal matrix
for preparing 3D tumor models. HA gels are formed by covalent cross-linking (reaction
with carboxylic acid groups) with hydrazide derivatives. They carry inherent biological
properties such as protein grafting, but they are mechanically poor. HA is most often
incorporated into the constituent materials of hydrogels [38,219,227–229]. Recent studies
have demonstrated the usefulness of HA-based scaffolding for improving adipose tissue
development in vivo [230,231] and in vitro [232,233]. Table 4 summarizes the differences
between scaffolds made with pure collagen vs. collagen-HA-based ones.

Dextran is a bacterial polysaccharide, consisting mainly of a glucosidic-1,6 bond of
D-glucopyranose residues, used for more than 60 years in the medical and biomedical
fields [236]. Dextran is widely used for biomedical applications. Its advantages are its
biocompatibility, low cost, good water solubility, ease of modification [237], antifouling
properties [238,239]. Dextran glucose must be oxidized in duplicate and then followed by
a freeze-drying step [240–243].

Table 3. Advantages and disadvantages of hydrogel-based.

Hydrogel Advantage Disadvantages

Matrigel®
-Widely available
-Frequently used in cancer research [151,173–176]

-Unknown and uncontrollable amount growth factors [24]
-Lack of control over its exact composition
-Variable from batch to batch [178]
-Difficulties of handling when it is in a refrigerated liquid
state [104]

Based on Collagen

-Good adhesion and cell migration support [145–148,156]
-Biocompatibility, mechanical strength, degradability, and

limited immunogenicity [157,158]
-The most widely used tissue engineering and in tumor

culture [11,152,158,199–202]
-Cell signaling patterns [140–144,203]

-Animal origin can potentially transmit pathogens [204]
-Biodegradable [159]

Hyaluronic acid

-Provide hydration and resistance for cellular mechanisms
[33,35,39]
-Biodegradable, non-immunogenic, non-inflammatory

[205]
-Hydrodynamic and swelling [33,35]

-Animal origin can potentially transmit pathogens[204].
-Mechanically poor [38]
-Biodegradable [159]

Synthetic (PEG),
(PCL), (PLA) (PGA)

-Most used in 3D neural culture, bones, cartilaginous,
tissue, and kidney tissue [206–212]
-A defined chemical composition and adjustable

mechanical properties for cultivation [213–215]
-Available [119]
-Easily modified and formulated with different rigidity

only the type of fabric [119]

-Physiologically irrelevant and may release toxic
degradation products to cells [216]
-Limited applications in in vitro tumor engineering [216]
-Contains active chemical groups sensitive to chemical
reactions [217]
-Irrelevant and may release toxic degradation products to
cells [216]
-Biophysical parameters (mechanical properties and

permeability, stiffness) must be considered [119,206,212]
-Loss of cell signaling patterns [203]
-Sensitive to pH (PEG) [218]
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Table 4. Comparison of technical characteristics between scaffolds made with pure collagen vs.
collagen-HA-based ones [219,227–229,234,235].

Pure Collagen Collagen-HA

Technique By lyophilization 1% By lyophilization 1%
Pore size 100 et 220 µm 100 et 220 µm
Porosity Similar Similar
Denaturation Absent Absent
Efficacity ++ +++
Resistance of dissolution + ++
Dissolution hydrolyte 19.2% in 7 days 11.4% to 13.3% in 7 days
Cellular proliferation ++ +++

Chitosan is the second most abundant natural polymer. It is a linear polysaccharide
derived from chitin in the form of a deacetylated derivative [244]. Its advantages are
its structure (D-glucosamine bound in (1-4) + N-acetyl-glucosamine) that mimics the
structural characteristic of the GAGs of ECM. It’s a biomaterial widely used in biomedical,
biocompatible, biodegradable, and can be produced on a large-scale, easily transformed
(simple freeze-drying) [245]. It shows a disadvantage of solubility in neutral solutions (it
adds cysteine) [246]; no gel is formed without the grafting of cysteine, and poor mechanical
properties of the gel are observed [247].

• Synthetic hydrogels

Most synthetic hydrogels are synthesized by polymerization of synthetic polymers,
which exhibit versatile biophysical, mechanical, and biological properties in 3D breast
cultures to study the relationship between the microenvironment and malignant tu-
mors in vitro [131,133,248]. They are formed of synthetic polymers comprising poly-ε-
caprolactone (PCL) [249–251], polyethylene glycol oxide (PEG) [38,252–254], polyvinyl
alcohol or in a mixed solution or a combination of copolymer with poly-lactide-co-glycolide
(PLGA) (PLG) [249–251,255]. In addition, their use is more preponderant in 3D culture
of many cell types including neural [206], bone [207,208], cartilaginous [209,210], mus-
cle [211], and renal cells [212]. Synthetic organic polymers offer a wide range of creativity
to produce 3D materials. Although they inherently lack basic biological activity, they have
great flexibility in treatment and are easier to be produced [116] (Table 2). The diversity
of synthetic polymers used in biomaterials is great as they can be transformed into 3D
materials with many types of techniques (electro piping, foaming, hydrogel, and sheets),
some of which are not bearable by biological polymers. Polyesters and polyhydroxy acids
can be biodegradable thanks to the presence of hydrolyzable bonds in their skeleton, while
polyacrylamides and polyacrylates are almost unbreakable in cell culture [117]. Synthetic
polymers have the inherent properties to form a 3D scaffolding by which they contain
active chemical groups (amine, acid, or alcohol functions) sensitive to chemical reactions,
thus providing an ECM model with well-defined characteristics [204,217]. Physiologically,
they are irrelevant and can release toxic degradation products to cells [216] (Table 3). Simi-
larly, they are unable to provide the biochemical signals necessary to “communicate” with
the cell. To overcome this limitation, synthetic polymers can be functionalized by adding
signaling biomolecules, such as peptides, growth factors, and glycans [213–215].

Cells embedded in natural biopolymers take advantage of the signaling already
present inside the matrix, while synthetic polymers lack signaling patterns capable of
modulating the cellular outcome [203]. The stiffness of biomaterials is also very important
for cell proliferation and behavior, but an increase in the stiffness of a matrix (PEG gels)
acts as a physical barrier for 3D cells, preventing their proliferation and migration [212].
Similarly, studies have already shown that changes in the cross-linking density of PEG-
based hydrogel cause changes in cell growth and morphology [218,256,257]. For all these
reasons, their applications are limited in the engineering of tumors in vitro [216]. Leven-
berg et al. (2003) used PLGA and PLA to form porous scaffolding to create a 3D artificial
microenvironment for human embryonic stem cell differentiation. While this was partly
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successful, they also demonstrated the difficulties in getting cells to infiltrate throughout
the scaffolding [258]. Similarly, the biodegradation of scaffolding based on poly-lactic acid,
poly-glycolic acid, and their copolymer PLGA can lead to the release of by-products such
as lactic acid [259,260]. For these reasons, biodegradable materials are not practical for
routine 3D cell culture where issues such as storage life, storage, and product consistency
need to be taken into consideration [104] (Table 3).

Nanofibrous scaffolding is a thin sheet composed of synthetic polymer fibers (PLGA or
PLGA-PEG) of nanometric size randomly aligned. It forms a fibrous support for ECM and
provides topographic features necessary for cell adhesion and growth. These nanofibers can
be manufactured by several techniques such as electrospiding, phase separation, and self-
assembly with varying chemical properties, diameters, lengths, porosities, and mechanical
properties [261–265]. In addition, the authors evaluated the usefulness of this model for
drug testing by growing a tumor biopsy on 3D scaffolding and determining the effect
of the drug on it. These nanofiber-based models have several key features; for example,
providing topographic characteristics to cancer cells for 3D tumoroid development and
reproducibility with the ease of tumoroid imaging could make it an elegant approach for
drug testing.

Alvetex® hard-base scaffolding (Figure 2) provides a large internal volume and 3D
space that cells can occupy and form a tissue. Cells find a more physiological shape
because they are not seeded on a flat surface but in the presence of fibers or sponge-shaped
structures with high consistency and reproducibility [119]. These scaffolds are composed
of non-degradable inert materials (polystyrene or polycaprolactone PCL) to avoid the
formation of by-products. They can be manufactured by electrospinning [120–122] or by
gas foam technology [123] to improve their application in cell culture, but very few have
been developed into a commercially successful process for 3D culture (Table 2). They are
important tools in the study of cell-ECM interactions due to the ability of the scaffolding to
reproduce the structure of the ECM and high porosity [266,267]. Moreover, it is less affected
by cytotoxic compounds. Polystyrene is a familiar substrate to the user in 3D cell culture
since it is inert and does not degrade during normal use [55,121,122,268,269] (Table 3).
On the other hand, polystyrene has some disadvantages: it is rigid (its rigidity must be
controlled), does not have the biomechanical properties found in soft tissues, can display
cytotoxicity [270], and a lack of biochemical stimuli (for example, molecules dependent
on cell anchorage). However, these can be solved by adding known ECM proteins. In this
case, a balance must be found between the needs of the model and the objective of the
study [104].

Figure 2. Polystyrene well insert holder for 3D culture Alvetex Scaffold (alvetex®/www.interchim.com).

www.interchim.com
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The advantages and disadvantages of the described hydrogel-based scaffolds are
summarized in Table 3.

4.1.2. Synthetic Strategies

• Porous material

Despite the good biocompatibility of hydrogels due to their water content, they most
often have low mechanical properties and high degradation rates. For this, porous ma-
terials have been designed with interconnected pore networks and surfaces or fibers to
support cell adhesion. These materials are discriminated against 3D models of ECM of
nano porous scaffolding where pore structures are in the range of cell diameter (about
10 µm) [130,271–273] (Figure 3a). Nevertheless, microporous structures allow more effi-
cient cell penetration and migration into the material but with specific pore sizes since a
micro-size can represent a barrier to cellular colonization of the material and limit cellular
interactions at the edges of the material [274]. Like hydrogels, porous materials can be
prepared with natural and synthetic polymers by different techniques, including electro-
spinning, phase separation, model creation, and vapor polymerization [274]. The porosity
based is mainly used with synthetic polymers (PLA/glycolic acid and PCL) but is also
suitable for natural polymers such as collagen and silk fibroin [275]. For example, porous
collagen materials, due to their high porous structures, make so-called “collagen sponges”,
by thermally induced phase separation. The phase separation of collagen molecules from
the water-based solvent is due to the freezing of acidic collagen solution, which induces
one that is then eliminated by freeze-drying. Pore size and interconnectivity can be altered
by modulating collagen concentration and phase separation temperature or by mixing
collagen solutions with other natural polymers such as GAG [276] or synthetic polymers
such as PLA. The low mechanical properties of freeze-dried collagen materials are often
enhanced by the addition of GAG by cross-linking them with chemical species (aldehydes)
using dehydrothermal processes [191].

Figure 3. Different synthetic strategies of 3D matrix-based: (a) collagen; (b) Lyophilization; (c) Electrospiding; (d) Stere-
olithography; (e) Micro fluid [271–273,277,278].
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• Hydrogel technology

The cross-linking of natural hydrogels such as agarose, fibrin, and especially collagen
and HA with high water content is one of the popular options in 3D culture that ensures the
encapsulation of cells in a hydrogel comprising a loose scaffolding structure [121,279–281].
Considerable progress has been made in the preparation of hydrogels called smart hy-
drogels to better mimic the artificial ECM protein microenvironment [282,283]. However,
these hydrogels may undergo unusual changes in the structure, mechanical characteristics,
and swelling behavior of the network (support, cell growth), as a result of variations in pH,
temperature, light, ionic, and force or electric field or enzymes [284–287]. Regarding freeze-
drying, its main purpose is to regulate porosity and form a collagen sponge. Changing the
porosity of hydrogels (the number, size, shape, and interconnectivity of pores) will promote
cell growth and homogeneous cell seeding in cell culture [288]. Pore size is also a very
important parameter to avoid inhibition of cell penetration. However, the diameters of all
cells are less than 200 µm (for nutrition and oxygenation) [289]. To do this, it is necessary
to choose the optimal size suitable for each cell type [289–291]. A resume of this method,
its advantages and disadvantages are summarized in Table 5.

Table 5. Comparison of different synthetic strategies of 3D matrix-based.

Fabrication Method Method Overview Scaffolding
Morphology Advantages Disadvantages

Hydrogels
[11,54,193,279–281]

-Collagen gel solution
(usually type 1 collagen
and acetic acid) mixed
on ice and usually
neutralized (NaOH)
and then gelled
-Physical parameters:
collagen, pH, the
temperature of desired
gelling

-Dense gel network of
string-like fibers. The
thickness of the fiber
depends on the
manufacturing
parameters

-Easy to apply
-Matrigel is widely

used in cancer research,
so many user guides
are available
-High level of cell

viability

-The least porous
-Risk of poor

distribution of cells and
nutrients.
-An architecture is

more difficult to
control, therefore, has
less reproducibility of
the exact architectures
desired
-Poor mechanical

properties before
cross-linking

Lyophilization
[153,276,292–298]

-Creation of a
homogeneous
suspension of collagen
with acid (usually
acetic acid) at high
speed
-Heat treatment
(controlled or
quenched) for the
sublimation of ice
crystals under vacuum
to the defined freezing
point before returning
to ~0 ◦C
The dried scaffolding
must reach room
temperature to
complete the process

-Interconnected
network
-Highly porous
-A well-defined pore
shape and sizes

-Good control of
scaffolding architecture
-A wide production
range in terms of pore
sizes and orientation
-High porosity levels.
-Inexpensive-High level
of cell viability

-Problems in the
freezing process affect
the final scaffolding
architecture from one
batch to another
-Poor mechanical
properties before
cross-linking
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Table 5. Cont.

Fabrication Method Method Overview Scaffolding
Morphology Advantages Disadvantages

Electrospiding
[299–312]

-Collagen solubilized
(usually HFIP or TFE)
and added to the
syringe/injection
system
-A high-voltage electric
field is applied, causing
the charge of the
solution, the eruption
of the polymer fiber of
the tip of the needle,
and the whip of the
liquid jet
-The solvent evaporates
during the process,
leaving a network of
dried fibers deposited
on the collection plate
(non-woven or aligned)

-Dense and tight fiber
array (chain-shaped) of
nanometric or micro
size

-Fibrous network that
closely resembles
native collagen fibers.
-Wide range of
size/diameter/achievable
fiber pattern
-High level of reported
cell viability

-Use of harmful
solvents (collagen
scaffolding)
-Solvents are expensive
-Dense fiber networks
can reduce the level of
cellular infiltration.

Stereolithography
[277,313–319]

-prints layer by layer a
UV-curable material in
thin sheets
-Installation of a
multiresolution 3D
printer (Dilase 3D, Kloe
France)
-Each layer is
superimposed after
drying the next layer
-Use of different light
sources (visible, UV, IR)
capable of
polymerizing
photosensitive
materials.

-Hard layer set (UV)

-Capable of producing
scaffolding of size mm
to cm
-Can be combined with
different components
to hydrogels or electro
spinning (PCL fibers,
PCL /gelatin)
-high differentiation
rates and adhesion
-Imitates complex
structures in vitro: as
villi of the intestine

-Specific equipment
-Expensive
-Manufactured
scaffolding is usually
limited to a few tens of
microns of resolution

Micro fluid
[278,320–333]

Support consisting of
silicon/elastomer-
based devices having
microchannels with
proportions from 1 to
1000 µm that exploit a
small volume of fluids
(10-9 to 10-18 L). These
fluids are continuous
flows of nutrients and
therapeutic agents,
establish a
physiological profile
such as that of blood
circulation and
intravenous injections

-Matrix that has micro
channels- which can be
either strictly laminar
(in parallel layers) or
turbulent (parallel and
strong numbers)

-Labor-saving
-Microenvironment
dynamics (fluid flow)
-Generate aggregates of
different forms
Co-culture of several
cells
-Simulates cell-cell
contacts and biological
signals controlled by
spatial and temporal
gradients of soluble
biological factors
-Study tumor
progression, invasion,
angiogenesis as well as
treatment tests
-Low reagent
consumption and low
cell utilization

-Requiring professional
equipment and special
design
-Complexity.
-High cost
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• Collagen Hydrogel by Freeze-Drying (Lyophilization)

Porosity is an amount of open pore volume in a scaffold that provides suitable support
for cell colonization, ECM production, and subsequent spheroid formation. Highly porous
scaffolding is then essential for the transport of nutrients and the disposal of waste [334].
Pore size (diameter of circular pores or the longest length for non-circular pores) is one of the
major factors that affect cellular behavior in the porous matrix, such as migration, adhesion
in pores, and interaction with neighboring cells [335]. Lyophilization is a dehydration
technique that results in the formation of an interconnected circular/dry oval porous
microstructure [276,292–294] (Figure 3b). The solution is frozen before undergoing a
vacuum drying process leading to the sublimation of ice crystals [234]. This technique
is currently the most used for the manufacture of collagen-based scaffolding due to the
easy control of the architecture and mechanical properties. In addition, this architecture
can be affected by collagen concentration, temperature, and freezing speed [276,295,296].
It has also been shown that a decrease in the final freezing temperature reduces the size
of the ice crystal and consequently the size of the pores [297] even for the freezing speed,
which must be slow and controlled to result in homogeneous scaffolding (pore shape and
size) [298]. Variation in collagen concentration affects the stiffness [234], size and porosity
of scaffolding pores since an increase in collagen concentration from 0.5% to 1% (w/v)
increases pore size and reduces scaffold porosity [191,336]. To address the complexity of
component alignment observed in the ECM, Campbell et al. used a polycarbonate mold,
cylindrical wells, and sharp copper inserts (coated with PTFE). The inserts were thermally
insulated from the freeze dryer shelf by a thin 1 mm rubber mat [337–339]. In a recent
study, Hume et al. used 1% (w/v) of collagen (bovine Achilles’ tendon) solubilized in
0.05 M acetic acid followed by custom freeze-drying to produce reticulated anisotropic
scaffolding (reticulated DAC/NHS). Samples of xenograft mammary tumors and fragment
co-culture with 3T3-L1 pre-adipocyte cell line have been successfully cultured in collagen
scaffolding (pore size 100 µm), highlighting the promise of ex-vivo application [235]. This
is commonly used as a gel for adipose tissue engineering [340–343], noting that adipocytes
increased the migration of tumor cells into scaffolding on day 10 [235]. A resume of this
method, its advantages and disadvantages are summarized in Table 5.

• Electrospinning Hydrogel

The electrospinning technique uses electrical forces to form a network of fibers that
offer a large surface area from polymer solutions or melts [344] (Figure 3c). This tech-
nique is fast, efficient, relatively inexpensive, versatile, and produces microfibers with
a diameter of less than 100 nm [345,346]. The diameter of the fibers increases with in-
creasing concentration/viscosity of the polymer [347–350]. This creates uniform fibers
and reduces the incidence of fiber defects such as beading (low concentration or surface
tension problems) [348,351]. Fiber thickness generally increases pore size (space between
fibers) [299,300], while fibers with a smaller diameter exhibit the opposite effect due to the
higher density of the fiber network inside the scaffolding [352]. Noting that manufacturing
parameters should be adjusted to avoid overly dense and tight fibrous networks as dense
fibrous networks can prevent cellular infiltration into the scaffolding; high porosity is then
essential [299,301,302]. In addition, its limited control of porosity and relatively poor me-
chanical properties reduces its use in a 3D culture based on hydrogel scaffolding [303–306]
(Table 5).

Collagen-based scaffolding manufactured by electrospiding uses 1,1,1,3,3,3-
hexafluoroisopropanol (HFIP) [307,353], trifluoroethanol (TFE) [308,309] solvents, although
these nanofibrous scaffolds were wrung out using a more benign water/salt/alcohol sol-
vent system [310]. The diameter of the fibers in these collagen-based scaffolds ranged from
100 to 900 nm, with differences obtained by changing the specific electrospiding parameters.
On the other hand, crosslinking agents can be used to increase the mechanical properties of
electrospirated scaffolding [307,309–312,353]. Highlighting the potential of collagen-based
scaffolding in 3D in vitro culture model, excellent cell proliferation and viability has been
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observed in many manufactured models [307,311,312,354]. Szot et al. used this model to
assess cellular behavior on electrospirated collagen/PCL fibers manufactured in terms of
growth, proliferation, adhesion, and infiltration (fiber diameters ~400 nm (5%) to 2250 µm
(15%) depending on concentration) [299]. Recently created (2021) by Malakpour-Permlid
et al., a 3D culture model is based on a PCL fiber network [355] resembling the collagen
network of ECM due to its involvement in the main tissues and organs of the body. And as
collagen is one of the most widely used biopolymers in tissue engineering [81,356], this
fiber network is applied in the culture of normal and cancer cells by mimicking the colla-
gen structure that ensures the 3D fixation and growth of cells. Despite the advantageous
bio-activity in vitro and in vivo of collagen-based hydrogels and biomaterials, the major
problem of clinical translation and therapeutic use remains related to the animal origin of
collagen (i.e., bovine collagen, of porcine origin type I), with potential pathogenic content
(disease transmission) [357] and lack of growth factor (addition of TGF-B) [355].

• 3D-Printing Scaffolding for 3D cell Culture via Stereolithography

Stereolithography is another method commonly used for imitation of complex struc-
tures in vitro of the intestine artificial 3DP models such as microvilli. It is an excellent
candidate for studying homeostasis regeneration mechanisms in vitro. It is based on a con-
struction of the different layers that harden to visible light or infrared [313,314] (Figure 3d).
Each layer will be superimposed after the next layer has dried (generally by UV). These
layers are printed by a specific thin sheet material: The Installation Multiresolution 3D
Printer (Dilase 3D, Kloe France), layer by layer until the scaffolding is finished [313]; it is
then placed under UV light where it is post-cured [315–317]. This support can be combined
with a polymerizable photo hydrogel (PCL fibers, PCL/gelatin) that promotes cell line
growth with 3D-printing stereolithography and produce different scaffolds size from mm
to cm. However, the manufactured scaffolding is usually limited to a few tens of microns
of resolution and needs specific end expensive equipment [277,316–319,358] (Table 5).

• Micro Fluid

The microfluid support consists of silicon/elastomer-based devices. It creates a dy-
namic microenvironment presenting micro-channels with proportions from 1 to 1000 µm
which are responsible for the exploitation of a small volume of fluids generally in the range
of 10–9 to 10–18 (Figure 3e). In this system, the flow of the fluid is strictly laminar (in
parallel layers) rather than turbulent (parallel and no strong) [320,321]. This support is
normally applied in complex 3D structures or to synthesize matrices used in human trans-
plantation. The generation of aggregates of different forms and the coculture of several cells
reconstitute a more physiologically relevant tumor [322,323]. It simulates cell-cell contacts
and biological signals controlled by spatial and temporal gradients of soluble biological
factors [324–326], progression, invasion, angiogenesis as well as treatment efficacy [320,327]
since the continuous flow of nutrients and therapeutic agents establishes a physiological
profile such as that of blood circulation and intravenous injections. In fact, this system
saves labor and the reagents used since it works automatically and consumes low cellular
usage [278,328]. According to its manufacturing complexity, this system requires profes-
sional equipment and special design [322,323] and a higher budget than other strategies
applied [329–333]. The different synthetic strategies are summarized in Table 5.

4.2. Scaffold-Free Spheroids

Self-assembly is a natural phenomenon that occurs during morphogenesis and organo-
genesis. In culture, these techniques are considered the least complicated to apply because
of the absence of a fastening surface or scaffolding that allows cell colonies to self-assemble
and form aggregates of non-adherent 3D microtissues called spheroids [359–366]. Ac-
cording to a general definition, spheroids are aggregates of cells growing in a 3D way
in suspension; they can be mono or multicellular (homo or heterotypic). The cells form
hard spherical structures with a well-balanced morphology of variable size (50 to 150 µm),
formed by a necrotic nucleus and a peripheral layer [10,367–369]. Historically, Holt Freter
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was the first to use spheroids as a morphogenic model in his investigation of skin behavior
during development in 1944 [370]. Then this mode was considered a powerful tool in re-
search and clinical applications and is the best in vitro cellular model for high-throughput
screening [138,371–373]. Recent advances in tissue engineering and regeneration have
provided new techniques for the generation of tumor 3D spheroids for a variety of cancer
types in vitro. This model of multicellular tumor spheroid was initially created in the
early 1970s by radiobiologists, and then it was managed to be used for a wide variety
of cancer cell lines. Nowadays, a multitude of techniques are used for the production of
spheroids because cells are unable to adhere to the support [7,363–365,374,375], either in
the adhesion-free gel of the micro-well with superposition of cellular suspensions (e.g.,
agarose gel or alginate gel) [376–381] or by other techniques as pellet culture, suspended
goutte and filature culture [382–384].

Spheroids have been widely used by a simple, high-yield, inexpensive application
protocol that allows the production of more spheroids to mimic the architectural and
functional characteristics of native tissues [138,371–373,385,386], and to assemble models
of different types of cancer in vitro such as breast cancer (spherical shape of the breast
canal) [363,380,381,387]. On the other hand, this culture requires intense and precise work
and presents a risk of the formation of spheroids of uniform size and shape [376–381]. Not-
ing that this variation may be at the origin of the gel used but, in general, the gels (agarose,
alginate, chitosan) used in the spheroid formations have benign characteristics such as
plant origin that do not present a risk of animal contamination, significant stability at
room temperature (but are biodegradable) and non-toxicity [167–169,369,388]. In contrast,
agarose gels were formed by heating (near the boiling temperature) the solution that freezes
with cooling. For these reasons, different porous architectures and mechanical properties
can be constructed according to the modulation of agarose concentration [38]. For alginate
citing a commercial product AlgiMatrix™ ready to use, it looks like a highly porous sponge
(>90%), ready to use (freeze-dried alginate), stable at room temperature with long-term via-
bility, non-toxic, biodegradable, and can easily be degraded by a dissolution buffer in a few
minutes leaving cell aggregates intact for analysis (spheroids 50 to 150 µm) [10,367–369].
Similarly for chitosan (derived from crustaceans) has no binding domain to human cells
therefore favorable to spheroids [245,377,389,390]. Table 6 summarizes the advantages and
disadvantages of spheroid culture.

Table 6. Advantages and disadvantages of spheroid culture.

Advantage [371–373,376–381] Disadvantage [359,366,376–381]

• Inexpensive
• High efficiency
• Improves cell viability and proliferation
• Retains intrinsic phenotypic property
• Keeps physical interactions that more closely reflect

behavior in the three-dimensional native tissue (3D)

Variable diameter and size
Intense work
Diffusion gradient depends on the size (oxygen nutrient,
paracrine factor) that decreases inwards
Self-disassembly is affected by the rate of production and
consumption of factors

4.2.1. Technical Methods of Spheroid Formation

• Pellet Culture

In this system, cells are concentrated at the conical bottom of a tube by centrifugal
force (500 g, 5 min) to maximize cell-to-cell adhesions [359,391] (Figure 4a). After that, the
supernatants are removed, and cell pellets are resuspended in a spheroid formation cell
culture medium. We noted that shear stress due to centrifugation could damage cells, so
to optimize results, the suspension can be incubated on an agitator for one hour before
centrifugation [361,392–396] (Table 7).
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Table 7. Technical methods of spheroid formation.

Technical Methods Means of
Application Mode of Operation Advantages and Disadvantages References

Pellet Culture

Concentrate the cells
at the conical bottom
of a tube by
centrifugal force
(500 g/5 min)

-Remove the supernatants
to collect the cell cap
-Capus resuspended in a
culture medium to form
the spheroids
-To optimize: the
suspension can be
incubated on an agitator
for one hour before
centrifugation

-Maximized cell-to-cell adhesions
-Suitable for the differentiation of
mesenchymal cells,
chondrogenesis, and bone
formation
-Disadvantage: Shear stress due to
centrifugation can damage cells

[359,361,391–396]

Hanging drop

Use of surface tension
and gravitational force
to form spheroids in
the form of droplets
that rely on gravity
self-disassembly

-Preparation of a cell
suspension at desired
density distribution in the
wells of a mini-plateau
-Placed a lid on the
mini-tray, and the entire
mini-tray is overturned
upside down
-The drop remains fixed on
the mini-tray on the
inverted surface (surface
tension)

-Most commonly used
-Defined and controlled size of the
spheroid (drop volume and
suspension density)
-Coefficient of variation narrow
size distribution from 10 to 15%
-Inexpensive equipment
-A large amount can be
produced-Heterotypic spheroids
(’to 384 spheroids in a single
network)

[359,361,383,397–400]

The cultivation of
molded lozenges

Non-adhesive gel
(agarose) usually
prepared in molds

-Cells are forced to
aggregate by continuous
agitation
-Can be accelerated by
centrifugation

-Removes restrictions on spheroid
size
-Increases production rate
-High centrifugation can disrupt
spheroids (function)

[361,401,402]

Liquid overlay (static
suspension

Materials that do not
adhere to cells that
inhibit cell attachment,
such as agarose (agar)
gel or pHEMA

Cell bindings to the
support are inhibited; cells
spontaneously form
spheroids

-Coefficient of variation narrow
size distribution from 40% to 60%
-Easy to monitor the formation and
growth of spheroids in a plate 96
wells
-Simple Method
-Heterogeneous spheroids in size
and shape

[359,361,376,399,403–406]

Spinner Culture

Use of convection
force by stirring the
bar in centrifugal flask
bioreactor containers
generated by a
magnetic stirring
wheel or bar

Add the uniform and
well-mixed single-celled
suspension with constant
continuous stirring

-The spheroid depends on the size
of the bioreactor container
-Speed must be constant
-A high stirring speed affects the
spheroids and a slow speed makes
the cells sink to the bottom of the
container (blocks the spheroids)
-Forms heterotypic spheroids
-May not be useful for cells with
low cohesion (risk of apoptosis)
-it is difficult to follow the
spheroids during formation

[26,359,361,407–411]
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Figure 4. Technical methods of spheroid formation: (a) Pellet culture; (b) Hanging drop; (c) Liquid
overlay; (d) Spinner culture.

• Hanging drop

Hanging drop is a spheroid culture technique that uses surface tension and gravi-
tational force to form definite size spheroids in the form of droplets that rely on gravity
self-disassembly. It allows single cells to aggregate and fabricate spheroids in the form
of droplets (Figure 4b) [300,301]. By controlling the volume of the drop or density of
cell suspension, it is possible to control the spheroid size. We prepare a cell suspension
at desired density distribution in the wells of a mini-plateau, then it will be placed on
the mini-tray, and the entire mini-tray is overturned upside down [397,398]. The drop
remains fixed on the mini tray on the inverted surface (surface tension). Therefore, this
technique is mostly used due to the defined and controlled size of the spheroid (drop
volume and suspension density) with inexpensive equipment. Despite high amount pro-
duction (384 spheroids in a single network), heterotypic spheroids can appear with narrow
size distribution [359,361,383,397–400] (Table 7).

• Cultivation of Molded Lozenges and Liquid Overlay (Static Suspension)

The cultivation of molded lozenges and liquid overlay (static suspension) are culture
technique that forms spheroids by interrupting the adhesion of cells on non-adherent
culture plates or gel with non-adherent properties such as agarose with micro-well (agar)
gel or pHEMA with superposition of cellular suspensions (Figure 4c) [359,361,401–404].
It is a simple method to monitor the formation and growth of spheroids. Since the cell
binding to the support is inhibited, cells spontaneously form spheroids. It is forced to
aggregate by continuous agitation with/without centrifugation. Despite the excellent
non-adherent properties of agarose, this biomaterial has drawbacks in terms of producing
heterogeneous spheroids in size and shape (Table 7) [359,361,376,399,403–406].

• Spinner Culture Technique

It refers to the technique wherein the cell suspension in spinner centrifugal flask
bioreactor, generated by a magnetic stirring wheel container, and which is continuously
mixed by convection force stirring (Figure 4d). It adds the uniform and well-mixed single-
celled suspension with constant continuous stirring to form the spheroid (may not be
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useful for cells with low cohesion; they have the risk of apoptosis). The stirring rate must
be constant because a high stirring rate induces damage to the spheroid cells and a slow
speed makes the cells sink to the bottom of the container (blocks the spheroids). In addition,
it is difficult to follow the spheroids during formation (Table 7) [26,359,361,407–411].

Table 7 summarizes the technical methods of spheroid formation.

4.2.2. Technical Methods of Tumor Spheroid Formation

Due to their particular interest, spheroids are the most applied 3D models in oncogenic
research. They form an effective tool capable of studying the variation in morphology,
topography, size, cell organization, protein expression, and genes in the invasive and
metastatic potential of cancer cells [363,380–384,387]. These tumor spheroids have a het-
erogeneous distribution with active cells proliferating on the surface of spheroid cells
(oxygen and nutrients) and resting cells in the center [104,366]. Tumor spheroids may be
homotypic formed only of cancer cells or heterotypic consisting of cancer cells with other
cell types [375]. Spherical cancers can be classified into four groups:

• Multicellular tumor spheroids are obtained after aggregation and compaction of the
cultured cell suspension (1–7 days) under non-adherent conditions (well plates, vials
or boxes + agar gel, agarose or polyH + a traditional culture medium depending on
the cell line) [399,412,413].

• Tumorospheres (floating sphere): Tumors are formed from a single cell capable of giv-
ing rise to a sphere by clonal expansion (5–7 days up to 1–2 months) under conditions
of low adhesion (plastic with low adhesion) and with a stem cell medium (depending
on the type of cancer, growth factors may be preferentially added) [414–418].

• Tissue-derived tumor spheres (endoscopic biopsy): Tumor spheres derived from cut
(scalpel blade) and minced partially dissociated cancerous tissues are generated by
partial dissociation of tumor tissue and compaction/remodeling (2–5 days up to
12–18 days) in conventional FBS-supplemented medium [416,419,420].

• Organotypic multicellular spheroids are formed from the cutting of partially disso-
ciated tumor tissue (mechanically or enzymatically) under non-adherent conditions
(plastic treated in culture and then non-adherent conditions) that have rounded during
culture (1–3 days) [419,421–423].

5. Conclusions

Standard cell culture studies are widely used to delineate biological, chemical, and
molecular pathways, first by traditional 2D culture and then by enhanced 3D culture.
According to 2D cell limitations in some practices, recent advances in tissue engineering
and regeneration then provided new techniques for a variety of 3D in vitro models. Cells
develop in an organized three-dimensional (3D) matrix, and their behavior depends on
interactions with immediate neighbors and ECM. The 3D culture can provide an important
tool for better understanding changes, interactions, and cellular and molecular signaling
during malignant transformation and metastasis. Three-dimensional (3D) cellular scaffold-
ing is then essential for tissue engineering. So far, various natural and synthetic polymer
hydrogels have been used to design 3D scaffolding as biomaterials. This is a barrier to
mimicking the native ECM microenvironment, and therefore synthetic scaffolds may be
more useful for investigations of specific tumorigenic steps. We provide here character-
istics, advantages, and disadvantages of 3D cell culture compared to 2D types, different
types of 3D matrices such as natural, synthetics hydrogel, and spheroids—the best rational
classification of the most used 3D strategies models in cancer research. Finally, depending
on the specific objectives, the most relevant 3D models must be carefully selected.
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