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ABSTRACT

Ribonuclease lll (RNaselll) is responsible for proces-
sing and maturation of RNA precursors into func-
tional rRNA, mRNA and other small RNA. In contrast
to bacterial and yeast cells, higher eukaryotes
contain at least three classes of RNaselll, including
class IV or dicer-like proteins. Here, we describe the
functional characterization of AtRTL2, an Arabidopsis
thaliana RNaselll-like protein that belongs to a small
family of genes distinct from the dicer family.
We demonstrate that AtRTL2 is required for
3'external transcribed spacer (ETS) cleavage of the
pre-rRNA in vivo. AtRTL2 localizes in the nucleus and
cytoplasm, a nuclear export signal (NES) in the N-
terminal sequence probably controlling AtRTL2 cel-
lular localization. The modeled 3D structure of the
RNaselll domain of AtRTL2 is similar to the bacterial
RNaselll domain, suggesting a comparable catalytic
mechanism. However, unlike bacterial RNaselll, the
AtRTL2 protein forms a highly salt-resistant homo-
dimer that is only disrupted on treatment with DTT.
These data indicate that AtRTL2 may use a dimeric
mechanism to cleave double-stranded RNA, but
unlike bacterial or yeast RNase Il proteins, AtRTL2
forms homodimers through formation of disulfide
bonds, suggesting that redox conditions may oper-
ate to regulate the activity of RNaselll.

INTRODUCTION

RNaselll is a double-stranded RNA (ds-RNA) endonu-
clease found in bacteria and eukaryotic cells. It is involved

in the processing of a large number of RNA substrates,
including precursors of rRNA (1-3), snoRNA (4-8),
snRNA (9,10), mRNA decay (11,12) and RNA inter-
ference (13). All members of the RNaselll family contain
a characteristic ribonuclease domain, which has a highly
conserved stretch of nine amino acid residues known as
the RNaselll signature motif. RNaselll proteins vary
widely in length, from 200 to 2000 amino acids (14,15) and
have been subdivided into four classes based on domain
composition. Class I is the simplest and the smallest,
containing a single ribonuclease domain and a dsRNA-
binding domain (dsRBD); the bacterial and bacteriophage
RNaselll (15) belong to this class. Class II is identified
by the presence of a highly variable N-terminal domain
extension and includes the S. cerevisiae Rntl (16) and
S. pombe Pacl (17) proteins. Both of these yeast proteins
are longer than bacterial RNaselll and contain an
additional ~100 amino acid fragment at the N-terminus.
Class 111, including Drosha proteins (14), has a dsRBD
and two ribonuclease domains. Class IV, also referred to
as Dicer, is the largest and contains two ribonuclease
domains, a dsRBD, an N-terminal helicase and a PAZ
domain (13-15).

In eukaryotic cells, class II and III enzymes are expected
in the nucleus and participate in processing of snoRNA
and rRNA precursors (14). In addition, it has been shown
that nuclear and nucleolar localization of Rntl (18) and
human RNaselll (3) are cell-cycle regulated. Although
RNaselll class II has also been implicated in snRNA
(9,10) and mRNA (11) cleavages, it is not clear where
these processes take place. Class IV enzymes are found in
the nucleus (19,20) and endoplasmic reticulum (21) and
induce gene silencing.

Crystallization of an Aquifex aeolicus RNaselll ribo-
nuclease dimer provided the first insights into RNaselll
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active site organization and substrate recognition (22,23).
These studies, together with biochemical evidence, led to a
model where two ribonuclease domains combine to
form a single processing center, each domain contributing
to the hydrolysis of one RNA strand. In contrast to class
IIT and class IV RNase, which are active as monomers and
process dsRNA into small RNA fragments of ~21-27nt,
RNaselll from class I or II are active as homodimers of
two identical subunits, with dimerization occurring
through the ribonuclease domain by hydrophobic inter-
actions (23,24). This protein dimer degrades dsRNA to
small duplex products of ~10-18nt (13). It is also
noteworthy that, unlike bacterial RNaselll that forms
only dimers (24), yeast Rntl protein forms additional
high molecular weight complexes, suggesting that Rntl
possesses two mechanisms of dimerization (25). In fact,
the N-terminus of Rntlp contains a dimerization signal
involved in the multimerization of Rntl and is also
required for efficient RNA cleavage (25). However, these
results remain controversial since similar experiments
carried out by Nagel and Ares show that the N-terminal
domain of Rntlp is not required for dimerization or RNA
cleavage (26).

In E. coli, typical RNaselll substrates are cellular or
viral RNA that are able to form double-stranded RNA.
Although recognition elements that direct RNaselll-
mediated cleavage have been identified, no clear consensus
sequence has been defined [(27) and references therein]. In
yeast Rntl, the dsRBD recognizes its substrate by
interacting with stems of capped RNA with conserved
AGNN (28) or AAGU (29) tetraloops. Recognition of the
tetraloop by the dsRBD locates the ribonuclease domain
on the cleavage site, which is 13—-16 bp from the tetraloop,
in a ruler like mechanism (28). Interestingly, it has recently
been shown that Rntl can bind short RNAs and use them
to direct sequence-specific RNA degradation (30).

Higher eukaryotic organisms possess either one
RNaselll isoform from class II or III and at least one
RNaselll isoform from class IV. However, most of our
knowledge of class II RNaselll comes from yeast Rntl
studies [(6,11,18,25,29,31) and references therein] and little
is known about this class of RNaselll in other eukaryotic
organisms.

In plants, the genome of Arabidopsis thaliana encodes
four RNaselll proteins gene from class IV (32,33) and
three other uncharacterized RNaselll-like protein genes
[(19) and this study]. The function and molecular basis of
the four RNaselll-dicer proteins in small RNA metabo-
lism, gene silencing and DNA methylation have been
extensively studied (34-40). However, the identification
and molecular characterization of the other RNaselll
proteins involved in ribosome biogenesis and the meta-
bolism of other RNA substrates remain unknown.

Here, we characterized the A. thaliana RTL2 protein, a
class II RNaselll-like protein that cleaves pre-rRNA
precursors in the 3’ETS. AtRTL2 protein expression is
regulated during plant development and the nuclear—
cytoplasm localization is controlled by a novel nuclear
export signal. AtRTL2 cleaves double-stranded RNA by a
catalytic mechanism similar to bacteria and yeast;

however unlike bacterial RNaselll and yeast Rntl
proteins, AtRTL2 dimerizes through the formation of
disulfide bonds. In summary, this is the first demonstra-
tion of the involvement of RNaselll in the cleavage of the
3’ETS of pre-rRNA in a higher eukaryotic organism. It
also reveals that redox mechanisms are involved in the
control of RNaselll in plants.

MATERIALS AND METHODS
Identification and cloning of RTL1, RTL2 and RTL3 genes

Cloning of full-length ¢cDNA sequence encoding RTLI1
was performed by reverse transcription polymerase
chain reaction (RT-PCR) with total RNA isolated
from A. thaliana roots (see below). Primers used for
amplification were designed from a truncated cDNA
clone (BE529433) and the genomic sequence FCAALL
using the Genscan program (http://genes.mit.edu/
GENSCAN.html). The cloned cDNA is different from
the annotated RTLI gene (At4gl5417, data not shown).
It has 25 more amino acids at the N-terminus and contains
an additional exon of 51 amino acids in the C-terminal
sequence. The RTLI gene reported here is different from
that reported previously (19). The former encodes a
protein containing an RNA binding but not an
RNaselll domain (19) and consequently we decided to
retain the name ArRTLI. The AtRTL2 (At3g20420)
cDNA clone sequence BE522666 was obtained from the
ABRC DNA Stock Center. The RTL3 gene corresponds
to the At5g45150 annotated gene sequence. All clones
used in this study were sequenced with a model 3100 DNA
sequencer and an ABI PRISM Big Dye Terminator Cycle
Sequencing Ready Reaction Kit (Applied Biosystems,
Foster City, CA).

Bioinformatic analysis

RNaselll and RNA-binding domains were identified using
Motif Scan software (http://hits.isb-sib.ch/cgi-bin/
PFSCAN). The phylogenetic tree of RNaselll and dicer
proteins was generated with MEGA3.1 software (41), using
the Neighbor Joining method coupled with 1000 bootstrap
tests. The amino acid sequence of Dicer, Dicer-like
proteins, RNaselll and RNaselll-like proteins were
obtained from the National Center for Biotechnology
Information  (http://www.ncbi.nlm.nih.gov) and the
Arabidopsis Information Resource (http://www.arabido
psis.org). The RTL2 protein model was generated with
SWISS-MODEL, based on the A. aeolicus RNaselll
protein structure model (23), and visualized with
RASMOL 2.7.2.1.1 software (57). GeneVestigator (www.
genevestigator.ethz.ch) and Arabidopsis eFP (http://
bbc.botany.utoronto.ca) browsers were used to compare
RT-PCR results obtained in this study with digital
northerns.

Plant growth conditions and mutant isolation

All lines were derived from A. thaliana Columbia (Col 0
ecotype) and cultivated as described previously (42).
Seeds corresponding to A7Rt/2 plant lines were obtained



from the GABI-Kat/ADIS Stock Center
mpiz-koeln.mpg.de).

(http://

Methods related to RNA

Total RNA from plant organs and tissues was extracted
from 15-day-old A. thaliana plantlets using TriZol reagent
(GE Healthcare, Littler Chalfont, Bukimhamshire, UK).
After treatment with RQ1 RNase-free DNase (Promega,
Madison, WI) to eliminate contaminant DNA, first strand
cDNA synthesis was performed on 5pug of total RNA
using the ProSTAR First-strand RT-PCR kit following
the manufacturer’s instructions (Stratagene, La Jolla,
CA). To ensure that the amount of the amplified products
remains in linear proportion, a semi-quantitative PCR
reaction of 25 cycles (EFla) or 31 cycles (RTLI, RTL2
and RTL3) was performed using a PTC-200 (MJ
Research, Watertown, MA). PCR products were cloned
into pGEM-T Easy vector (Promega) and sequenced with
T7 and SP6 primers.

Expression of His-RTL2 and production of antibodies

A cDNA fragment encoding amino acids from 1 to 391 of
RTL2 was amplified by PCR from an EST clone
(accession no. BE522666) using primers 5'rz/2-Xhol and
3'rtl12-BamHI. This fragment was cloned into the Xhol/
BamHI site of the plasmid pET16b (Novagen, Madison,
WI) to produce the His-tagged-RTL2 recombinant fusion
protein. The recombinant fusion protein His-AtRTL2 was
produced following Novagen’s instructions. After cell
disruption, the expressed fusion protein was recovered by
centrifugation in the insoluble fraction. For protein
purification, inclusion bodies were suspended in 10 ml of
cold 20mM Tris—=HCIl pH 7.5, 6 M urea and the His-
AtRTL2 recombinant protein purified using a Ni**
column HiTrap Chelating HP following Pharmacia’s
instructions (GE Healthcare). For protein refolding,
purified His-AtRTL2 recombinant protein was succes-
sively dialyzed for 2h against 20mM Tris-HCI, pH 7.5;
500mM NaCl buffer containing 6, 4, 2, 1, 0.5 or 0.1 M
urea. A final dialysis step was performed overnight against
0M urea buffer. Then, one volume of 86% glycerol was
added to the dialyzed fraction and stored at —20°C for
further characterization. For antibody production, a
rabbit polyclonal antibody against His-AtRTL2 fusion
protein was customer-made by FEurogentec (Seraing,
Belgium). The IgG fractions from the antisera were
purified through a HiTrap Protein A affinity column
from Amersham Pharmacia Biotech (GE Healthcare).

Methods related to proteins

Plant material (0.2 g) was homogenized and extracted in
2ml of 50mM Tris—HCI pH 8, 150mM NaCl, 10 mM
EDTA, 50 mM NaF, 1% NP40, 0.5% sodium desoxycho-
late, 0.1% SDS, 1 mM PMSF, 10 mM [B-mercaptoethanol
(BME) and 20pl of anti-protease cocktail (Sigma). The
extracts were cleared by centrifugation at 13000g for
15 min and conserved at —80°C. To obtain nuclear protein
extracts, 2g of l4-day-old seedlings were ground in a
mortar and homogenized in 10ml of nuclear extraction
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buffer (0.5M Hexylene Glycol, 0.01M MgCl,, 0.05M
MOPS, pH 7.0). All subsequent steps were carried out in a
cold room at 4°C. The homogenate was filtered through
60 um nylon and Triton X-100 was added to a final
concentration of 1%. After 10min incubation, the
homogenate was layered onto a 35% (4ml) and 80%
(3ml) Percoll (SIGMA-Aldrich, St Louis, MO) step
gradient in extraction buffer. After centrifugation for
30min at 1090g, the nuclear fraction, located at the
interface, was collected and washed twice with nuclear
extraction buffer and stored at —80°C. Nuclear proteins
were extracted in SDS-sample buffer (43) and analyzed by
10% SDS-PAGE. Western blots were performed as
previously described (44). The membranes were hybridized
with a 1:4000 dilution of a-AtRTL2 or a 1:5000 dilution of
a-AtNUCI (42) or a-NTR (45).

Gel filtration chromatography

Flower bud extracts were prepared in protein extraction
buffer (PEB, 20mM HCI-Tris pH 7.9, 0.2mM EDTA,
20% Glycerol) containing either 100mM KCI1 (PEB100)
or 500mM KCI (PEB500), centrifuged for 20min at
48400g and the supernatant filtered through a 0.45pm
filter (Gelman Sciences). Approximately 400 pg of soluble
proteins were loaded directly onto a Hi-Prep 16/60
Sephacryl S300 HR (GE Healthcare) column equilibrated
and run either in PEB100 or PEB500. For western blot
analysis, 200 pul of 1 ml fractions were precipitated with 4
volumes of cold acetone and the pellet dissolved in SDS
loading buffer (43). The protein standards for size
estimation of RTL2 were alcohol dehydrogenase,
150kDa and BSA, 66 kDa (SIGMA).

Cellular localization studies of RTL2 in onion cells

The AtRTL2 cDNA sequence was amplified by PCR using
primers 5'rt[2-Ncol and 3'rtl2-Ncol. This fragment was
cloned into the Ncol site of the plasmid ppK100 (46) to
produce the RTL2::GFP recombinant fusion protein. To
fuse the N-terminal sequence of AtRTL2 to the GUS:NLS
plasmid (47), the DNA sequence encoding amino acids 1
to 59 was amplified by PCR using primers 5'rt/2-Ncol and
3 del59rtl2-Ncol. This fragment was cloned into the Ncol
site located in the N-terminal sequence of GUS. For
transient expression, 5 ug of plasmid was coated to 1.6 um
gold particles (BioRad, Hercules, CA) according to the
BioRad transformation protocol. Onion epidermal layers
were transfected using the PDS-1000/He biolistic. All
GUS and GFP microscopic images were taken using a
Zeiss Axioskop 2 microscope and recorded using a Leica
DC 300 FX digital camera (Leica).

Treatment of proteins with redox agent DTT

For redox treatment, recombinant protein was diluted
tenfold with 50mM Tris—-HCI pH 8.0, 150 mM NaCl,
10mM EDTA, 1% NP40 buffer. Protein samples were
incubated with a 1/4 volume of SDS-sample buffer (43)
containing either 500; 50, 5 or 0.5mM DTT. After boiling
for 1 min, samples were loaded onto an SDS-PAGE as
described before.
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Primers used in this work

S'rtll: CATGAACAAGACACAAACACAACAG

3'rtll: CCTCATGACAAGGTCTCCGAAAAATTTAG
CAAAATTGTC

S'rtl2: ATGGATCACTCTATCTCACCGGAG

3rtl2: GGCTCTAATCATGTGATACGCCG

S'rtl3: ATGGATTCT TCAGTGGAAGCA

S'rtl3: ATGAATTCAGTAGAAGCAGTA

3rtl3: TAGTCTTCTCCTCCTCTTTG

S'rtl2-Xhol:
CCGCTCGAGGATCACTCTATCTCACCGGAGTAC
3'rti2-BamHI: CGGGATCCTTAGAGATAATGAGAT
TTTCTCAAGGC

rt-rtl2: CGCTTCCTTGAGAAGACTCTTGTTAC
S'elFla: ctaaggatggtcagacccg

YelFla: cttcaggtatgaagacacc

S'3ETS: CCCAACTTTACACGAGCTCG

I3ETS: CCTCGGACCCGGTAAAC

S'U3: ACGGACCTTACTTGAACAGGATCTG

3U3: CTGTCAGACCGCCGTGCGA

S'R82: CGTTTCTGTGTCGATAACCCCGCTG

3 R84: CAAGTGTTGGATTAGATTAATTTTGC
5'tRNA: caacaaagcaccagtggtc

3'snoRNA: GAGAATGCATTGGACCCAACCAATAC
S'rtl2-Ncol: CATGCCATGGCAGATCACTCTATCTC
ACCGGAGTAC

3rtl2-Ncol: CATGCCATGGCGAGATAATGAGATTT
TCTCAAGGC

3'del59rti2-Ncol:
AAGCCATGGCCTCCGACGAAACCGGAACGC

RESULTS
The A. thaliana genome contains three RNase III-like genes

In order to identify RNaselll-like proteins in A. thaliana,
we performed a Blast search using RNaselll protein from
E. coli and Rntl from yeast. Seven genes coding for
proteins containing the RNaselll motif were found in the
Arabidopsis genome. Four belong to the DCL family
(32,33) and the three others to a new uncharacterized
family of RNaselll genes in Arabidopsis (Figure 1). We
initiated the molecular and functional characterization of
this new family of genes, namely AtRTLI, AtRTL2 and
AtRTL3 (RNAse Three Likel, 2 and 3). The deduced
AtRTLI1, AtRTL2 and AtRTL3 proteins are 289, 391 and
957 amino acids long with predicted molecular masses of
33, 45 and 108 kDa, respectively. All three sequences
contain either one (AtRTLI and AtRTL2) or two
(AtRTL3) RNaselll domains (Figure 1A). The highly
conserved stretch of 9 amino acid residues known as the
RNaselll signature motif (14) is well conserved in
AtRTLI and AtRTL2 sequences but only in the second
RNaselll motif of AtRTL3 (Figure 2B and data not
shown). Furthermore, whereas AtRTL2 and AtRTL3
display two and three RNA-binding domains (RBD)
respectively, the single putative RBD domain of AtRTL1
seems much less conserved or inexistant (Figure 1A). No
other particular protein domains were identified in these
three AtRTL sequences. Thus, Arabidopsis RTL proteins
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Figure 1. The A. thaliana genome encodes three RNase I11-like proteins
that belong to a distinct, non-dicer, gene family. (A) Schematic
representation of RNaselll and RNaselll-like proteins from A. thaliana
(AtRTLI1, AtRTL2 and AtRTL3), S. cerevisiae (Rntl), S. pombe (Pacl),
E. coli (Ec_RNaselll) and A. aeolicus (Aa_RNaselll). Gray boxes
correspond to RNaselll motifs, white boxes to double-strand RNA-
binding domain (DS-RBD) and dotted white box in AtRTLI to less
conserved RBD. Black bars correspond to 100 amino acid length. (B)
Phylogenetic relation of different RNaselll and RNase-like proteins.
Numbers represent the percentage value of Bootstrap. Accession numbers
of sequences used in this analysis: A. thaliana DCL1 (At1g01040), DCL2
(At3g03300), DLC3 (At3g43920), DCL4 (At5g20320), AtRTL1 (this
study), AtRTL2 (At3g20420) and AtRTL3 (At5g45150); O. sativa dicer-
like proteins (available in the tree), OsRTLI1 (0Os06g0358800), OsRTL2
(0s05g0271300) and OsRTL3 (Os01g0551100), S. cerevisiae (AAB04172),
S. pombe (NP_595292), E. coli (NP_417062), A. aeolicus (NP_213645);
C. elegans (NP_501789.1), D. melanogaster (NP_477436.1) and H. sapiens
(NP_037367.21).

do not belong to the Arabidopsis Dicer family which
encodes larger proteins (from 1300 to 1900 amino acids
long) containing multifunctional domains such as
DExHRNA helicase, Piwi/Argonaute/Zwille (PAZ),
RNase III and RBD (32,33). Similarly, Arabidopsis RTL
protein structure is distinct from human RNaselll and
Drosha proteins that are 1374 and 1327 amino acids long
respectively (3,14). Conversely, the Arabidopsis RTL1 and
RTL2 proteins show structural similarity to bacterial
RNaselll (15,23), S. cerevisiae Rntl (48) and S. pombe
Pacl (17) proteins. However, the N-terminal sequences of
RTL1 and RTL2 proteins are longer than bacterial
RNaselll but shorter than Rntl and Pacl yeast
RNaselll-like proteins, which present an additional
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Figure 2. In silico analysis of the AtRTL2 sequence suggests a novel mechanism for RNaselll activity in plants. (A) Comparison of the crystal
structure of 4. aeolicus RNaselll protein domain (residues 1-147) and modeled AtRTL2 (residues 57-214). Blue boxes show residues E93, E119 and
E165 (E37, E64 and E110 in A. aeolicus) and the red box shows residue D100 (D44 in A. aeolicus), located in the RNaselll domain and proposed as
RNA cutting sites. (B) Amino acid sequence alignment of AtRTL2, OsRTL2, bacterial RNaselll (E. coli and A. aeolicus) and yeast Rntl proteins.
Conserved amino acids are shaded black and gray. The 9 amino acid signature is indicated. The gray bar shows a potential nuclear export signal
(NES), the double over lining shows predicted double-stranded RNA-binding domains (Ds-RBD) and the black bar the putative bi-partite nuclear
localization signal (bi-NLS). The modeled AtRTL2 sequence (residues 57-214) is boxed. Black arrowheads show the two conserved cysteines in
AtRTL2 and OsRTL2 and potentially required for protein dimerization. Black arrows show proposed RNA cutting site residues in the bacterial
sequence. The gray arrow shows the glutamic acid residue shown in the predicted structure of RTL2.
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100 amino acid sequence in their N-terminal region
(Figures 1A and 2B).

Phylogenetic analysis using entire RNaselll sequences
showed that AtRTL1, -2 and -3 sequences from
A. thaliana form a plant-specific RNaselll group distinct
from the Arabidopsis Dicer family in plants, yeast Rntl
and Pacl proteins, Drosha or bacterial and human
RNaselll (Figure 1B). This analysis also shows that
Arabidopsis RTL1, RTL2 and RTL3 genes diverged from
a common ancestor and that the RTL2 and RTL3 genes,
as well as the orthologous genes in rice, result from recent
independent duplication events in monocotyledons and
dicotyledons.

The structural and sequence analysis of these AtRTL
proteins suggests that the ArRLT2 gene is the closest
functional homolog of the RNaselll and the Rntl protein
genes. Moreover, we demonstrated that only AtRTL2 is
ubiquitously expressed in Arabidopsis plants (see below).
Thus, based on these observations, we selected the
AtRTL2 gene for further studies to unravel RNaselll
functions in higher eukaryotic cells.

Modeling of AtRTL2 protein reveals conserved RNaselll
catalytic domain but not RNA-binding domain structure

As mentioned before, RNaselll is a double-stranded
RNA (dsRNA) endonuclease and the active form is a
homodimer of two identical RNaselll polypeptides. In
order to obtain insight into the role and mode of action of
AtRTL2, we compared the predicted folded RTL2
Arabidopsis protein with the crystal structure of bacterial
A. aeolicus RNaselll (22,23). The AtRTL2 polypeptide
chain fold adopted a similar structure to that of the
RNaselll domain of A4a-RNaselll (Figure 2A). The
analysis revealed a 28% sequence similarity between
residues 57-214 of AtRTL2 and residues 1-147 of
Aa-RNaselll (Figure 2B). Moreover, both in A4. aeolicus
and A. thaliana sequences, conserved amino acids E37,
D44, E64 and EI110 (E93; D100, E119 and E165 in
AtRTL2), which are part of the signature and proposed
RNA cutting site residues (23), are located at the surface
of two molecules that forms an active valley (shown in
blue and red in Figure 2A). In contrast to the significant
structural homology between the RNaselll protein
domains of A. aeolicus and A. thaliana, the C-terminal
domain of AtRTL2 did not exhibit such structure
homology. Indeed, we could not obtain a predicted
folded structure based on the C-terminal domain of
A. aeolicus or with crystallized dsRBD structures of
RNaselll and Rntl from E. coli (49) or S. cerevisiae (50),
respectively.

The AtRTL2 gene is constitutively expressed in A. thaliana

To test expression of AtRTLI, AtRTL2 and AtRTL3
genes, we performed a semi-quantitative RT-PCR analy-
sis. As shown in Figure 3, primers 5'r¢t/1 and 3'rtl] amplify
a band of ~0.6 kbp in roots only (lane 2, panel AtRTL1).
Extended PCR times did not allow us to detect amplifica-
tion in other tissues. On the other hand, primers 5'r¢/2 and
3'rtl2 gave a weak band of ~1.2 kbp in roots, whereas
greater amounts of the corresponding cDNA were
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Figure 3. ArRTLI, AtRTL2 and AtRTL3 gene expression in A. thaliana
plants. RT-PCR analysis of AtRTLI, -2 and -3 in: flowers buds (lane 1),
roots (lane 2), seedlings (lane 3), leaves (lane 4), seeds (lane 5) and
germinating seeds (lane 6). Arabidopsis thaliana elongation factor lo
(EF-Ia) gene expression was analyzed as a PCR control to evaluate the
amount of ¢cDNA used in each reaction (lanes 1-6). Lane 7, PCR
amplification control using genomic DNA.

detected in flower buds, seedlings, leaves, dry seeds and
6-h germinating seeds (lanes 1-6, panel AtRTL2).
We confirmed by sequencing that these bands correspond
to specific AtRTLI and AtRTL?2 transcripts and not to
genomic sequences, which produce ~0.7 and 1.3 kbp
bands containing intron sequences (lane 7). Our data were
consistent with electronic data from e-FP (51) and
Genevestigator (www.genevestigator.ethz.ch) browsers.
PCR amplification using primers 5'rz/3 and 3'rt/3 did not
detect specific A¢tRTL3 transcripts in these samples (lanes
1-6, panel AtRTL3), nor were transcripts detected using
an internal primer located just upstream of the second
RNaselll motif of AtRTL3 (data not shown). PCR
reactions using specific primers to amplify EF/a tran-
scripts were used to verify amounts of cDNA in each
reaction (lanes 1-6, panel EFlx).

Based on this study; it is likely that only AzRTLI and
AtRTL?2 are functional genes in Arabidopsis plants grown
in normal conditions. However, because AtRTL2 is
ubiquitously expressed, we suspected that the correspond-
ing AtRTL2 protein could fulfil most RNase III activities
of the cell.

AtRTL2 protein is expressed during seed maturation
and germination

AtRTL?2 transcripts are detected in all tissues and plant
organs tested, including dry and germinating seeds
(Figure 3). In order to study the protein expression of
AtRTL2 during early stages of plant development, we
produced polyclonal antibodies against a His-tagged
recombinant AtRTL2 protein and performed western
blot analysis of total soluble proteins extracted from
flowers, siliques and seeds at different development stages
and germinating seeds after a cold treatment period (4°C)
of 48 h. As shown in Figure 4, the AtRTL2 protein level
decreases over 13 days after fertilization (DAF) to become
undetectable at 16 DAF (lanes 1-7). However, AtRTL2
protein became detectable again 6 h after seed imbibition
(lanes 8—10) and its level remained stable after 24 and 48 h
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Figure 4. AtRTL2 protein is expressed during seed maturation and
germination. Western blot analyses of AtRTL2 expression during seed
development at 0, 4, 8, 10 13, 16 and 21 days after fertilization
(lanes 1-7) and 6, 24 and 48 h after imbibition (lanes 8-10). Gel protein
loading was verified by staining the gel with Coomassie blue. Seed
development can be visualized by accumulation of 12S proteins
(lanes 5-10).

germination (lanes 9—10). The SDS-PAGE stained with
Coomassie blue is shown to control similar amounts of
proteins of each sample and to visualize accumulation of
12 S storage proteins during seed development (52).

Nuclear cytoplasmic localization of AtRTL2 protein

To determine the in vivo sub-cellular localization of
AtRTL2 we transformed epidermal onion cells by
bombardment wusing an AtRTL2:GFP plasmid. As
shown in Figure 5A, in transiently transformed onion
cells the AtRTL2::GFP fusion protein was found in the
nucleoplasm and the nucleus (top). The nucleus of onion
cells is easily visualized by Nomarski and the GFP
fluorescence co-localizes with this structure (middle).
Transformation of onion cells with GFP plasmid alone,
used as a control, shows homogenous fluorescence in the
cell (bottom).

To confirm the nuclear and the cytoplasmic localization
of AtRTL2, we performed western blot analysis using
antibodies against the His-AtRTL2 recombinant protein.
As shown in Figure 3B, antibodies against His-AtRTL2
(-AtRTL2) cross-reacted with a single ~45kDa poly-
peptide in the nuclear protein extract (Figure 5B, lane 2).
The observed polypeptide corresponds to the ~45kDa
expected size of AtRTL2. When a total soluble protein
extract was analyzed with the o-AtRTL2 antibody,
a second band of ~43kDa was detected (Figure 5B,
lane 1). Analysis of Afrt/2 plant mutants (see below)
demonstrates that this band corresponds to a non-specific
cross reaction. The nuclear protein extract was controlled
with antibodies against the nuclear and nucleolar
A. thaliana nucleolin-like 1 protein, AtNUC-L1 (42)
(Figure 5B, a-AtNUCI panel). As expected, AtNUC-L1
was mainly detected in the nuclear fraction (lane 4) when
compared with total soluble proteins (lane 3), indicating
that nuclear protein extract is enriched in nuclear proteins.
In order to rule out contamination of the nuclear extract
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with cytoplasm, the same membrane was incubated with
antibodies recognizing both NTRA and NTRB proteins,
two NADPH Thioredoxin Reductases (NTR) (45)
(Figure 5B, a-NTR panel). The a-NTR antibodies failed
to detect any protein in the nuclear fraction (lane 4),
whereas NTR proteins were easily detectable in the total
soluble protein extract (lane 3).

In conclusion, these results clearly establish
the cytoplasmic and nuclear localization of RTL2 in
A. thaliana.

AtRTL2 contains N-terminal nuclear export signal

Nucleo-cytoplasmic partitioning of many transcription
factors or enzymes is determined by the relative accessi-
bility of nuclear export signals or NES (53). AtRTL2
contains a putative bipartite nuclear localization signal in
the C-terminal sequence and a NES in the N-terminus
(Figures 2B and 6). Comparison of NES from HIV-1Rev
(54), mPKlIa (55) and NES from Papl (56) highlights a
similarity between the putative NES of AtRTL2 and
S. pombe Papl; in particular the residues CS located just
before or after the third leucine in AtRTL2 and Papl
sequences (Figure 6A, top). To determine if the putative
NES of AtRTL2 was able to exhibit nuclear export
activity, we fused the N-terminal sequence of AtRTL2
(amino acids 1-26) to a GUS::NLS fusion protein (47) to
produce an NES::GUS::NLS fusion protein (Figure 6A,
bottom). Transient expression experiments in onion cells
show that the putative NES sequence of AtRTL2 is indeed
able to export the GUS activity of the GUS-NLS fusion
protein from the nucleus to the cytosol (Figure 6B), since
the GUS labeling obtained with GUS::NLS alone (middle
panel) decreases in the nucleus (bottom panel).
Interestingly, NES from RTL2 is not able to translocate
what seems to be some nucleolar localization of the
GUS::NLS fusion construct (compare panels GUS::NLS
panel versus NES::GUS::NLS panel). Transformation of
onion cells with GUS plasmid alone, used as a control,
shows homogenous GUS staining (GUS panel).

AtRTL2 forms dimer through disulfite bond formation

A significant difference can be noted between the plant
AtRTL2 and yeast Rntl proteins. As observed in
Figures 1A and 2B, the yeast Rntl protein shows an
extended N-terminal sequence proposed to contain a
dimerization signal (25). This domain is present neither in
the Arabidopsis AtRTL2, nor in the rice ortholog
OsRTL2. This raises the question as to whether plant
RTL2 proteins are capable of dimerization like their yeast
homologs, and how dimerization may occur. To attempt
to answer the first question, we tried to obtain functional
complementation of yeast Arnt/ mutant cells by ectopic
expression of AtRTL2. In S. cerevisiae, disruption of the
RNTI gene is not lethal but leads to a strong growth
defect (5). Despite the use of either low copy or high copy
shuttle vectors, as well as strong promoters to produce
AtRTL2 in yeast mutant cells, no complementation could
be obtained (data not shown), indicating that AtRTL2
may function in a different manner to Rntl in vivo. In this
context, to determine if AtRTL2 forms homodimers, total
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Figure 5. Nuclear and cytoplasmic localization of AtRTL2. (A) Cellular localization of AtRTL2::GFP fusion protein in transfected onion epidermis
cells. Arrows point to the nucleus and cytoplasm visualized by GFP fluorescence (Upper panel); the nucleus can be easily observed by Nomarski
(Middle panel). Onion epidermial cells transformed with GFP alone produce homogenous GFP fluorescence (Lower panel). (B) Immunolocalization
of AtRTL2. Total soluble (lanes 1 and 3) and nuclear (lanes 2 and 4) protein extracts isolated from A. thaliana seedlings were separated by
SDS-PAGE, transferred to nitrocellulose and incubated with o-AtRTL2 (left panel) or with a-AtNUCI and o-NTR (right panel) antibodies.
a-AtNUCI antibody detects nuclear and nucleolar Arabidopsis nucleolin like-1 protein. a-NTR detects cytoplasmic Arabidopsis NADPH-thioredoxin
reductase.
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Figure 6. AtRTL2 contains a nuclear export signal (NES). (A) Alignment of putative NES sequences from AtRTL2 with NES from Papl; HIV-1Rev
and mPKlIa (top). Schematic representation of GUS, GUS::NLS and NES::GUS::NLS constructs (bottom). (B) Onion epidermal cell transformed
with GUS alone (upper panel), GUS fused to the nuclear localization signal (NLS) of RPL13 (middle panel) and the GUS::NLS construct fused to
the N-terminal sequence of AtRLT2 containing a putative NES (bottom panel). White arrows show three nuclear bodies containing unexported GUS
activity.

soluble protein extracts prepared from Arabidopsis flower The AtRTL2 protein sequence contains five cysteines
buds were fractionated through a size fractionation (C14, C86, €240, C322 and C348) among which two
Sephacryl S300 column equilibrated either with 0.1 M (C240 and C322) are conserved in the rice ortholog
KCl or 0.5M KCI buffer (Figure 7A). Western blot OsRTL2 (Figure 2B). Consequently, we tested the ability
analyses of eluted fractions revealed that the peak of of AtRTL2 to dimerize through intermolecular disulfide
AtRTL2 protein eluted at ~110kDa in both conditions bonds. For this purpose, refolded recombinant protein
(lanes 69-75). The estimated size corresponds approxi- His-AtRTL2 (see Materials and Methods section) was first
mately to at least twice the predicted molecular weight subjected to different reducing treatments before migra-
of AtRTL2 (~45kDa), suggesting that the AtRTL2 tion on a denaturing polyacrylamide gel. As shown in
protein exists as a dimer. We did not detect AtRTL2 Figure 7B, His-AtRTL2 protein treated with 120mM
protein in higher molecular weight fractions (lanes 57-67). DTT remained mostly as monomers (lane 1), whereas at a
Protein fractions of molecular weight lower than 67 kDa lower DTT concentration His-AtRTL2 behaved as a
eluted as a large and diluted bulk of proteins, making dimer (12mM DTT, lane 2) or as larger species (1.2mM
the detection of AtRTL2 difficult. Consequently we could DTT, lane 3). Much lower amounts of DTT induced
not determine to what extent AtRTL2 may exist as a formation of even larger forms that probably do not
monomer, if at all. enter the gel and are consequently not detected (lane 4).
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Figure 7. Redox regulation of AtRTL2 protein dimerization. (A) Gel
filtration chromatographic analysis of AtRTL2 under 0.1 M KCI (top)
or 0.5M KCI (bottom) buffer conditions. Numbered lines correspond
to the protein fractions (from 57 to 79). The peak position of alcohol
dehydrogenase (ADH, 158kDa) and bovine serum albumin (BSA,
67kDa) markers are indicated by arrowheads. The arrow at the
110 kDa position indicates the estimated size of the RTL2 protein peak.
(B) Recombinant His-AtRTL2 protein in sample buffer containing 120,
12, 1.2 and 0.12mM DTT (lanes 1-4) was analyzed by SDS-PAGE and
western blot with o-AtRTL2 antibodies. Arrows indicate positions of
monomers, dimers and higher order structures according to standard
molecular weight markers.

The recombinant His-AtRTL2 protein showed similar
behavior after incubation with different amounts of
another reducing agent, B-mercaptoethanol (data not
shown). Finally, fractionation of His-AtRTL2 recombi-
nant protein throughout sucrose gradients demonstrates
that His-AtRTL2 homodimer formation is indeed depen-
dent on DTT (Figure S3A). Moreover, in protein extracts
from Arabidopsis the amount of AtRTL2 monomer
protein was also dependent on DTT concentration
(Figure S3B).

In conclusion, these data suggest that AtRTL2 forms
homodimers through the formation of disulfide bonds.

Disruption of AtRTL2 by a T-DNA insertion inhibits
cleavage of the 3’ETS from rRINA precursor

To investigate the functional role of AtRTL2 in planta, an
AtRtI2 homozygous line was isolated. In this mutant line
(Gabi-Kat line 568D10), expression of the ArRTL2 gene
was disrupted by a T-DNA insertion as shown in
Figure 8A. RT-PCR analysis using primers 5'r7/2 and
3'rtl2 did not detect AzRTL2 transcripts in AzRt/2 mutant
plants (Figure 8B, RT-PCR panel, lane 2) compared with
WT plants (lane 1). In addition, to verify the absence of
the AtRTL2 protein, we performed western blot analysis
using antibodies against His-AtRTL2 («-AtRTL2 panel).
Indeed, a-AtRTL2 detected a ~45kDa polypeptide in WT
nuclear protein extracts (lane 1) which is absent in the
AtRt12 nuclear protein extract (lane 2).

To test whether or not the processing of polycistronic
snoRNA and 3'ETS pre-rRNA precursors was affected in
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AtRtl2 plants, total RNA was extracted from WT and
AtRt2 plants and the accumulation of snoRNA mono-
cistronic (U3), dicistronic (tsnoRNA), polycistronic
(cluster 15) and 3’ETS pre-rRNA was measured by semi-
quantitative RT-PCR. As shown in Figure 8B, we
observed significant accumulation of a band correspond-
ing to the unprocessed 3'ETS from the rRNA precursor in
AtRtl2 plants (panel At3’ETS, lane 4) compared with WT
plants (lane 3). In contrast, we detected no major effect on
the level of polycistronic snoRNA (panel cluster 15), nor
on that of dicistronic (panel tsnoRNA R43.1) or mono-
cistronic snoRNAs (panel snoRNA U3). We also
observed that AtRTL2 does not cleave the pre-RNA
precursor at the P site in the SETS (44) (Figure S2). This
is in agreement with results in yeast that demonstrate that
Rntl is required for cleavage of pre-rRNA in the 3’ETS
but not the 5ETS (2). In conclusion these results
(Figures 8B and S4) demonstrate that AtRTL2 cleaves
the 3’ETS from the rRNA precursor in planta.

DISCUSSION

Here we report the functional study of AtRTL2, an
RNaselll-like protein that belongs to a small family of
three genes in A. thaliana (AtRTLI, AtRTL2 and
AtRTL3). Based on the protein structure, AtRTL2 can
be considered as a class II and AtRTL3 as a class III
RNaselll-like protein. As the AtRTL1 protein sequence
does not contain a conserved dSRNA RBD, it does not fit
any of these classes. The RTLI1, -2 and -3 protein
sequences are found not only in dicotyledons, but also
in monocotyledonous plants, suggesting evolutionary and
functional conservation (Figure 1). We were not able to
identify genes encoding these proteins in other plant
species because most available plant sequences are
truncated cDNA or unfinished DNA sequence programs.
However, the fact that the proteins are found in both
Arabidopsis and rice strongly suggests their presence in all
plant lineages.

The AtRTL2 gene is constitutively expressed in all
organs and plant tissues tested. AfRTLI is expressed
mainly in roots and we have never detected RTL3
transcripts in our growth conditions, or in the
Arabidopsis MPSS databanks (www.mpss.udel.edu/at/).
Thus, in standard growth conditions only A¢tRTL2, and to
some extent AtRTLI, seem to be functional genes in
A. thaliana (Figure 3). However, only AtRTL2 seems to
play a more general role.

AtRTL2 expression is controlled at the transcriptional
and/or post-transcriptional level. Indeed, although
AtRTL?2 transcripts are detected in all tissues and plant
organs tested, no protein is detected in dry seeds (Figure 4).
In fact, the AtRTL2 protein level decreased during seed
formation and became detectable after seed imbibition.
Accumulation of different RNAs, including rRNA pre-
cursors and mRNA in seeds was reported several years ago
(57,58). These reports show that, whereas some RNAs are
degraded during seed formation, other are stored and used
as soon as germination starts. Thus, A¢tRTL2 transcript
accumulation in dry seeds could constitute a mechanism to
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Figure 8. Analysis of A4. thaliana plants with an AtRTL2 gene disrupted by T-DNA insertion. (A) Diagram of AfRTL2 gene transcript including
S'UTR and 3'UTR. Gray boxes correspond to exons separated by three introns. The T-DNA insertion in A7Rt/2 plants is indicated by a gray
diamond. Positions of primers 5'77/2 and 3'rt/2 used to detect 4zRTL2 transcripts are indicated by black arrows. (B) Left panel: RT-PCR reaction
using total RNA isolated from 15-day WT and AzR¢/2 seedlings (lanes 1 and 2) to detect A7RTL2 transcripts. Detection of the U3snoRNA transcript
was performed as an RT-PCR control to evaluate the amount of RNA used in each reaction (bottom). Lower panel: nuclear protein fractions from
WT and Atrt/2 (lanes 1 and 2) were fractionated by SDS-PAGE and hybridized with a-AtRTL2 antibody. Right panel: RT-PCR reaction using total
RNA isolated from 15-day seedlings (WT and A7Rtl2 plants lanes 3-4) to detect monocistronic (snoRNA U3) and polycistronic snoRNA precursors
(cluster 15), tsnoRNA R43.1 and the 3’ETS from pre-rRNA (At3'ETS). Schematic representation of genomic organization of snoRNA U3, cluster 15
snoRNA, tsnoRNA R43.1 and the 3’ETS to show positions of primers used for amplification in the RT-PCR reaction. Panel EFla shows a PCR
reaction using genomic DNA extracted from WT plants (lane 1) or total RNA extracted from WT (lane 2) or A¢Rt/2 (lane 3) plants.

ensure rapid synthesis of RNaselll protein for efficient
growth and plant development. Further experiments are
required to confirm these hypotheses.

AtRTL2 localizes both in the nucleus and cytoplasm
of A. thaliana cells (Figure 5). We would expect that
protein modification allows AtRTL2 to move in and out
of the nucleus to carry out multiple cellular functions
in response to different physiological and/or cell condi-
tions. In agreement with this, it has been demonstrated
that the nuclear localization of human RNaselll and
yeast Rntl is cell-cycle dependent (3,18). The nuclear-
cytoplasmic localization of AtRTL2 seems to be con-
trolled by a novel nuclear export signal (NES) located in
the N-terminal part of the protein (Figure 6). Strikingly,
although NES are defined rather as short hydrophobic
leucine and isoleucine-rich sequences, three amino acid
residues, CSL and LCS, are conserved in both AtRTL2
and Papl NES sequences respectively (Figure 6A). This
observation is important because the two cysteines in the
Papl NES have been implicated in nuclear-cytoplasmic
relocalization of Papl in response to oxidative stress (56).

In silico analysis and biochemical studies indicate that
AtRTL2 forms homodimers and cleaves intergenic RNA
regions (Figures 2, 3 and Supplementary Figure S3), as do
bacterial RNaselIl (15) and yeast Rntl (25,59) proteins.
However, the mechanisms involved in target recognition
or dimer formation appear to be different. Indeed, we

could not obtain predicted folding of the dsRBD of
AtRTL2 based in crystal structures from bacterial
RNaselll (22,49) or yeast Rntl (50) proteins. This is an
important observation because the dsRBD of RNaselll
and Rntl proteins positions the ribonuclease domain on
the cleavage site in a ruler-like mechanism (28). Moreover,
stems capped with the conserved AGNN or AAGU tetra
loops sequence identified in yeast, were not identified in
the 3’ETS sequence of Arabidopsis pre-rRNA. Only an
inverted tetra loop sequence was found in the polycis-
tronic snoRNA cluster 15 (Figure S3).

On the other hand, Rntl contains an extended
N-terminal domain required for dimerization that is
absent in the AtRTL2 and bacterial RNaselll proteins
(Figures 1 and 2). Nevertheless, our results clearly show
that AtRTL2 is capable of dimerization, most probably
forming homodimers, indicating that another mechanism
for such dimerization was required. First, we tested
whether hydrophobic interactions between RNaselll
domains of two AtRTL2 proteins could be responsible
for dimerization, since similar mechanisms have been
proposed for bacterial RNaselll (15). Hydrophobic
interactions have also been recently described as a
requirement for homodimerization of some members of
the DEDD exonucleases such as E. coli RNase T
exoribonuclease (60) and bacterial oligoribonuclease
(61). In the case of AtTRL2 however, we found that the



AtRTL2 dimer is resistant to high salt concentration,
suggesting that hydrophobic interactions might not be the
predominant mechanism for dimerization. Next, without
completely excluding the possibility that hydrophobic
cores may play a role at the dimer interface, we considered
the possibility that other signals such as the presence of
cysteine residues forming disulfide bridges could orches-
trate AtRTL2 dimerization. Stabilization of protein com-
plexes through establishment of disulfide bridges has been
demonstrated in numerous examples, including some
RNase proteins such as the yeast and human protein
kinase/endoribonucleases IREla (62). Interestingly, we
found that the AtRTL2 protein contains 5 cysteines,
among which Cys240 and Cys322, located in the
C-terminal region, are conserved in the orthologous rice
RTL2 protein (Figure 2B). In contrast to the conserved
Cys168 in RNase T proteins that is required for dimeriza-
tion exclusively through its hydrophobic properties (60,63),
we have demonstrated here that homodimerization of
AtRTL2 is controlled by disulfide bond formation
(Figures 7 and S3). However, whether or not Cys240 and
Cys322 are dimerization signals controlling the dynamics
and activity of AtRTL2 now remains to be elucidated.
Different hypotheses are now open. AtRTL2 could either
form intra molecular bonds giving rise to conformational
changes required prior to the dimerization event, possibly
followed by other requirements such as hydrophobic
interactions, hydrogen-bond networks or intermolecular
disulfide(s) bridging monomers to stabilize AtRTL2 as a
functional dimer. Analysis of the three-dimensional struc-
ture of AtRTL2 as well as the use of AtRTL2 variants
carrying mutated cysteines should provide more informa-
tion regarding the role of these cysteine residues.

We show that disruption of the ArRTL2 gene by a
T-DNA insertion (AtRt/2 plants) inhibits cleavage of the
3’ETS of pre-rRNA in planta (Figures 8 and S4). This is in
agreement with the nuclear localization of AtRTL2 and
the reported role of RNaselll and RNaselll-like proteins
in ribosome biogenesis in eukaryotic cells (64,65). The
AtRtI2 plants do not display any growth or morphological
phenotype. This is unlike the slow growth phenotype
observed in S. cerevisiae in which the Rntlp gene has been
deleted (4). In this context, we can speculate that cleavage
of the 3’ETS of pre-RNA is not strictly required for cell
function and/or Arabidopsis plant development. It is also
possible that in the A7Rt/2 mutant plants, functions of
AtRTL2 are carried out by other proteins containing
RNaselll domains. However, if this is the case, the
cleavage activity is probably much slower than that of
AtRTL2 due to the strong accumulation of uncut 3’ETS
in the plant mutant. The Arabidopsis genome encodes four
dicer-like proteins that could possibly replace some of the
AtRTL2 activities (19,20).

Interestingly, in the AtRt/2 plants, the level of poly-
cistronic snoRNA precursors is not affected as expected
(Figure 8). The 3'ETS cleavage of pre-rRNA is a co-
transcriptional processing step that takes place in the
nucleolus (31), whereas processing of snoRNA is carried
out not only in the nucleoplasm (66) but also in the
nucleolus and Cajal bodies (67). In this context, it is
possible that disruption of AtRTL2 does not affect

Nucleic Acids Research, 2008, Vol. 36, No.4 1173

polycistronic snoRNA because other factors take over
the role of AtRTL2, such us a Dicer-like protein (19,20) or
the AtRTLI1 protein as mentioned above. However, we
cannot discard the possibility that polycistronic snoRNA
are processed by a mechanism that does not involve
RNaselll-like activities. Indeed, although hairpin-loop
structures can be predicted between the snoRNA coding
sequences R82, R83 and R84 from cluster 15, only the
hairpin-loop structure located between snoRNA RS82 and
R83 is stem-capped with the conserved AGNN sequence
identified in yeast (Figure S2).

In conclusion, AtRTL2 is a double-stranded RNaselll
endonuclease-like protein but the molecular bases con-
trolling the activities of AtRTL2 are probably different
from those of bacterial RNaselIl and yeast Rntl proteins.
Indeed, redox regulation might play a key role both in the
cellular localization and the protein dynamics of AtRTL2.
On the other hand, it is most likely that AtRTL2 is
involved in processing of other RNAs both in the nucleus
and the cytoplasm. The identification of targets and
mechanisms controlling the activity and dynamics of
AtRTL2 is the next challenge to contribute to a better
understanding of how RNAs and RNaselll-like proteins
control gene expression in higher eukaryotes.
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Supplementary Data are available at NAR online.
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