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Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflam-
maging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., 
immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions 
involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and 
CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Corre-
spondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are 
not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in 
dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced 
by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell com-
partments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune 
profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs 
significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells 
(Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflam-
mation with aging. We propose that MDSCs are potent inducers of immunosenescence.
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Introduction

The aging process in humans is associated with a gradual 
decline in the functional capacity of adaptive and innate 
immune systems [1–5]. This age-related immune deficiency 
has been called immunosenescence. Clinically, immu-
nosenescence reduces vaccination efficiency and impairs 

anticancer immunity, thus increasing the susceptibility to 
infections and the prevalence of cancers with aging. Immune 
deficiencies, similar to those encountered in immunose-
nescence, also appear in many diseases involving chronic 
inflammation, e.g., sepsis and autoimmune diseases. It is 
known that chronic low-grade inflammation, called inflam-
maging, down-regulates the immune responses of both the 
adaptive and innate immune system in humans and mice 
[3]. Not only does aging modulate the phenotypes and func-
tions of immune cells, but it also affects their development 
and maturation in the bone marrow and spleen. Currently, it 
is still unclear whether immunosenescence is a significant 
defense mechanism against age-related chronic inflamma-
tion or a detrimental consequence of the chronic low-level 
inflammatory condition associated with aging. However, it 
is known that the aging process induces an active remod-
eling of the immune system rather than causing irreversible 
cellular senescence such as that occurring in non-immune 
cells [6, 7].
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There is convincing evidence that chronic inflammation 
induces immunosuppression which inhibits both adaptive 
and innate immunity in different human disorders [8, 9]. 
Inflammatory factors promote the recruitment of immuno-
suppressive cells into inflamed tissues, where they suppress 
persistent inflammation and restore homeostasis in inflamed 
tissues. Myeloid-derived suppressor cells (MDSC) are spe-
cialized immunosuppressors which can control the functions 
of other immune cells, thus preventing excessive inflamma-
tory responses [10, 11] (Fig. 1). For instance, Bunt et al. 
[12] demonstrated that chronic inflammation increased the 
accumulation of MDSCs into mouse mammary carcinoma; 
this induced immunosuppression, allowing the tumor cells 
to undergo immune escape. The inhibition of inflammation 
prevented the recruitment of MDSCs into tumors, a process 
that prevented the immunosuppression and subsequently 
blocked tumor growth. It is not only cancer-related inflam-
mation which recruits MDSCs since these cells accumulate 
in many inflamed, non-neoplastic tissues and consequently 
suppress the functions of T cells and myeloid cells [13]. 
We will compare the immune profiles of immunosenescence 
and MDSC-driven immunosuppression. This comparison 
clearly highlights how immunosenescence might be driven 
by MDSCs which modulate the immunosuppressive network 
to the form encountered in both inflammaging and many 
inflammatory diseases. Bueno et al. [14] have also specu-
lated that MDSCs could be involved in the generation of 
immunosenescence.

Immunosenescence

There is a substantial literature indicating that a distinct 
functional decline occurs in the human immune system 
with aging, although all age-related alterations are not 
ubiquitous since many of these modifications seem to be 
context dependent [1, 3, 5, 15]. Briefly, an involution of 
the thymus and a marked decline in the numbers of naïve 
CD4+ and CD8+ T cells are the common biomarkers of 
immunosenescence in both humans and mice. Correspond-
ingly, there is an expansion of memory CD4+ and CD8+ 
T cells, which might be a reflection of a persistent antigen 
load, e.g., induced by cytomegalovirus (CMV) infections 
with aging in humans [16, 17]. In addition, there are dis-
tinct deficiencies in the B cell compartment with aging 
which disturb the maintenance of humoral immunity, e.g., 
the decline in antibody production [18, 19]. Overall, the 
effects of aging are more profound on adaptive immunity 
than on innate immunity, although there exist also some 
functional deficiencies in dendritic cells [20], monocytes/
macrophages [21], and natural killer cells [22] (Fig. 2). 
Interestingly, age-related immunosenescence seems to be 
an evolutionarily conserved phenomenon, e.g., in insects, 
birds, and mammals [23–25]. We will examine more thor-
oughly the specific changes in immunosenescence and 
compare their characteristics to those induced by MDSCs.

Currently, there is still a debate about whether immu-
nosenescence evokes inflammaging or whether it is inflam-
maging which reprograms the immune system [7, 15]. 
Given that inflammation is a consequence rather than the 
original perpetrator of the aging process, it seems reason-
able to argue that chronic inflammation could adapt the 
immune system to cope with the aging microenvironment. 
The inhibition of T cells and some components of innate 
immunity might protect tissues from excessive injuries 
in conditions where persistent insults cannot be removed 
and the resolution of inflammation is impaired. Moreover, 
immunosenescence is associated not only with the aging 
process, but is also present in different pathological condi-
tions involving chronic inflammation. For instance, inflam-
mation has a crucial role in tumorigenesis where there is 
a significant increase in the biomarkers of immunosenes-
cence, e.g., in breast cancer [26], multiple myeloma [27], 
glioma [28], and lung cancer [29]. In addition, it has been 
recognized that immunosenescence has a crucial role in 
the pathology of rheumatoid arthritis [30] and cardiovas-
cular diseases [31]. It is known that the impaired resolu-
tion of acute inflammation induces chronic inflammation 
involving immune suppression, which provokes detri-
mental effects in host tissues [8]. It seems that persistent 
inflammatory conditions cause an adaptive response in the 
immune system by inducing a state of immunosuppression, 

Cellular stress/senescence

Inflammaging Myelopoiesis

MDSC

Immunosuppression

Immunosenescence

Treg Breg Mreg

Fig. 1   A schematic representation of MDSC-driven immunosenes-
cence. The age-related cellular stress and senescence induce a condi-
tion termed inflammaging, which is associated with increased mye-
lopoiesis. A mild inflammatory profile stimulates the production of 
MDSCs and other immunosuppressive cells, e.g., Tregs, Bregs, and 
Mregs. The cooperation between the components of this immunosup-
pressive network creates an immune-suppressive microenvironment, 
which after the remodeling of the immune system generates immu-
nosenescence
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similar to immunosenescence, not only in the aging pro-
cess but also in inflammatory diseases.

MDSC‑induced immunosuppression

MDSCs are a heterogeneous group of immunosuppres-
sive myeloid cells which develop from common myeloid 
progenitor cells during the myelopoietic process [10, 32, 
33]. Generally, we can separate these cells into human/
mouse monocytic and granulocytic MDSC subsets which 
possess distinct phenotypes in their cell-surface markers 
as well as displaying some differences in their context-
dependent immunosuppressive functions [33–35]. MDSCs 
are the major immune-suppressive cells in the body and 
thus they are involved in the host defense against inflam-
matory insults induced by either endogenous damages or 
by environmental insults, such as viral and bacterial infec-
tions [10, 36, 37]. Inflammatory factors, e.g., colony-stim-
ulating factors (CSF), chemokines, and some cytokines 
can provoke emergency myelopoiesis in the bone marrow 
by stimulating the expansion and release of MDSCs [32, 
38]. Chronic inflammation can also stimulate extramedul-
lary myelopoiesis and trigger the generation of MDSCs, 
e.g., in the spleen and peripheral lymphoid organs. Several 
chemokines, e.g., CCL2, CXCL2, and IL-8, are able to 
induce the recruitment of MDSCs into inflamed tissues 
where they inhibit acute inflammatory responses allowing 
the resolution of inflammation [36, 37, 39, 40]. In inflamed 
tissues, many cytokines, e.g., IL-1β, IL-6, and TNF-α, as 
well as many inflammatory alarmins, such as HMGB1, 

S100 factors, and PGE2, can activate the immunosuppres-
sive armament of MDSCs [36, 41–43]. The JAK-STAT and 
the NF-κB signaling pathways are the two major mecha-
nisms involved in inducing the immunosuppressive poten-
tial of MDSCs [44]. Moreover, hypoxia/HIF-1α is a potent 
enhancer of MDSC-mediated immunosuppression [45].

MDSCs possess a powerful array of immune-sup-
pressive mechanisms [10, 11, 46]. For instance, MDSCs 
secrete IL-10 and TGF-β cytokines which are potent 
anti-inflammatory and immunosuppressive factors. IL-10 
and TGF-β are the major regulators of many of the func-
tions performed by myeloid and lymphoid cells [47, 48]. 
For instance, IL-10 inhibits NF-κB signaling, a crucial 
inducer of pro-inflammatory reactions as well as stimu-
lating STAT3 signaling, a key factor in the activation of 
MDSCs and immunosuppressive regulatory T cells (Tregs) 
[49–51]. Moreover, IL-10 can suppress the antigen pres-
entation of dendritic cells and macrophages, and evoke 
macrophage M2 polarization [52, 53]. Similarly, TGF-β 
cytokines are potent human immunoregulators since 
TGF-β signaling can (1) convert naïve CD4+ cells into 
Tregs [54], (2) prevent T cell proliferation and the dif-
ferentiation of Th1 and Th2 cells [47], (3) inhibit B cell 
responsiveness [55], (4) suppress human dendritic cell 
function [56], and (5) promote alternative M2 polariza-
tion in human macrophages [57]. In addition, TGF-β exerts 
degenerative bystander effects in non-immune cells, e.g., it 
can increase tissue fibrosis [58] and trigger cellular senes-
cence in human fibroblasts [59]. However, MDSCs are not 
the only immune cells which secrete IL-10 and TGF-β 
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Fig. 2   The comparison of immune cell phenotypes induced by MDSC-driven immunosuppression (upper panel) and age-related immunosenes-
cence (lower panel)
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cytokines, since other immunosuppressive cells also uti-
lize the same mechanism to maintain immune suppression.

MDSCs alter the tissue microenvironment by actively 
generating reactive oxygen species (ROS) [33, 34, 60]. 
Corzo et al. [60] revealed that the STAT3 transcription fac-
tor, the major regulator of MDSC activation, induced the 
expression of NADPH oxidase (NOX2) which stimulated 
the production of ROS compounds in different mouse and 
human tumor models. MDSCs also generate nitric oxide 
(NO) by inducing the expression of inducible nitric oxide 
synthase (iNOS) [61]. Nagaraj et al. [62] demonstrated that 
peroxynitrite (ONOO−) nitrated the tyrosine residues in the 
T cell receptor (TCR) in mouse CD8+ T cells, thus pre-
venting the antigen-specific stimulation of CD8+ T cells. It 
seems that the production of ROS is dependent on the insult 
and the subtype of MDSCs activated, e.g., a bacterial insult 
induced ROS generation in mouse granulocytic MDSCs, 
whereas monocytic MDSCs produced NO [34]. MDSCs are 
very resistant to ROS compounds; this is thought to be the 
reason why these cells can survive in inflammatory milieu 
in conditions of oxidative stress [63, 64]. Beury et al. [63] 
demonstrated that the increased expression of nuclear fac-
tor E2-related factor 2 (Nrf2), a powerful survival factor of 
cells in oxidative stress, enhanced the survival of MDSCs 
in tumors by decreasing the level of intracellular ROS and 
the rate of apoptosis in infiltrated MDSCs. Recently, Ohl 
et al. [64] revealed that the constitutive activation of Nrf2 
in mouse myeloid cells increased the proliferation capac-
ity of MDSCs, which induced the expansion of MDSCs 
and developed splenomegaly attributable to the accumu-
lation of MDSCs into the spleen. They also reported that 
the increased expression of Nrf2 affected the metabolism 
of MDSCs by enhancing the expression of several genes 
involved in glycolytic energy metabolism. Oxidant spe-
cies produced by MDSCs not only suppress the activity of 
immune cells, but also exert robust unspecific responses 
which affect both immune and non-immune cells, enhanc-
ing immunosenescence in inflamed tissues [65, 66]. In addi-
tion to ROS generation, the activation of MDSCs induces 
the expression of arginase 1 (ARG1) and indoleamine 
2,3-dioxygenase (IDO) which catabolize arginine and tryp-
tophan amino acids, respectively [67, 68]. A consequence of 
this enzymatic activation is that there is a shortage of these 
amino acids which inhibits protein synthesis, thus preventing 
the proliferation of T cells and other pro-inflammatory cells 
in inflamed tissues.

MDSCs can also induce immunosuppression of T cells 
via the cellular contacts mediated by immune checkpoint 
proteins [69, 70]. There is an abundant literature on the 
inhibitory checkpoint receptors and their inhibitors, since 
these membrane receptors are promising targets in cancer 
therapy. Recently, it was revealed that activated MDSCs 
expressed programmed death-ligand 1 (PD-L1) receptor 

protein which can bind to the PD-1 receptor of T cells and 
thus suppress their function [71, 72]. Many other human 
immune cells, e.g., B cells, dendritic cells, monocytes, and 
mast cells, express the proteins of the immunosuppressive 
PD-1/PD-L1 system [73]. Lei et al. [74] demonstrated that 
MDSCs acted through the PD-1/PD-L1 pathway to impair 
the ability of murine alveolar macrophages to respond to a 
pneumonia infection. Tregs and Bregs also utilize the PD-1/
PD-L1 system to induce T cell immunosuppression [75, 76]. 
The PD-1/PD-L1 system is a potent source of immunosup-
pression in infections and tumors, but its role in age-related 
immunosenescence needs to be clarified.

Immunosuppressive cooperation between MDSCs, 
regulatory T and B cells, and macrophages

The immunosuppressive armament not only contains 
MDSCs, but also regulatory T cells (Treg), regulatory B 
cells (Breg), and regulatory macrophages (Mreg) which 
are also called M2c macrophages [77–79] (Fig. 1). There 
is a significant cross talk between these cell populations in 
an attempt to induce and maintain an immunosuppressive 
microenvironment in conditions of chronic inflammation, 
e.g., present in tumors and many inflammatory diseases. In 
general, IL-10 and TGF-β cytokines have a crucial role in 
this kind of communication within this immunosuppressive 
network. For instance, MDSCs can induce the differentia-
tion of Tregs as well as enhance the expansion of Treg and 
Breg populations [80–83]. Consequently, activated Tregs 
can inhibit the functions of T cells, e.g., they suppress the 
proliferation of naïve/effector T cells [84]. Correspondingly, 
the stimulation of Bregs can (1) trigger the production of 
anti-inflammatory IL-10 and TGF-β cytokines, (2) inhibit 
the immune reactions mediated by Th1 cells, and (3) pre-
vent autoimmune diseases [85]. In addition, one distinct 
subset of Bregs can convert resting CD4+ T cells into Tregs 
in mouse tumors [86]. Tregs and MDSCs can also establish 
a positive feedback loop, since Tregs stimulate the expan-
sion and immunosuppressive activities of MDSCs [87]. 
On the other hand, Sinha et al. [88] reported that the acti-
vated T cells were able to induce the apoptosis of MDSCs 
in mice. MDSCs are known to express the death receptor 
Fas, whereas activated T cells secrete the Fas ligand (FasL). 
Sinha et al. [88] demonstrated that the Fas–FasL system con-
trolled the numbers of MDSCs in circulation in the context 
of cancer and metastasis.

Myeloid-derived cells including MDSCs, monocytes, 
macrophages/microglia, dendritic cells, and natural killer 
(NK) cells reveal plastic phenotypes. For instance, mac-
rophages can become polarized toward proinflammatory 
M1 and anti-inflammatory M2 properties in a context-
dependent manner [89]. The polarization of macrophages 
is not fixed in vivo, but there is remarkable plasticity in the 
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properties of the M1 and M2 subpopulations. Microenviron-
mental conditions control the polarization of macrophages 
in tissues. In inflammatory conditions, circulating mono-
cytes will be recruited into inflamed tissues, where they dif-
ferentiate into the M1-type of macrophages [90]. Human 
monocytic MDSCs can also be converted into inflamma-
tory macrophages [91]. In particular, the exposure of pro-
inflammatory TNF-α enhanced the maturation of human 
MDSCs into macrophages. Correspondingly, the interac-
tion of MDSCs and macrophages potentiated the immune-
suppressive capacities of both cell populations, e.g., in the 
tumor microenvironment [78, 92]. This bidirectional cross 
talk, both cell contact dependent and contact independent, 
robustly increased IL-10 production which consequently 
activated immunosuppressive Tregs and stimulated Th2 
responses, whereas antigen presentation decreased, impair-
ing the cytotoxicity of CD8+ and NK cells [78, 93]. In 
tumors, infiltrating monocytic MDSCs can be differentiated 
into the immunosuppressive M2 macrophages, commonly 
called tumor-associated macrophages (TAM) [94]. TAMs 
possess specific immune properties, probably educated by 
cancer cells, and thus they constitute the type M2d mac-
rophage phenotype. It is the cooperation between Tregs and 
macrophages which also augments the immunosuppres-
sion in inflamed tissues. For instance, Tiemessen et al. [95] 
observed that human Tregs were able to polarize circulating 
monocytes/macrophages into the immunosuppressive M2 
subtype. More recently, Riquelme et al. [96] demonstrated 
that the human Mregs were able to convert CD4+ T cells into 
FoxP3+ expressing, IL-10-secreting Tregs, which then sup-
pressed T cell immunity and inhibited dendritic cell matura-
tion. In addition, Lu et al. [97] reported that mouse Mregs 
induced Treg differentiation and increased the release of 
Tregs in the local lymph node drainage in mice with nephro-
sis. In conclusion, it seems that there is extensive coopera-
tion between MDSCs and other immunosuppressive cell 
populations in the regulation of inflammatory conditions.

Increased myelopoiesis and expansion of MDSCs 
with aging

The inflammaging process is associated with significant 
changes in the hematopoietic system affecting the genera-
tion of myeloid and lymphoid cells in both humans and mice 
[98–100]. As the individual grows old, there is an increase 
in the rate of myelopoiesis, whereas lymphopoiesis clearly 
decreases in the bone marrow. This age-related imbalance 
in the immune system is caused by the myeloid-biased 
dominance of the hematopoietic stem cell (HSC) clones as 
compared to the progenitor clones of B and T lymphocytes. 
Moreover, a sizeable involution of the thymus with aging 
reduces lymphopoiesis, since thymus is an important lym-
phoid tissue in which T cells mature [101]. It is known that 

inflammatory mediators, e.g., CSFs, TNF-α, and interferons, 
originating from inflamed tissues can control myelopoiesis 
during the aging process [102, 103]. Inflammatory changes 
also appear with aging in the bone marrow which might 
also enhance aberrant myelopoiesis [104]. Currently, it is 
not known if it is the activation of MDSCs that controls 
the functions of HSCs and the progenitors of myeloid and 
lymphoid lineages in the bone marrow. However, there is 
substantial evidence that factors secreted by MDSCs, e.g., 
TGF-β, and IL-10, are potent regulators of HSCs [105, 
106]. In particular, it has been claimed that aged HSCs 
were remarkably sensitive to TGF-β signaling. which might 
enhance myelopoietic differentiation [107]. Consequently, 
an age-related increase in myelopoiesis can enhance the 
production of myeloid cells, including MDSCs, and thus 
maintain inflammaging.

There is convincing evidence that the aging process 
increases the frequencies of circulating MDSCs, in both 
humans [108, 109] and mice [110]. Verschoor et al. [108] 
revealed that the levels of the CD11b+ CD15+-positive, 
granulocytic MDSCs were increased in the blood of com-
munity-dwelling seniors (61–76 years) and especially in frail 
elderly people (67–99 years). Recently, Alves et al. [109] 
demonstrated that the percentage of MDSCs was signifi-
cantly higher in the blood of old people (80–100 years) than 
in their younger counterparts (20–30 years). Especially, the 
percentage of granulocytic MDSCs was robustly upregu-
lated, while that of monocytic MDSCs was unaffected. It 
still needs to be clarified whether an increased myelopoie-
sis with aging in humans could increase the generation of 
MDSCs in the bone marrow, thus provoking the upregu-
lation of MDSCs in the blood. However, there are several 
studies in mice revealing that the numbers of MDSCs are 
clearly increased with aging in the bone marrow, spleen, 
and peripheral lymph nodes [110–114]. The MDSCs iso-
lated from the spleen of aged mice potently suppressed the 
antigen-induced T cell proliferation and T cell-dependent 
antibody production as well as inhibited the tumor cytotox-
icity of T cells [110, 111]. The increased accumulation of 
MDSCs with aging was also linked to an enhanced growth 
of tumors in old mice. Flores et al. [114] reported that there 
were greater numbers of MDSCs in the bone marrow of two 
progeroid mouse species, i.e., Ercc1 and BubR1 mutants, 
than in wild-type mice. Currently, it is difficult to confirm 
whether the inflammaging process increases the level of 
MDSCs in peripheral tissues attributable to technical prob-
lems and the plasticity of MDSC phenotype.

Not only does the MDSC population of the immunosup-
pressive network expands with aging, but also the numbers 
of Tregs (CD25+ FOXP3+) increase in both elderly humans 
and mice [115–119]. This increase in the number of Tregs 
was significant in the spleen and lymph nodes, but also 
present in the skin. There were also age-related changes in 
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the subtypes of Tregs, i.e., the number of naturally occur-
ring thymus-derived Tregs (tTregs) increased with aging, 
whereas that of inducible Tregs (iTregs) seemed to decline 
in old mice [120]. Chougnet et al. [121] demonstrated that 
the aged Treg population was more resistant to apoptosis; 
this phenomenon was attributable to the reduced expres-
sion of pro-apoptotic Bim protein which might enhance the 
survival of aging Tregs. However, the Tregs from old mice 
were functionally active, i.e., they were able to prevent the 
activation of immune responses of effector T cells. Garg 
et al. [118] demonstrated that the Tregs from aged mice 
were more potent in inhibiting the proliferation of effector T 
cells than those isolated from young mice. Aged Tregs also 
secreted an increased level of the immunosuppressive IL-10 
cytokine. Moreover, Garg et al. [118] presented evidences 
that the age-related increase in the expression of FOXP3+, 
the master regulator of Tregs, was induced by a hypometh-
ylation of the enhancer sequences of FoxP3 gene. Given that 
the interactions between MDSCs, Tregs, Bregs, and Mregs 
maintain the immunosuppressive milieu of tissues (Fig. 1), 
it is apparent that the age-related functions of Bregs and 
Mregs need to be clarified. There is an abundant literature 
on macrophage polarization with aging and in the repair pro-
cess of tissue injuries [122, 123]. It seems that the responses 
are remarkably context dependent, probably attributable to 
the plasticity of macrophages and the complex regulation of 
the M1/M2 polarization process. Macrophage polarization 
can also fluctuate during the repair process [124]. However, 
Jackaman et al. [125] demonstrated that the numbers of anti-
inflammatory M2 macrophages were robustly increased in 
the bone marrow, spleen, and lymph nodes of old mice as 
compared to their younger counterparts. Wang et al. [126] 
reported that the aging process in muscles was associated 
with an increase in the level of M2a macrophages, thus caus-
ing fibrosis in muscles. It is likely that the cooperation of 
tissue-resident macrophages with MDSCs and Tregs might 
switch these cells toward the immunosuppressive M2 phe-
notype during the aging process. For instance, MDSCs and 
Tregs secrete IL-10 and TGF-β, which polarize macrophages 
into the Mreg phenotype.

Comparison of immune profiles 
of immunosenescence and MDSC‑driven 
immunosuppression

Given that MDSCs are potent inducers of immunosuppres-
sion of adaptive immunity and a significant expansion of 
MDSCs and Tregs accompanies aging, this could induce 
and maintain a chronic state of immunosenescence. The 
MDSC-induced immunosuppression would represent the 
remodeling mechanism of immunosenescence. The remod-
eling of immune system might be crucial for the survival of 
tissues in conditions of chronic inflammation, e.g., in many 

pathological conditions and even in low-grade inflammag-
ing. It is likely that MDSCs affect immune cells in a direct 
manner, but some responses detected in in vivo experiments 
can also be mediated via their interaction with other immu-
nosuppressive cells, e.g., Tregs and Mregs (Fig. 1). Next, we 
will examine in more detail the similarities in the immune 
profiles generated by immunosenescence and the MDSC-
induced immunosuppression in adaptive and innate immune 
systems.

Adaptive immunity

T cells

There is an abundant literature indicating that immunose-
nescence is associated with a progressive decline in the 
numbers of naïve (CD45RA+) CD4+ and CD8+ T cells, 
whereas the numbers of the memory type (CD45RO+) of 
CD4+ and CD8+ T cells gradually increase with aging [7, 
127–129] (Fig. 2). This hallmark of immunosenescence has 
been commonly observed in both humans and mice. The 
age-related loss of CD4+ and CD8+ T cells is attributable 
to a decline in the clonal expansion of T cell clones in the 
bone marrow and thymus, as well as to a decrease in their 
proliferation after maturation. In addition, there are aging-
associated changes in the homeostasis of T helper (Th) cells 
and Tregs. The numbers of Tregs significantly increase with 
aging and, at the same time, there seems to occur reshap-
ing in the numbers of Th populations. The production of 
Th1 and Th2 cytokines declines in elderly humans [130] 
and aging seems to be accompanied by a shift from the Th1 
to the Th2 response, although results are more inconsistent 
in humans [131]. Interestingly, the presence of Th17 cells 
increases with aging in both humans and mice [132, 133]. 
Th17 cells are plastic cells which possess proinflamma-
tory properties, e.g., they are involved in autoinflammatory 
diseases, but they can also exert antifungal and immuno-
suppressive effects, e.g., they can inhibit T cell-mediated 
immunity [134]. In addition to the changes in the subsets 
of T cells, there are significant age-related alterations in 
the functional capacities of both CD4+ and CD8+ T cells 
[135, 136]. In general, the responsiveness to distinct exter-
nal insults decreases with aging in T cells, e.g., there are 
significant declines in both the proliferation and cytotoxicity 
of CD8+ T cells [137]. This loss of sensitivity is associated 
with clear age-related changes in the signaling responses 
of T cells which affect the differentiation of T cells and the 
immune outcomes of T cells in host defense [7, 138, 139].

TCRs and their co-receptors, e.g., CD28+, have an impor-
tant role in the recognition of antigens and the activation of 
CD4+ and CD8+ T cells (Fig. 2). Recent high-throughput 
TCR sequencing studies have revealed that the structural 
TCR repertoire of naïve CD4+ and CD8+ T cell populations 
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in humans dispersed with aging, indicating the non-uniform 
clonal proliferation of naïve T cells [140]. Moreover, Qi 
et al. [141] demonstrated that the diversity of the human 
TCR repertoire declined with aging in both naïve CD4+ and 
CD8+ T cells, although the clonal sizes of distinct pheno-
types expanded with aging. Age-related changes were more 
modest in the memory CD4+ and CD8+ T cell populations. 
Several earlier studies have demonstrated that the aging 
process reduced the functional responses of TCRs [7], e.g., 
the formation of immune synapses with antigen presenting 
cells [142]. Aged human T cells also lose the expression and 
signaling of CD28 receptors which are crucial co-stimulators 
of TCR activation [143, 144].

T cells are the major target of MDSC-induced immune 
tolerance in tumors and several inflammatory disorders. 
MDSCs possess effective mechanisms to suppress the 
function of T cells and thus provide an immune escape 
not only for cancer cells, but also for organ allografts in 
transplantation medicine [145]. For instance, Nagaraj et al. 
[62] demonstrated that MDSCs were able to nitrate TCR 
proteins, inducing the dissociation of the TCR complex, 
which prevented the recognition of foreign antigens and 
thus suppressed the activation of T cells. Nitration might 
also affect the dispersion of the TCR repertoire with aging. 
Recently, Feng et al. [146] revealed that MDSC nitrated the 
lymphocyte-specific protein tyrosine kinase (LCK) and thus 
prevented the activation of TCR signaling. The inhibition of 
TCR signaling with nitration might induce T cell immuno-
suppression, not only in cancers and inflammatory condi-
tions, but also in immunosenescence. In addition, MDSCs 
can suppress the functions of T cells by contacting them 
via the PD-1/PD-L1 checkpoint proteins. For instance, the 
activation of MDSCs clearly stimulated the expression of 
PD-L1 in human MDSCs [72]. Lu et al. [71] demonstrated 
that tumor-infiltrated MDSCs robustly expressed PD-L1 
protein in human patients. In addition, Tregs induced the 
expression of PD-L1 (also called B7-H1) in MDSCs in 
mouse melanoma [147]. Although there is no direct evi-
dence for the existence of these PD-L1-positive MDSCs in 
aged tissues, the microenvironment of inflammaging tissues 
contains different inflammatory factors which are activators 
of MDSCs [148]. Interestingly, Shimada et al. [149] reported 
that the expression of PD-1 was clearly increased with aging 
in mouse memory CD4+ T cells. Given that the PD-1/PD-L1 
checkpoint system has an important role in the MDSC-
induced immunosuppression, it seems likely that MDSCs 
could also exploit this mechanism to evoke T cell anergy 
and immunosenescence in inflammaging.

TGF-β is the major cytokine controlling the functions 
of the immunosuppressive network in a reciprocal manner. 
TGF-β is secreted by MDSCs, Tregs, and Bregs and has a 
crucial role in the proliferation and differentiation of T cells 
[150–152]. For instance, TGF-β inhibits the differentiation 

of Th1 and Th2 cells, whereas it enhances the differen-
tiation of Tregs and Th17 cells. Interestingly, Th17 cells 
are very plastic cells which can possess pro-inflammatory 
properties, e.g., in autoinflammatory diseases, but they also 
exert immunosuppressive properties inhibiting T cell-based 
immunity. In addition, TGF-β was reported to reduce the 
cytotoxicity of CD8+ T cells, and the prevention of TGF-β 
signaling improved anti-tumor immunity [151]. Moreover, 
TGF-β enhanced the quiescence of hematopoietic stem cells, 
especially the development of lymphoid lineages declined 
with aging [153]. The TGF-β signaling maintains immune 
tolerance to both self and foreign antigens by controlling 
the differentiation and functions of effector T cells and 
Tregs. One could speculate that the increased presence of 
MDSCs and Tregs with aging might enhance the produc-
tion of TGF-β and consequently augment the immunose-
nescence of T cells. The activation of MDSCs stimulates 
the expression of ARG1 and IDO which induces the meta-
bolic catabolism of l-arginine and tryptophan. Some other 
myeloid cells can also express ARG1 and IDO proteins. In 
cancer studies, there is clear evidence that the induction of 
ARG1 and IDO in MDSCs stimulates T cell tolerance which 
enhances tumorigenesis [68, 70]. While it is known that 
aging affects arginine and tryptophan metabolism, it needs 
to be clarified whether immune effects are mediated by the 
depletion of these amino acids or through the production of 
their metabolites, i.e., NO from l-arginine and kynurenine 
metabolites from tryptophan [154, 155]. In conclusion, it 
seems that MDSCs induce the immunosuppressive profile 
of T cells which closely resembles the characteristics of the 
immunosenescence encountered in T cells.

B cells

B lymphocytes are generated in the bone marrow (BM) and 
subsequently immature B cells migrate into the spleen to 
undergo distinctive maturation and activation phases, e.g., 
the negative selection by self-antigens. In the aged human 
and mouse BM, there exists a myeloid-biased dominance 
of hematopoietic stem cell clones which downregulates 
the generation of lymphopoietic progenitors [100, 156]. 
The decline in the B cell progenitor clones also affects the 
development of the mature B cell compartment, another 
factor which enhances immunosenescence. The age-related 
increase in inflammatory changes in the BM, e.g., the 
increased presence of IL-1β and S100A9 factors, impairs 
B cell lymphopoiesis [19, 157]. Kennedy and Knight [158] 
demonstrated that MDSCs inhibited B lymphopoiesis 
through soluble factors in mouse BM cultures. Recently, 
they reported that inflammasomes might be involved, since 
exposure to the inflammasome inhibitor, glibenclamide, 
prevented the decline in B lymphopoiesis in the BM cul-
tures [157]. Interestingly, they observed that the activation 
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of inflammasomes promoted the development of MDSCs 
in the BM cultures. Flores et al. [114] revealed that the 
numbers of MDSCs were robustly increased in mouse BM 
with aging. The failure of B cell generation and the reduc-
tions in the numbers of these cells in the inflammatory BM 
may be caused by the TGF-β produced by MDSCs. It is 
known that TGF-β is a potent inhibitor of B cell prolifera-
tion and activation [47]. It can also enhance the apoptosis 
of immature and resting B cells. The numbers of human 
mature naïve B cells and the antigen-experienced memory 
(CD27+) B cells significantly decline with aging, whereas 
at the same time, the percentage of human late/exhausted 
memory B cells (CD27−) increase in the circulation [159, 
160] (Fig. 2). Moreover, the diversity of the human B cell 
repertoire decreases with aging; this may reduce the respon-
siveness to infections and vaccination as well as increase the 
production of autoreactive antibodies [19, 156, 160, 161].

In addition to the inhibition of B cell development, 
MDSCs can also suppress the functions of mature human B 
cells, e.g., reduce their proliferation, homing, and antibody 
production [162–164]. MDSCs can inhibit the functions of 
B cells by secreting soluble factors, e.g., NO/ROS, PGE2, 
and TGF-β. Given that MDSCs can induce the expansion of 
Bregs and ameliorate autoimmunity [82], it seems that there 
exists a reciprocal regulation between MDSCs and Bregs, 
since the tumor-derived Bregs can educate both the mono-
cytic and granulocytic MDSCs of mice and humans, by stim-
ulating their immunosuppressive properties [165]. Moreo-
ver, Bregs can convert CD4+ T cells into Tregs [86] which 
are potent inhibitors of B cell functions. Therefore, it should 
be clarified whether immunosenescence affects the prolif-
eration and functions of Bregs. However, it is known that 
certain inflammatory conditions increase the proliferation 
and immunosuppressive activities of Bregs [79]. It seems 
that chronic inflammation is the main cause of the functional 
impairments in the B cell compartment which accompany 
aging and thus it is likely that MDSCs are involved in the 
immunosenescence of B cells.

Innate immunity

Currently, there is a debate about the role of innate immu-
nity in the maintenance of immunosenescence. Clearly, age-
related changes have been reported in the cells of innate 
immunity, but many observations are inconsistent, probably 
due to the fact that alterations are context dependent. The 
controversies may well be attributed to the high plasticity of 
myeloid-derived cells i.e., the cells of myeloid lineage can 
mature/convert into diverse myeloid subsets. For instance, 
MDSCs can differentiate into macrophages in inflammatory 
microenvironments (see above). Moreover, both a context-
dependent polarization and a modulation of cell subsets are 
common characteristics of myeloid cells. The age-related 

changes in innate immunity have been described in detail 
elsewhere [166, 167]. We will focus on the modifications 
which have confirmed the potential associations with the 
MDSC-induced regulation.

Dendritic cells

One major function of dendritic cells (DCs) is the antigen 
processing and its presentation to T and B lymphocytes. 
Thus, DCs have a crucial role in the function of the adap-
tive immune system. It seems that the numbers of circulating 
DC subsets do not significantly change with aging, although 
there are conflicting results between studies. However, it 
appears that there is a decline in the numbers of Langerhans 
cells with aging in both human and mouse skin [168, 169]. It 
seems that aging affects several functions of DCs, although 
the results are not always consistent [20, 170]. There are 
both human and mouse studies indicating that the migra-
tion of DCs is impaired and their capacity to phagocytose 
antigens, process them, and subsequently present them to T 
cells decreases with aging [20, 170–172] (Fig. 2). However, 
contradictory observations have been reported. Moreover, 
Panda et al. [173] demonstrated that there was a significant 
age-related decrease in the amounts of cytokines induced 
by the activation of TLRs in human myeloid and plasma-
cytoid DCs. This may impair the priming of T cells and 
furthermore inhibit the polarization of Th cells. Currently, 
the mechanisms of cross talk between DCs and T cells need 
to be clarified, although a role for checkpoint inhibitors has 
been proposed [174]. In cancer studies, there is clear evi-
dence that MDSCs inhibit the functions of DCs [78]. For 
instance, Greifenberg et al. [175] reported that the activa-
tion of MDSCs with LPS and IFN-γ prevented the differen-
tiation of DCs in mouse BM cultures. Poschke et al. [176] 
demonstrated that the DCs which had been generated in a 
co-culture with human MDSCs displayed a reduced anti-
gen uptake and impaired cytokine production. TGF-β1 is 
a potent inhibitor of the maturation and function of human 
and mouse DCs [56, 177]. However, there are differences 
between DC populations, since TGF-β1 was required for 
the development and maintenance of Langerhans cells in 
mice [178]. It seems reasonable to propose that MDSCs can 
inhibit the functions of DCs and, in this way, contribute to 
the suppression of T and B cells in cancers and inflamma-
tory conditions.

Natural killer cells

Natural killer (NK) cells have an important role in innate 
immunity, although they are lymphocytes originating from 
lymphoid progenitors in the bone marrow. NK cells are cyto-
toxic cells and undertake similar functions as cytotoxic T 
cells in the host defense against cancer and viral infections 
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[179]. There are diverse subsets of NK cells which have 
distinct functions mediated via their surface receptors; this is 
important not only in cytotoxicity, but also in the cross talk 
with other immune cells, e.g., DCs and T cells [180, 181]. It 
is known that aging affects the diversity of NK cell subsets, 
with this being reflected in the altered surface receptor phe-
notypes and expression levels, both in humans and mice [22, 
182] (Fig. 2). These changes, which can be already detected 
in the bone marrow, lead to a decline in the cytotoxic capa-
bility of NK cells. In addition, the ability of human NK cells 
to produce cytokines and chemokines significantly decreases 
with aging. The impaired cytotoxicity of the NK cell pop-
ulation exposes elderly people to tumorigenesis and viral 
and bacterial infections. There is convincing evidence that 
MDSCs can inhibit the secretion of cytokines and reduce 
the cytotoxic properties of NK cells. For instance, Hoechst 
et al. [183] demonstrated that human MDSCs isolated from 
hepatocellular carcinoma (HCC) robustly inhibited the cyto-
toxicity of NK cells from HCC patients. The suppression of 
NK cells was independent of ARG1 and iNOS expression, 
but highly dependent on cell contacts which were medi-
ated through the NKp30 receptors present on the NK cells. 
Infection studies with mice have revealed that granulocytic 
MDSCs inhibited both the proliferation and the activity of 
NK cells in response to adenovirus and vaccinia virus infec-
tions [184, 185]. There seems to be different mechanisms 
mediating the inhibition of NK cells evoked by MDSCs. 
For instance, MDSCs can inhibit the activity of NK cells by 
secreting ROS [184] and NO [186] or suppress the functions 
of NK cells via the membrane-bound TGF-β signaling [187]. 
It is known that TGF-β is a potent inhibitor of the develop-
ment and differentiation of human NK subsets [188]. These 
observations indicate that MDSCs could induce the kinds of 
changes observed in the functions of NK cells with aging.

Monocytes and macrophages

There are many cell types participating in the innate immune 
system e.g., monocytes, macrophages, and granulocytes; 
neutrophils make up the largest group of granulocytes. 
There are less consistent results on the effects of aging on 
the functions of these cell types, since their functions tend 
to fluctuate with respect to the phase and intensity of inflam-
mation. For instance, monocytes can differentiate into tissue 
macrophages in conditions of acute inflammation and mac-
rophages can display M1/M2 polarization. However, there 
are several studies indicating that there are impairments in 
the properties of macrophages with aging, e.g., lowering 
of chemotaxis, antigen presentation, and phagocytosis [21, 
123] (Fig. 2). The Toll-like receptor (TLR) signaling and 
its responses are impaired with aging in both humans and 
mice [189, 190]. It seems that the age-related alterations in 
macrophages are dependent on the tissue microenvironment 

and the disease-associated pathology, especially with respect 
to macrophage polarization [123]. For instance, tumors con-
tain specific immunosuppressive TAMs which have both 
overlapping and distinguishing properties as compared to 
M2 macrophages [191]. Currently, it is not known whether 
there are specific age-associated M2 macrophages. MDSCs 
and macrophages have an important role in the resolution of 
inflammatory reactions [37, 40, 192]. Since MDSCs secrete 
both IL-10 and TGF-β, they can suppress proinflammatory 
functions and trigger the resolution phase, e.g., by induc-
ing the M2 polarization of macrophages. Given that inflam-
maging evokes both inflammatory and anti-inflammatory 
responses, it seems that MDSCs suppress adaptive immunity 
and control innate immunity in a context-dependent manner.

Immunosenescence and MDSC‑driven immunosuppression 
in inflammatory disorders

The hallmarks of immune system senescence not only 
appear with the aging process, but also evidences of prema-
ture immunosenescence are present in chronic inflammatory 
diseases. Sepsis has turned out to be an important model for 
elucidating the interactions between inflammation-induced 
immunosuppression and immunosenescence [193, 194]. 
Sepsis stimulates emergency myelopoiesis which induces 
the expansion of MDSCs [36, 194]. Consequently, these 
MDSCs induce a profound immunosuppression which is 
comparable to that present in cancer or age-related immu-
nosenescence. However, it seems that MDSCs have a com-
plex, phase-dependent role in the pathology of sepsis, caus-
ing tissue repair or its destruction. Brudecki et al. [195] 
utilized the mouse polymicrobial sepsis model to demon-
strate that during the early phase, MDSCs secreted NO and 
pro-inflammatory cytokines, whereas in the later chronic 
phase, MDSCs expressed ARG1, IL-10, and TGF-β proteins. 
This indicates that within the course of sepsis, the properties 
of MDSCs shift from a proinflammatory phenotype to one 
with a strongly immunosuppressive character. Autocrine and 
paracrine immune factors induce the generation of immu-
nosuppressive MDSCs in conjunction with Tregs and M2 
macrophages, which in cooperation facilitate the resolution 
of infection. Moreover, the activation of ARG1 produces 
ornithine and polyamines which enhance the repair process. 
It has been reported that MDSCs induce immune suppres-
sion and also augment repair processes after a spinal cord 
injury [196] and acute kidney injury [197].

Autoimmune diseases display the hallmarks of prema-
ture immunosenescence [198]. Currently, there is convincing 
evidence that MDSCs have a crucial role in several autoim-
mune diseases, e.g., multiple sclerosis, rheumatoid arthritis, 
psoriasis, and autoimmune encephalomyelitis [46, 199–201]. 
In fact, many different autoimmune diseases are associated 
with an increase in the numbers of MDSCs in the spleen and 



1910	 A. Salminen et al.

1 3

lymph nodes, as well as in the tissues suffering autoimmune 
pathology and, moreover, these alterations correlate with the 
extent of the damage. Iacobaeus et al. [202] demonstrated 
that there appeared to be clear changes in the numbers of 
MDSCs between the relapse and remission phases in mul-
tiple sclerosis patients. The numbers of both monocytic 
and granulocytic MDSCs significantly increased during the 
relapse phase as compared to the stable phase. Experiments 
conducted in mice have revealed that MDSCs have a protec-
tive role against multiple sclerosis [199, 203, 204]. Simi-
lar observations have been found in autoimmune arthritis 
[205, 206]. Fujii et al. [205] demonstrated that collagen-
induced arthritis (CIA) in mice robustly increased the num-
bers of MDSCs in the spleen. Splenic MDSCs effectively 
suppressed the proliferation of CD4+ T cells and inhibited 
their differentiation into Th17 cells, the major inducers of 
arthritic inflammation. They also revealed that the adoptive 
transfer of MDSCs alleviated the severity of CIA. However, 
there are contrasting observations indicating that MDSCs 
might promote the polarization of Th17 and thus augment 
mouse arthritis and encephalomyelitis during long-term 
exposures [207, 208]. Moreover, Wang et al. [209] observed 
that changes could occur in the type of MDSCs and their 
immunosuppressive properties during the course of disease 
which might impair efficient immunosuppression. The stud-
ies on sepsis and autoimmune diseases have clearly indicated 
that MDSCs induce immunosuppression (i.e., immunose-
nescence) which reduces the level of inflammation and the 
severity of injuries in inflamed tissues. It still needs to be 
clarified whether the MDSC-induced immunosenescence is 
also a feasible remodeling mechanism against inflammaging.

Immunosenescence: cellular senescence of immune 
cells or inflammation‑induced remodeling 
of the immune system?

The primary cause of immunosenescence is still uncertain, 
although the age-related senescence of the immune system 
was discovered more than four decades ago. Immunosenes-
cence seems to have a multifaceted origin, since the aging 
process affects the development and maturation processes 
of immune cells, e.g., via thymic involution, as well as their 
functions in peripheral, mildly inflamed tissues (Sects. 4 and 
5). Given that the proliferation of T and B cells declines with 
aging, this implies that immune cells could undergo cellular 
senescence, in the same way as non-immune cells. Several 
research groups have investigated the replicative senescence 
of T cells, both in in vivo and in vitro conditions. There is 
evidence that changes in surface markers of T cells, e.g., lack 
of CD28 expression, might cause an attrition of telomeres 
[210, 211]. However, it seems that the markers of cellu-
lar senescence are not identical in fibroblasts and immune 
cells, although, for instance, CD8+ T and memory B cells 

can express the senescence-associated secretory phenotype 
(SASP), a common cellular marker of non-immune senes-
cence [212, 213]. Recently, Ong et al. [214] identified a non-
classical monocyte subset in elderly people which displayed 
a pro-inflammatory SASP phenotype as well as many other 
hallmarks of cellular senescence. Vicente et al. [215] have 
reviewed the role of cellular senescence in the control of cell 
fate and functions of many immune cells. In this respect, 
we need to take into consideration the difference between 
quiescence and senescence, since many immune cells, e.g., 
naïve T cells, are in a quiescent state displaying cell cycle 
arrest and hyporesponsiveness although they are not senes-
cent [216]. For instance, Tregs can induce and maintain the 
quiescence of memory CD8+ T cells [217]. In view of the 
continuous production of immune cells, it seems likely that 
immune cells are not truly irreversibly senescent but rather 
exhausted, exhibiting reduced functional capabilities [218].

As long ago as 1978, Roder et al. [219] made the interest-
ing observation that mouse immunological senescence was 
associated with an increased activity of suppressor cells, 
especially in the spleen and bone marrow. They reported that 
suppressor cells secreted soluble mediators, which affected 
the characteristics of T cells and macrophages. Remarkably, 
the antibody responses of immune cells could be restored by 
specifically activated T cells and LPS, which indicated that 
immunosenescence was not caused by the lack of compe-
tent immune cells. After this seminal observation, a network 
of immunosuppressive cells has been identified. It seems 
that TGF-β, IL-10, and NO, secreted by MDSCs, are the 
major soluble mediators maintaining the functions of this 
age-related immunosuppressive network. There is an abun-
dant literature indicating that TGF-β signaling suppresses 
the functions of CD4+ [220] and CD8+ [221] T cells as 
well as DCs [222] and NK cells [223]. In particular, TGF-β 
inhibits the signaling pathways of CD28 and mTOR kinase. 
IL-10 also inhibits the CD28-mediated signaling in T cells 
by activating SHP-1 tyrosine phosphatase-1 [224]. TGF-β 
also has an important role in the functions of HSCs, e.g., 
TGF-β signaling promotes the myeloid differentiation of 
distinct mouse HSC subtypes, thus stimulating myelopoie-
sis with aging [225]. Flavell et al. [151] have reviewed the 
immune-suppressive effects of TGF-β on cells in both the 
innate and adaptive immune systems. Interestingly, many 
TGF-β-induced responses are the same as those observed in 
immunosenescence. IL-10, a cytokine produced by MDSCs, 
Tregs, and Th2 cells, also possesses different immunosup-
pressive functions and maintains the homeostasis of host 
tissues [48]. It seems that the MDSC-driven immunosup-
pressive network is able to generate the phenotypes in the 
cells of adaptive and innate immunity which are comparable 
to those appearing in immunosenescence (Fig. 2), although 
direct evidence on the causal role of MDSCs needs to be 
clarified.
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Outlines for future studies

Currently, the causal role of MDSCs and other immunosup-
pressive cells in the generation of immunosenescence needs 
to be clarified, although there is a clear similarity between 
the immune cell phenotypes induced by either MDSCs or 
the aging process involving a low-grade inflammation. The 
studies on cancer therapies have revealed surprisingly many 
chemotherapeutic and immunotherapeutic treatments which 
suppress the functions of MDSCs [226–228]. There are dif-
ferent therapeutic strategies which target e.g., (1) the matura-
tion process of MDSCs, (2) the trafficking of MDSCs into 
tumors, (3) the expansion and activation of MDSCs, and (4) 
the depletion of MDSCs. For instance, distinct compounds, 
e.g., all-trans retinoic acid (ATRA) and β-glucan, can induce 
the maturation of MDSCs into the cells of innate immunity 
[229, 230]. In addition, the inhibitors of signaling pathways, 
e.g., the inhibitors of STAT3 and COX-2/PGE2, can reduce 
the activation of MDSCs [228]. Several phytochemicals 
are also able to inhibit the function of MDSC and thus can 
alleviate immunosuppression in tumors and inflammatory 
diseases [231]. However, chemotherapeutic compounds 
do not specifically target MDSCs and thus there is intense 
search for the specific antigens of MDSCs which could be 
targeted in immunotherapies. Recently, Dominguez et al. 
[232] reported promising results that the agonistic TRAIL-
R2 antibody selectively eliminated MDSCs without affecting 
other immune cells. It is important to understand whether 
the inhibition of MDSCs function in aged mammals could 
reverse immunosenescence and thus provide insight into 
the origin of immunosenescence. As far as we know, this 
approach has not been utilized in studies attempting to find 
ways to rejuvenate the immune system of elderly people or 
primates [233, 234]. Inhibiting the functions of MDSCs and 
other immunosuppressive regulators could provide the target 
to reverse the process of immunosenescence (i.e., induce 
rejuvenation), using the same approach which improves the 
immune surveillance of tumors and infections. This might 
also clarify the observations that the aging process increases 
the risk for cancers and chronic infections. There are studies 
on the combination therapies indicating that blocking the 
function of MDSCs, e.g., by ATRA and entinostat, improved 
immunotherapies in cancers and antibiotic treatments in 
infections [235–237].

There are many studies on tumors where the phenotypes 
of MDSCs and other immune cells have been identified, 
whereas in immunosenescence the phenotypes of immune 
cells in non-immune tissues have not been characterized. 
Especially, an interesting question is whether there is an 
accumulation of MDSCs and other immunosuppressive cells 
in aging tissues in association with an increased level of 
markers of chronic low-grade inflammation. It is known that 
the presence of MDSCs remarkably increases with aging in 

the bone marrow, spleen, and lymph nodes, but no studies 
exist on peripheral tissues. The great plasticity of MDSCs 
might cause problems, since MDSCs are disposed to mature 
toward M2 macrophages in inflamed tissues (see above). 
Technical problems might also appear with non-immune 
tissues, since cell sorting techniques are required for the 
analysis of MDSCs. However, the presence of MDSCs has 
been verified in studies on age-related diseases in different 
tissues. This approach will exclude the possibility that the 
age-related increase in the level of MDSCs in the blood and 
immune organs could be caused by age-related pathologies, 
such as tumors. The appearance of other cooperative part-
ners of immunosuppression, i.e., Tregs, Mregs, and Bregs, 
should also be analyzed at the tissue level, since their immu-
nosuppressive armament not only affects immune cells, but 
also induces harmful bystander effects on neighboring host 
tissue [148].

Conclusions

The role of immunosenescence in the aging process still 
needs to be clarified. There is an extensive literature related 
to the age-related decline in the function of immune system, 
but it has proved difficult to determine whether the overall 
effects are beneficial or detrimental. Given that the perpe-
trator inducing the age-related mild inflammatory profile 
cannot be eliminated, immunosenescence seems to be an 
important remodeling mechanism attempting to maintain 
tissue homeostasis as the individual grows old. Although 
it has been known for four decades that the aging process 
is associated with a suppression of immune system, the 
mechanism behind this phenomenon has remained elu-
sive. Currently, it is known that there exists a network of 
immunosuppressive cells which exploit a wide spectrum of 
mechanisms to inhibit the excessive functions of the immune 
system. There is abundant evidence indicating that MDSCs 
are potent immunosuppressive cells in diverse inflamma-
tory conditions, especially in tumor-associated inflamma-
tion. MDSCs also co-operate with other immunosuppressive 
cells, e.g., Tregs, Bregs, and Mregs, to suppress immune 
functions in inflammatory conditions. Interestingly, the 
numbers of MDSCs increase with aging which supports the 
proposal that they have a crucial role in the coordination of 
immunosenescence.
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