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Abstract

Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in
livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe
region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP) to model the
current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate
change scenarios using a 5-variable data set at 55 km2 and 8 km2 and a 6-variable BioClim data set at 8 km2. Future models
suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting ,14–16%
loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting ,15%
loss at 55 km2, ,34% loss at 8 km2, and ,30% loss with the BioClim variables. Only very small areas of habitat expansion
into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern
regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either
B2 model at 8 km2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which
require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and
understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics,
can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B.
anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also
have broader applications to global public health surveillance relating to other diseases in addition to B. anthracis.
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Introduction

Bacillus anthracis is a spore-forming bacterium that is endemic to

specific soil environments and the causative organism for anthrax,

an infectious disease primarily found in herbivorous wildlife and

livestock species, and secondarily in humans [1]. Limited data are

available to define the geographic extent of environmental

variables that support long-term B. anthracis spore survival, but

current literature suggests that B. anthracis likely replicates in the

animal host and can then survive for long periods in specific soil

environments [2–5]. However, new evidence on the potential role

of bacteriophages and soil-dwelling invertebrates (e.g. worms)

suggests a more complicated life cycle for B. anthracis in soil that

may or may not require a mammalian host for multiplication and

may provide an alternative to a spore-only survival mechanism in

soil [6]. In either case, it is plausible that these scenarios require

similar soil conditions to those described for ‘‘spore survival’’ in the

earlier literature. Hugh-Jones and Blackburn [7] summarize the

general soil conditions for B. anthracis survival from a large body of

literature as humus-rich, alkaline soils with pH .6.0 and

distributed across the steppe and grassland soils.

Until recently, knowledge concerning the distribution of these

environments was limited to studies that focused primarily on the

distribution of B. anthracis in North America[1,8,9] and parts of

Africa [5], but a recent study in Kazakhstan revealed some of the

environmental constraints of B. anthracis on the landscape

(Aikembayev unpublished manuscript). A second study [10]

confirmed that the majority of anthrax cases in Kazakhstan over

the last century affected large (cattle) and small ruminants (sheep

and goats). It has also been determined that human anthrax cases

in Kazakhstan are primarily caused by exposure to infected

animals – usually cattle, sheep, horses, or goats [11]. Anthrax cases

were predominantly cutaneous infections and were most often

linked directly to the slaughtering and/or butchering of infected

animals and no reports of human to human transmission occurred

in the study. People in rural environments were more commonly

infected because of a lifestyle that was more involved with livestock

management/production and insufficient vaccination efforts (lack
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of access, availability, surveillance, etc.) were the main reason for

infection in Kazakhstan and the surrounding central Asian

countries [11]. Since exposure to livestock is a major source of

anthrax infections in humans, it is also important to consider the

factors that help to regulate domestic livestock numbers. One such

study [12] examined factors that regulated domestic livestock

numbers over the past century in Kazakhstan and determined that

the timing and amount of precipitation are the most crucial

factors.

Recent studies have attempted to better understand the

geographic distribution of B. anthracis and anthrax outbreaks in

Kazakhstan by employing GIS, spatial analysis, and molecular

genotyping techniques [10] and spatial statistics and ecological

niche modeling (Aikembayev unpublished manuscript). Eco-

logical niche modeling has often been used to model a species’

ecological and geographic distribution. Many different ENM

approaches have been utilized for various studies including the

presence-absence approach and the presence-only modeling

approach [13]. The presence-absence modeling approach

requires that presence and absence locality data be provided

in order to model the ecological niche of a species. Absence

data, however, are often difficult to validate because many

areas that may be classified as being absent of a certain species

may, in actuality, provide a suitable habitat [14]. In some

situations, a species may not have been observed in an area

where it actually does exist. For example, sampling gear biases

may limit the successful capture of live specimens [15,16] or

sampling efforts may not exhaustively search all possible areas

within the species’ range. In the case of pathogen-based studies,

proper diagnostics, test sensitivity, and detection thresholds

must all be considered when defining the causative agent as

present or absent.

The presence-only modeling approach requires locality data to

create a predicted geographic distribution of a species based on

environmental parameters that exist where the species is

confirmed to be present [14]. Pseudo-absence data are often

generated in this approach to determine areas that do not match

the environmental parameters of areas that are known to be

present for a particular species [14]. The presence-only ENM

approach has been successfully employed to model the potential

geographic distribution of a number of taxa [17–21], including

disease vectors [22–27] and disease organisms [8,28]. An ENM

constructs a definition of the niche of an individual species in

ecological (variable) space and predicts its potential geographic

distribution through the analysis of relationships between combi-

nations of environmental variables (e.g., temperature, precipita-

tion, and elevation derived from digital maps or satellite data) and

species’ locality data [8].

The ecological niche can be defined as those environmental

conditions that allow a species to maintain its population without

immigration [29,30]. That definition was later expanded to state

that the presence of a species is correlated to quantifiable

environmental and biotic variables that promote its survival, or

a region in multi-dimensional space that describes states of the

environmental variables which are suitable for the species to exist

(i.e. a hypervolume of parameters) [31]. The complexity of intra-

and inter-specific interactions was recognized and niche space was

consequently sub-divided into a fundamental niche (maximum

extent of environment that can sustain its population) and a

realized niche (actual environment that a species inhabits).

Theoretically, a species often cannot inhabit its entire fundamental

niche because of disturbance (e.g, habitat fragmentation) [17],

inter-specific competition [32], or intra-specific limits (e.g. vagility,

reproductive success) [33].

An ENM known as the Genetic Algorithm for Rule-set

Prediction (GARP), that can be broadly defined as a fundamental

niche modeling approach [34], was recently used to examine the

geographic distribution of B. anthracis in the United States (US)

under current [8] and future ecological conditions [35]. Another

study from Kazakhstan also used GARP to model the potential

geographic distribution of environments that likely support long-

term persistence of B. anthracis and confirmed that repeat livestock

anthrax epizootics occur within that predicted geographic range of

the organism (Aikembayev unpublished manuscript). In that study

it was predicted that the northern and southeastern regions of

Kazakhstan may provide a suitable habitat for B. anthracis survival,

while the interior and western regions of the country are

potentially unsuitable for B. anthracis.

Recent work has advocated for the use of ENM as a method to

provide improved surveillance strategies for anthrax across the

United States [8]. The same is true for Kazakhstan. The

geographic potential of B. anthracis covers a very large area in

both countries, but vaccination in both cases is usually

administered as a reactionary measure in response to outbreaks.

However, knowledge of the distribution of B. anthracis can allow for

better monitoring and control measures in areas where the disease

(or its causative agent) is predicted to be present [8]. The use of

ENM to model the current distribution of B. anthracis in

Kazakhstan also produced similar results intended to improve

surveillance and target control strategies in an effort to be more

proactive in the management of anthrax outbreaks in livestock

(Aikembayev unpublished manuscript).

A major advantage of GARP (and other ENMs) is the ability to

project the future distribution of a species based on its current

relationship to environmental variables and the prediction of

climate change that will occur over the geographical area

inhabited by the species. The theory of ecological niche

conservatism with respect to ENM helps to support this approach

[36]. It states that a species maintains the same ecological niche

over very long periods of time. This allows for the prediction of

habitat change for a species based on future climate change

scenarios [17,37–43]. However, some uncertainty surrounds the

prediction of a species’ future distribution [39,42–44]. It has been

argued appropriately that we have no means of determining the

changing interactions between species because of climate change

[44]. However, Global Climate Models (GCMs) do provide some

measures of confidence and intensive speculation through the use

of the best available current and future bioclimatic data may help

to plan for possible future changes in a species’ distribution.

Since the release of future climate/emissions scenarios by the

Intergovernmental Panel on Climate Change (IPCC) [45], many

published studies have predicted future climate change patterns

that may occur in central Asia over the next 50–100 years [46–49].

Multiple studies have concluded that 1) an increase in annual

precipitation over most of Asia with 2) an overall rise in

temperatures that is most pronounced in the winter months has

occurred over the past several decades [50] and may continue to

occur in the future [48,51]. Annual, inter-annual, and decadal

trends have also been studied recently to analyze the relationship

between atmospheric forcing mechanisms (e.g., teleconnections)

and recent Eurasian climate variability [52,53]. The importance of

snow cover extent changes and its possible role as an amplifier of

regional atmospheric patterns has also been examined [53]. Snow

season lengths, snow depths, and annual snow accumulation

variability have also been studied in coordination with global sea

surface temperature (SST) variability, regional atmospheric

changes (increased precipitation and increased temperatures

overall), and regional atmospheric oscillation patterns over varying
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periods of time [54–56]. One study concluded that snow cover

depth increased across northern Eurasia (.60uN latitude), while a

decrease occurred in southern Eurasia (,60uN latitude) suggesting

that there has been an increase in precipitation and temperatures

across the region related to surface climate warming in the Arctic

region [56]. Another study examined recent changes of the onset

date of green-up for portions of central Asia and determined that

the steppe regions were highly influenced by spring precipitation

[57]. A higher amount of precipitation in the spring has caused

these regions to have earlier green-up dates than they had

previously. Areas of the Mongolian steppe that had particular

vegetation types and a higher level of spring soil moisture

exhibited an overall trend of earlier green-up and an overall

temperature increase was observed across much of the region as

well as a warming trend at the beginning of the growing season. It

is important to note that a significant part of interior Kazakhstan is

primarily composed of the Kazakh steppe, which is an extension of

the neighboring Mongolian steppe to the east. Because of the

similarity and proximity of the steppe regions, the Kazakh steppe

may also exhibit similar green-up patterns.

Other studies conducted at similar latitudes to Kazakhstan have

examined the potential expansion and contraction of rangeland

(i.e., grasslands used for the grazing of domestic cattle) and

changes in phenological phases based on climate change [58,59].

One study concluded that the northern latitudes of the US

rangeland would experience an increase in growing season and an

increase in plant production as well as an increase in peak standing

crop [58]. An increase in forage across the northern latitudes

resulted in less feed being needed to supplement the winter diet of

cattle, potentially resulting in an increase in cattle numbers and an

increase in calf weight [58]. Models used in this study predicted

substantial variation in yearly green-up periods indicating an

increasing sporadicity related to climate change. Overall, both

plant and animal production increased for the northern latitudes

according to the study. In addition to being more productive in

most locations, rangelands also were predicted to expand into

previously more arid locations. Changes in green-up and

precipitation sporadicity in conjunction with rangeland expansion

could indicate that some changes in the epidemiology of anthrax

could occur such as longer anthrax seasons and an exposure of

animals to more areas where B. anthracis may exist [36]. Because

large anthrax epizootics often appear to occur after specific rain

events (in association with overall hot, dry summer conditions

[60,61]), the increasingly sporadic rate of precipitation may also

create some changes in the epidemiology of anthrax in the US as

well as potentially in Kazakhstan. Changes in phenological phases

that have occurred since the late 1930’s were also studied, and

maximal increases in earliness of photosynthetic activity were

observed for latitudes between 45u N and 65u N [59]. While many

plants did experience an overall increase in earliness of

photosynthetic activity related to climate change, some plants

were unaffected because they were more regulated by photope-

riods [59].

Because anthrax remains a problem in livestock in the region

and sometimes affects humans, further examination of the spatial

ecology and geographic distribution of B. anthracis is imperative.

Kazakhstan has limited veterinary services and predominantly

rural agricultural practices, thus surveillance priorities should be

dynamic and readily employed at any moment. The political

boundary of Kazakhstan creates a larger amount of longitudinal

change than latitudinal change and much of Kazakhstan lies

within the upper mid-latitudes. Based on a previous study at

similar latitudes [35] it is expected that there will be an overall

contraction of B. anthracis environments by 2050 in the US with

slightly more habitat contraction occurring in the southern

latitudes.

The objective of this study is to determine the current and

future potential geographic distributions of B. anthracis based on

the Hadley Coupled Model version 3 climate predictions for

2045–2055 using multiple resolutions.

Results

Accuracy Metrics
Accuracy metrics were only performed on the models of current

distribution because the location of future outbreak events is

unknown and therefore unavailable for validation. The modeling

processes for each of the three scenarios reached convergence of

accuracy (0.01) prior to the maximum iteration setting of 1,000

models. The 55 km2 current scenario received an AUC score of

0.7045 and was significantly different from a line of no information

(p,0.01). The model had a total omission of 0.0% and average

omission of 5.5% meaning that 100.0% of the independent

(testing) locality data were predicted correctly by at least one

model and 94.5% of the independent locality data were predicted

correctly by all models in the best subset. The 8 km2 current

scenario received an AUC score of 0.6502 (p,0.01). The model

had a total omission of 5.1% and average omission of 10.2%. The

BioClim current scenario received an AUC score of 0.6995

(p,0.01). The model had a total omission of 5.1% and average

omission of 10.0%. All accuracy metrics for the current predictions

are summarized in Table 1.

Current and Future Distributions of B. anthracis
Current and future climate grid data were examined at the

near-native resolution to verify if broad agreement occurred

between 55 km2 outputs and the higher resolution 8 km2 climate

data using non-bioclimatic variables. At the 55 km2 resolution

areas of northern and southeastern Kazakhstan were predicted to

be suitable for B. anthracis survival, while the A2 and B2 climate

change scenarios predicted smaller geographic distributions in

southeastern Kazakhstan as well as slightly smaller geographic

distributions in interior and western Kazakhstan (Figure 1A–C).

Overall the predicted current distribution of B. anthracis stretches

across the northern tier, eastern quarter, and southeastern regions

of Kazakhstan. It is predicted that these areas are potentially

Table 1. Accuracy Metrics for the current predicted
distributions from each GARP experiment.

Metric 55 km2 8 km2 (BioClim)

n to build models 125{ 218{ 218{

n to test models 22 39 39

Total Omission 0.0 5.1 5.1

Average Omission 5.5 10.2 10.0

Total Commission 50.27 51.71 35.91

Average Commission 59.59 62.33 53.44

AUC* 0.70 (z = 7.71,
SE = 0.06)

0.65 (z = 9.81,
SE = 0.05)

0.69 (z = 9.01,
SE = 0.05)

* AUC = area under curve.
{ n was divided into 50% training/50% testing at each model iteration.
1 p,0.001.
Note: Independent data used for accuracy metrics appear in figure 1 (yellow
points).
doi:10.1371/journal.pone.0009596.t001
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maintaining suitable environments for B. anthracis. The northern

predictions follow a line of latitude approximately 48u N from

West Kazakhstan to the eastern area of the Karaganda oblast near

Lake Balkhash where the predictions then extend southward to the

oblast of Aktobe. Model agreement decreases south of 48u N

latitude in the southern half of the Karaganda oblast where no

model predicts suitable habitat for B. anthracis. From eastern

Karaganda oblast, habitat suitability expands farther to the south

to encompass the eastern oblasts of Kazakhstan including nearly

all of the Pavlodar, Almaty, and East Kazakhstan oblasts with

slightly less suitability in the higher altitudes of the Altay

Mountains in far eastern East Kazakhstan and the Tian Shan

Mountains in the southern and southeastern regions of the Almaty

oblast. The southern half of the Zhambyl and South Kazakhstan

oblasts are also areas of high suitability with less model agreement

in the north closer to their borders with the Karaganda oblasts and

the Kazakh Steppe. Only the extreme southeastern areas of the

Kyzylorda oblast provide potentially suitable habitat for B. anthracis

while areas in the Kazakh Steppe and around both the Aral and

Caspian Seas are not predicted to support B. anthracis. When

Figure 1. Current and future geographic distribution of Bacillus anthracis using climate data at 55 km2. (A) current geographic
distribution, (B) A2 future climate scenario, (C) B2 future climate scenario. Color ramp indicates model agreement, with darker areas representing
areas with high model agreement or greater confidence in the GARP prediction.
doi:10.1371/journal.pone.0009596.g001
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considering the A2 and B2 climate change scenarios, a noticeable

change occurs in many areas of Kazakhstan including parts of

West Kazakhstan and Aktobe where a suitable environment for

spore survival recedes to only the northern-most reaches of each

oblast. While the southern half of Kostanay exhibits a contracting

suitable environment, the northern half of the oblast and most of

Akmola, North Kazakhstan, and Pavlodar, which border Siberian

Russia, retain a suitable environment for B. anthracis spore survival.

Contraction also occurs in the southern areas of Almaty, Zhambyl,

and South Kazakhstan bordering Kyrgyzstan, China, and

Uzbekistan. The predicted changes were more easily discernible

in Figure 2A–C where areas of predicted habitat expansion and

contraction were delineated for each climate change scenario and

the percentages of habitat change were summarized in Table 2.

At the 8 km2 resolution areas of northern and southeastern

Kazakhstan were predicted to be suitable for B. anthracis survival,

while the A2 climate change scenario predicted a smaller

geographic distribution in southeastern and eastern Kazakhstan

and the B2 climate change scenario predicted a smaller geographic

distribution in southeastern, northeastern, and central Kazakhstan

Figure 2. Comparison of predicted B. anthracis habitat changes from both climate scenarios using five variables at a resolution of
55 km2. Potential future habitat changes based on the A2 climate change scenario (A) and the B2 climate change scenario (B). Differences between
each climate change scenario (C).
doi:10.1371/journal.pone.0009596.g002
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(Figure 3A–C, Figure 4A–C). The models suggest that there are

significant areas of southeastern and northwestern Kazakhstan

where a suitable environment for B. anthracis will cease to exist,

while most of the habitat will remain intact across the northern tier

with marginal habitat losses closer to the interior of the country.

Northeastern Kazakhstan may also experience drastic habitat loss,

but only the B2 scenario predicts this response. The oblasts of

West Kazakhstan, Aktobe, Almaty, Zhambyl, and South Kazakh-

stan could lose nearly all areas that were previously predicted to be

suitable habitats for B. anthracis under current climatic conditions.

There are also several very small areas of expanded habitat

scattered across portions of interior and eastern Kazakhstan in

Karaganda, East Kazakhstan, and Almaty. The percentages of

expanded habitat, unchanged habitat, unsuitable habitat, and

contracted habitat occurring across Kazakhstan for each climate

change scenario at each resolution were summarized in Table 2.

BioClim predictions are illustrated in Figure 5A–C and

Figure 6A–C. Areas of northern and southeastern Kazakhstan

were predicted to be currently suitable for B. anthracis survival,

while the A2 climate change scenario predicted a smaller

geographic distribution in southeastern and eastern Kazakhstan

and the B2 climate change scenario predicted a smaller geographic

distribution in southeastern, northeastern, and central Kazakh-

stan. The environmental parameters that allow for B. anthracis

survival occur in only the northern-most section of West

Kazakhstan and Aktobe in 2050 according to the B2 climate

change scenario. Much of Akmola, Pavlodar, and East Kazakh-

stan are predicted to no longer maintain environments suitable for

B. anthracis. A smaller geographic distribution is also predicted for

the southeastern oblasts of Kazakhstan. The environments of

interior Kazakhstan remain unsuitable for B. anthracis under the B2

scenario.

Discussion

The accuracy metrics for the current scenarios confirms that

GARP successfully predicted actual outbreak locations withheld

from the model-building process. Very low total and average

omission scores indicate a high predictive accuracy for each best

subset presented. Additionally, an evaluation of individual test

locations that were omitted in any of the current modeling

scenarios shows that at least some of those are in areas unlikely to

support B. anthracis in soils anyway based on the low frequency of

such cases in a rather extensive time series of anthrax outbreaks.

AUC scores were also reasonable for each scenario suggesting that

our models are significantly better than random at identifying B.

anthracis environments. As AUC directly reflects the relationship

between omission and commission rates in its calculation [62], the

55 km2 scenario performed best of all in this study. While the

BioClim experiment had a higher AUC than the 8 km2

experiment, it also predicted a smaller geographic extent of

presence, so we would expect the AUC score to be higher. Given

that both had equal total and average omission rates, it is

unrealistic to consider any significant difference in performance of

these two scenarios overall. While future changes in the

distribution of B. anthracis are purely speculative, current models

appear to be accurate regardless of resolution and climate datasets

for 2050 show a broad level of overall agreement with habitat

expansion in the north and contraction in the south. From this, it

is arguable that B. anthracis has established a natural ecology across

many regions of Kazakhstan, primarily the northern half, eastern

quarter, and southeastern regions along the borders with

Uzbekistan, Kyrgyzstan, and China. South-central and southeast

regions of Kazakhstan that are now considered suitable environ-

ments for B. anthracis (and where a significant group of anthrax

outbreaks have occurred over the past 70+ years [10]) may no

longer have environmental conditions that support the long-term

survival of B. anthracis according to projections from the A2 and B2

climate change scenarios at either spatial resolution.

A comparison between 55 km2 and 8 km2 climate data found

that there was broad agreement across modeling experiments for

the northern regions of Kazakhstan for the A2 climate change

scenario. The southern areas of the Almaty, Zhambyl, and South

Kazakhstan oblasts were predicted to experience drastic habitat

loss (i.e., near total) at both resolutions, but drastic habitat loss in

northern Kazakhstan was only predicted by the B2 climate change

scenario at a resolution of 8 km2 (both 8 km2 and BioClim). The

actual reasons for major differences in the predicted distribution

by each resolution are uncertain, but a lack of data points, a

relatively steep change in elevation, the calculation of bioclimatic

variables, and/or the splining technique used to downscale

WORLDCLIM data may be possible explanations. There is still

some measure of uncertainty in future climate predictions even at

crude resolution and all future estimates should be regarded with

caution. More guidance from climatologists in selecting climate

datasets is probably warranted when considering how various

climatic or bioclimatic variables may affect the potential

distribution of a species.

Currently, much anthrax surveillance is focused on the south-

central and southeast regions of Kazakhstan because many

anthrax cases have occurred there in an area of high human

population density, i.e. observation bias. Based on future

bioclimatic data alone there may be a reduction in anthrax cases

reported for this region. Future changes in temperature and

precipitation may also cause geographic contraction of rangeland

in the southern regions where livestock currently graze, while

causing geographic expansion of rangeland in the northern

regions. This would subsequently allow more animals to graze in

environments that are predicted to be suitable for B. anthracis in the

north, while less grazing in the south in conjunction with a less

suitable environment for B. anthracis may also lead to further

reduction in epizootics for this region. While climatic conditions

Table 2. A comparison of habitat change (%) between SRES A2 and B2 climate change scenarios for each GARP experiment.

Habitat
Change

A2 Scenario
(55 km2)

B2 Scenario
(55 km2)

A2 Scenario
(8 km2)

B2 Scenario
(8 km2)

A2 Scenario
(BioClim)

B2 Scenario
(BioClim)

Expanded Habitat 4.15% 3.63% 0.71% 0.89% 0.20% 0.52%

No Change 43.85% 44.67% 40.94% 29.28% 36.81% 22.54%

Not Suitable 37.04% 37.56% 36.12% 35.94% 46.72% 46.76%

Habitat Loss 14.96% 14.15% 22.22% 33.88% 16.27% 30.18%

doi:10.1371/journal.pone.0009596.t002
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may have changed between 1960 and 2000, current climatic

variables were based on weather conditions recorded between

1950 and 2000 thus we assume that locality data collected over the

past several decades accurately reflect environmental parameters

needed for B. anthracis presence on the landscape.

Overall, the hypothesis of predicted habitat loss in the south, but

gain in the north was partially disproven. While a very small area

of expanded habitat was consistently predicted in the northeastern

regions of Kazakhstan, habitat loss was predicted in nearly every

part of the country except the extreme northern regions bordering

Russia (Figures 2C, 4C, 6C, Table 2). There was far more

predicted habitat contraction in the southern regions of Kazakh-

stan than anticipated. Projected changes may reflect over-

predictions of future habitat loss due to a lack of soils data, but

nonetheless the southeast region should expect to observe some

reduction in B. anthracis habitat.

The results of this current study agree with the results of similar

continental scale studies where southern habitat reduction was also

predicted due to the potential effects of climate change on other

bacterial zoonoses [35,43,63] and we have documented this

Figure 3. Current and future geographic distribution of Bacillus anthracis using climate data at 8 km2. (A) current geographic
distribution, (B) A2 future climate scenario, (C) B2 future climate scenario. Color ramp indicates model agreement, with darker areas representing
areas with high model agreement or greater confidence in the GARP prediction.
doi:10.1371/journal.pone.0009596.g003
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pattern in all three climate datasets used at both 55 km2 and

8 km2 resolutions. In the US, parts of the southern range of B.

anthracis were predicted to contract by 2050, while some parts of

the northern range were predicted to expand [35]. Nakazawa et al.

[63] investigated the effects of climate change on tularemia and

plague in the US with ENM and multiple climate change scenarios

and predicted similar trends with more contraction occurring in

the southern habitats than in the northern habitats for 2050.

Similarly, a recent study that modeled the future distribution of

plague-carrying ground squirrels in California using 1 km2

BioClim variables suggested a subtle geographic shift to higher

latitudes and altitudes with a limited reduction at lower latitudes

[43]. Collectively, these trends were not as drastic as the trends

predicted for Kazakhstan, but contraction of a southern range was

suggested for all three diseases. The more extreme changes in

predicted distribution for Kazakhstan may be a result of the region

potentially experiencing a more severe climatic change between

now and 2050. However, it is not implausible that variables, such

as soil conditions that were unavailable for this study, might limit

the habitat reduction to smaller portions of the Kazakh landscape.

Figure 4. Comparison of predicted B. anthracis habitat changes from both climate scenarios using five variables at a resolution of
8 km2. Potential future habitat changes based on the A2 climate change scenario (A) and the B2 climate change scenario (B). Differences between
each climate change scenario (C).
doi:10.1371/journal.pone.0009596.g004
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Research over the past several decades has indicated that

sporadic vegetation growth occurred from year to year based on

rainfall amounts in the desert and steppe regions of Kazakhstan

[12]. This may infer that an increase in rainfall variability (as

predicted in the region of central Asia by climate change

scenarios) from year to year in desert and semi-arid steppe

climates could equate to a more sporadic occurrence of anthrax

outbreaks. While models may have predicted a complete

disappearance of habitat for B. anthracis in certain regions,

anthrax outbreaks may simply become increasingly sporadic, but

not disappear altogether in these regions as the A2 and B2

climate change scenarios suggested. Changes in the landscape

could limit (if desertification occurs) or increase (if an increase in

rangeland occurs) the ability for cattle to migrate [12]. These

potential changes in migratory patterns could help to spread or

limit the range of anthrax outbreaks and subsequent B. anthracis

introduction and survival. Cattle migration is already confined

because of limitations placed on nomadic herdsmen over the past

century [13]. Overall, cattle now graze on smaller areas than they

did previously [12] and in areas where outbreaks have occurred,

we would expect a possible increase in outbreak potential if

population densities are high [64].

Figure 5. Current and future geographic distribution of Bacillus anthracis using BioClim variables at 8 km2. (A) current geographic
distribution, (B) A2 future climate scenario, (C) B2 future climate scenario. Color ramp indicates model agreement, with darker areas representing
areas with high model agreement or greater confidence in the GARP prediction.
doi:10.1371/journal.pone.0009596.g005
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The current spatial distribution of B. anthracis follows similar

latitudinal patterns as those predicted by a study in the United

States with larger areas of the northern regions predicted to be

endemic for B. anthracis compared to smaller areas predicted to be

endemic for B. anthracis in the southern region [8]. This also closely

follows the predicted current distribution of B. anthracis on the

landscape of Kazakhstan (Aikembayev unpublished manuscript).

The predicted areas of southern Kazakhstan traverse the foothills

and mountain ranges of the Tian Shan and Altay Mountains,

which have climates that are somewhat comparable to climates

farther north. In maps of the projected distribution, it can also be

determined that the suitable environments for B. anthracis

(specifically in the southern regions) may move to areas of higher

elevation greatly limiting its dispersal based on cattle grazing

limitations [12]. Sheep, however, may not have similar grazing

limitations because they are often transported either by foot or by

truck/train to summer grazing areas in more mountainous regions

[65]. Because of their mobility, sheep may be able to adapt to

climate changes in the south more so than cattle and may

subsequently remain in environments that continue to be suitable

Figure 6. Comparison of predicted B. anthracis habitat changes from both climate scenarios using BioClim variables at 8 km2.
Potential future habitat changes based on the A2 climate change scenario (A) and the B2 climate change scenario (B). Differences between each
climate change scenario (C).
doi:10.1371/journal.pone.0009596.g006
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for B. anthracis. Rainfall has dictated livestock numbers and

migratory patterns over the past several decades so this could in

turn limit the contact that cattle may have with an environment

where B. anthracis exist in the soil. The opposite may also be true if

rainfall increases across many parts of Kazakhstan, more land

could be available for grazing (similar to increases in forage in the

northern latitudes of the United States [58]) thus allowing livestock

to possibly move to more areas where they could come in contact

with B. anthracis. An inverse relationship could potentially be

created based on rainfall estimates that allow for livestock range

expansion and B. anthracis range contraction. It is also important to

consider the differences between the climate of Kazakhstan

(continental with minimal influence from oceans) and the climate

of the United States (surrounded by the Atlantic and Pacific

Oceans as well as the Gulf of Mexico) when comparing the

distribution of B. anthracis across the landscape of each.

Potential changes in seasonal vegetation patterns should also be

examined in conjunction with typical seasonal patterns of anthrax

outbreaks to determine if these patterns may coincide. Anthrax has

a distinct seasonality and is primarily a summertime (May–

October in northern latitudes) disease in both wild and domestic

ruminants that is usually associated with wet springs and hot, dry

summers followed by a rain event [66,67]. The predicted rise in

temperatures and potential for increasingly sporadic rain events

across much of central Asia [48] could lead to spatial and temporal

changes in where and when anthrax outbreaks occur in

Kazakhstan. Rangeland expansion and contraction as well as

changes in rangeland production in Kazakhstan could lead to a

higher population of livestock in the northern regions, where B.

anthracis is predicted to remain in 2050, and subsequently a

potentially greater number of anthrax outbreaks. A rise in

temperatures in the southern regions of Kazakhstan could create

an environment that B. anthracis and/or livestock may not be able

to survive in, thus potentially decreasing the number of anthrax

outbreaks there. It has been shown in the US that areas supporting

B. anthracis survival do overlap with livestock distributions, however

they are not identical [35]. Livestock may graze in areas that are

unsuitable for B. anthracis and likewise, B. anthracis may exist in

areas that are either unsuitable or not used for livestock grazing.

It is also interesting to consider the possible evolutionary

implications of these climate change scenarios. While the genetic

understanding of B. anthracis in Kazakhstan is incomplete, recent

efforts [10] have provided insights into the spatial distribution of

Kazakh specific genotypes for the country. Employing the 8-

primer MLVA-typing developed by Keim et al. [68], a recent

study described 92 culture isolates from several historical

outbreaks. The majority of these isolates belong to the A1.a

genetic cluster and the majority of that diversity was located in the

southern regions of Kazakhstan, predicted to no longer support B.

anthracis in 2050 by all three modeling experiments and both

climate scenarios. This might suggest that a reduction in suitable

habitats in southern Kazakhstan may also correspond with a

reduction in genetic diversity. It is difficult to estimate changes in

diversity in the northern most extent of Kazakhstan, as no cultures

were available for typing [10]. However, six of the 92 isolates from

the existing data set represented a distinct member of the A3b

sublineage. Interestingly, the 8 km2 and BioClim B2 scenarios

suggest the northeastern region where these strains were isolated

will no longer support B. anthracis in 2050.

When comparing climate change scenarios at a resolution of

8 km2, more habitat loss was predicted by the B2 climate change

scenario–supposedly the more conservative (or optimistic) of the

two scenarios. The B2 scenario delineates that more habitat loss

may occur in the northern interior areas of Kazakhstan as well as

the northeastern areas of Kazakhstan. Conversely, several small

areas in southeastern and northwestern Kazakhstan that were

classified as areas of habitat loss actually are predicted to retain

their habitats in the B2 climate change scenario. While variations

in the predicted precipitation and temperature changes for 2050

may have been the main reasons for distributional differences seen

between the A2 and B2 scenarios, GARP used a combination of

variables to create rule-sets that determined the environmental

parameters that support B. anthracis. For example, a warmer and

wetter environment in the north may create a more suitable

environment for spore survival, but a warmer and drier

environment in the south may also create a more suitable

environment for spore survival in previously uninhabitable areas

(e.g. in the higher elevations of the Tian Shan Mountains).

Previous studies allude to the importance of examining specific

rules within GARP rule-sets to evaluate changing relationships

between variables across the landscape [8,62] and variable

combinations for this study should also be examined to further

understand environmental constraints on the habitat of B. anthracis.

Temperature and precipitation changes will not be uniform across

the vast landscape of Kazakhstan. For this reason, the internal

rule-sets need to be examined to determine which variables and

combination of variables were most important in predicting the

ecological niche of B. anthracis. A closer examination of individual

variables and variable combinations derived through rule-sets may

also help to reveal the potential driving mechanism(s) of the

predicted habitat change for B. anthracis across many areas of

Kazakhstan. Population growth and urbanization may also alter

future predictions, but land cover use change may affect future

predictions more if rangelands expand/contract in certain areas.

Based on trends during the past century, Kazakhstan is not

expected to experience drastic population growth or urbanization

that would greatly modify future predictions.

Materials and Methods

Anthrax Occurrence Data
A database totaling 3,947 outbreaks was constructed from

historical records between 1937 and 2006 archived at the Kazakh

Science Center for Quarantine and Zoonotic Disease (KSCQZD),

Almaty, Kazakhstan. Of those, 3,929 records represented

outbreaks in livestock. A total of 1,790 individual locations were

reported, with 805 of those reporting repeat outbreaks[10].

Outbreak events in domesticated animals, large (cattle) and small

(sheep and goats) ruminants, constituted the majority of the

dataset. Following a previous ENM effort in Kazakhstan

(Aikembayev unpublished manuscript), this study utilized data

from 1960–2000 to most closely reflect the disease situation in the

period after broad vaccination and control strategies had been

introduced. A total of 1,181 outbreaks were reported in large

ruminants and 1,303 outbreaks were reported in small ruminants

across the database from 1960–2000 (Figure 7A).

A filtering technique was applied to these 2,484 outbreaks to

create smaller datasets that contained only spatially unique points

for each of two environmental data set pixel resolutions, 55 and

8 km2, respectively (Figure 7B–C). Points were considered spatially

‘‘unique’’ when they did not occur within the same pixel. GARP

utilizes a single point per grid cell to identify it as present for B.

anthracis. Presence and absence are the only two categories that GARP

uses to separate grid cells and the presence of more than one point

in a grid cell could create inflated accuracy metrics if points from

the same grid cells are used to test whether or not GARP predicted

a grid cell accurately. It would be the equivalent of using the same

data for both the training and testing of a GARP model. Because
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GARP is a presence-only modeling approach, only species

presence data are needed and pseudo-absences are generated

from background areas where no species data occur [69].

Current and Future Climate Datasets
There are four main emissions scenarios produced by the IPCC

in its Special Report on Emissions Scenarios (SRES) and Third

Assessment Report [45]. The first is the A1 scenario which

accounts for a low population growth, but very rapid economic

growth and globalization. Less focus is placed on sustainability and

energy efficiency in this scenario. The second scenario is the B1

scenario which accounts for the same low population growth, but

development that is more focused on environmental sustainability

and accountability. The third is the A2 scenario and it estimates a

very rapid population growth due to less convergence of fertility

rates (approximately 15 billion by 2055) and only minor

improvements in emission standards (increase of 1% of CO2)

over that same time period. The fourth scenario is the B2 scenario

which estimates a smaller global population growth than A2

(approximately 10 billion by 2055), but a higher population

growth than both the A1 and B1 scenarios with more

improvements in emission standards (increase of 0.5% of CO2)

[45,70]. We chose to use the HadCM3 (Hadley Coupled Model

version 3) ensemble a versions of the A2 and B2 climate change

scenarios for 2045–2055 (hereafter referred to as 2050) in order to

evaluate the effects of both a conservative (B2) and a less

conservative (A2) scenario of how climates may change over the

next several decades. Other popular general circulation models

(GCMs) such as the CGCM and CSIRO models use flux

adjustments to offset and reduce significant climate drift, but it is

most desirable to eliminate their use in the coupled models that we

use for future climate simulations [71–73]. The HadCM3 model

was chosen over other models because of its ability to produce a

good simulation without the use of flux adjustments [74,75].

Current and future climate grid data were freely downloadable

(www.worldclim.org) on the WORLDCLIM website [76]. The

initial interpolation of the grids was scaled to a relatively coarse

resolution (,111 km2) before a thin-plate smoothing spline

algorithm was applied to reduce the surfaces to various finer

resolutions that were validated against historical weather station

data multiple times to reduce error associated with interpolation

[76]. A resolution of 8 km2 was utilized for this study because

village latitude and longitude coordinates were occasionally

estimated to be greater than 1 km away from farms where

anthrax outbreaks occurred. Current grids describing monthly

precipitation values as well as maximum and minimum temper-

atures were available along with bioclimatic (BioClim) grids that

were created through the manipulation of the aforementioned

monthly variables in order to create more biologically meaningful

variables that represent annual trends, seasonality, and extreme/

limiting environmental factors [76]. One apparent advantage of

the WORLDCLIM data set is the availability of BioClim variables

which may be biologically more meaningful than annual mean,

minimum, and maximum temperature and precipitation.

Figure 7. Map of Kazakhstan with anthrax locality data. Training data (green) were used to build models while independent data (yellow)
were used to evaluate model accuracy. Inset A illustrates where all anthrax outbreaks occurred between 1960 and 2000. Inset B illustrates training
and independent data used for building models at 8 km2 spatial resolution. Inset C illustrates training and independent data used for building
models at a resolution of 55 km2.
doi:10.1371/journal.pone.0009596.g007
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Future grids (e.g., for 2050 A2 and B2 climate change scenarios)

describing monthly maximum and minimum temperatures and

precipitation totals were also available, but bioclimatic grids were

not available for future scenarios. For this reason, bioclimatic grids

were calculated for both the A2 and B2 climate change scenarios.

Bioclimatic variables were derived for current and future

conditions following calculations provided on the WORLDCLIM

website (www.worldclim.org). The calculations were performed

with the use of the raster calculator within the Spatial Analyst

extension of ArcMap 9.2 [77]. Once calculations were complete, a

total of six world environmental variable grids were clipped to

represent the spatial extent of Kazakhstan (Table 3). BioClim

variables have been used in a recent study to develop current and

future predictions of Yersinia pestis infected ground squirrels,

Spermophilus beecheyi, in California using a similar approach to that

described here [43].

Given that the native resolution of climate models is relatively

crude, the accuracy of climate data resampled to a high spatial

resolution is questionable [63]. To test for agreement between low

and high resolution data sets, we constructed models using near-native

resolution climate data directly from the IPCC at 55 km2. Without

monthly data at low resolution, we did not calculate BioClim variables

at 55 km2. To compare the resolution of 55 km2 and 8 km2, we used

five variables to construct models at both resolutions: elevation, total

annual precipitation, mean temperature, minimum annual temper-

ature, and maximum annual temperature. A model using identical

variables from the 8 km2 climate dataset was constructed in order to

make a fair comparison between the two resolutions. Current and

future climate grids were clipped and resampled to represent the

spatial extent of Kazakhstan at these resolutions.

Modeling Scenarios
For this study, we modeled the current geographic distribution

of B. anthracis using three different scenarios at two different

resolutions. The first two scenarios contained five environmental

variables that described temperature, precipitation, and elevation

that were used to create two models of the potential current

distribution of B. anthracis. The first scenario utilized the five

variables at a resolution of 55 km2 (herein referred to as 55 km2),

while the second scenario utilized the five variables at a resolution

of 8 km2 (herein referred to as 8 km2). The third scenario utilized

six environmental variables that included elevation and five

bioclimatic variables (herein referred to as BioClim; Table 3). Two

models of the future distribution of B. anthracis were also created

for each of the three scenarios. Temperature and precipitation

trends predicted for 2050 by the A2 climate change scenario and B2

climate change scenario were used to construct the models and

compare the future potential distributions to the current predicted

distribution.

Implementation and Methodology of Desktop GARP and
Accuracy Metrics

The specific ENM chosen for this study was the Genetic

Algorithm for Rule-set Prediction (GARP [69]). GARP is a

presence-only genetic algorithm that models species’ potential

geographic distributions through an iterative process of training

and testing that occurs through resampling and replacement of

input data [69]. A pattern matching process is applied that finds

non-random relationships between species localities and specific

variables that describe the environment. These relationships are

written as a series of if/then logic statements (known as rules) that

define whether conditions within the rule are defining presence or

absence. A GARP ‘‘model’’ is a combination of 50 rules that

define the landscape as present or absent and the resulting rules

are known as a rule-set. The rules consist of four specific types:

range, negated range, atomic, and logistic regression [69]. GARP

is genetic, meaning that rule development is done through an

automated process, whereby rules are randomly generated, tested

with internal statistical tests, and modified (through the rules of

genetic evolution–point mutations, crossovers, deletions, inser-

tions) [69] to determine which rules to keep and delete based on

their accuracy at predicting internal testing data. Data splits occur

both internally and externally for the purpose of model evaluation

and are established by the user. A best subset of models is usually

created during an experiment. A best subset is a group of a user-

defined number of models from an experiment that meet omission

and commission criteria established by the user as a means of

selecting those models that best balance between low omission and

median commission values [78].

While GARP has received some criticism as a ‘‘black box’’[79],

or being less precise than more recently developed tools [80],

recent studies have shown GARP to perform well [8,81] and it

should be noted that this criticism was in part due to evaluations

based on an unequal calculation of the accuracy metric used

[82,83]. Part of this confusion is also due to a conflation of

ecological niche modeling and species distribution modeling [84].

Here we employ the former, while the criticism [80] was

concerned with the latter.

Spatially unique point data were randomly split once into 85%

training and 15% testing data subsets (Figure 7B–C) prior to

model development using SPSS (version 16.0) [85]. The same

85% training datasets were used within the model-building process

for all models, while the 15% testing datasets was withheld

completely from the modeling experiments to evaluate the

predictive accuracy of the models post hoc. Maps were then created

from GARP outputs to identify the potential geographic

distribution of B. anthracis based on the modeled niche definitions.

Because GARP is a two-step process, first modeling in variable

space and then projecting onto the landscape, it is plausible to

project current rule-sets onto the potential future conditions of a

landscape. This current study employed the Desktop GARP

version 1.1.6 [DG] software application, an open source modeling

program (http://www.nhm.ku.edu/desktopgarp/).

Modeling Parameters
For all modeling scenarios, the training data were uploaded into

DG with a 50/50 internal data split, meaning that 50% of the data

were used within GARP to construct models and the remaining

50% were used for internal accuracy assessment of the rule-set and

model building process. We employed 200 modeling runs using a

convergence limit of .01 and 1000 max iterations using all four

rule-types. The best subsets procedure was implemented to select

optimal models for B. anthracis using an extrinsic omission measure

and the selection of 20 models under a hard omission threshold of

Table 3. Environmental variables used for BioClim GARP
models.

Environmental Variables Name Source

Annual Mean Temperature BIO1 WorldClim (www. worldclim.org)

Temperature Annual Range BIO7 WorldClim (www. worldclim.org)

Annual Precipitation BIO12 WorldClim (www. worldclim.org)

Precipitation of Wettest Month BIO13 WorldClim (www. worldclim.org)

Precipitation of Driest Month BIO14 WorldClim (www. worldclim.org)

Elevation (Altitude) ALT WorldClim (www. worldclim.org)

doi:10.1371/journal.pone.0009596.t003
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10% and a commission threshold of 50%. This produces a 10-

model best subset, where the 10 models with an accuracy of 90%

or greater and closest to the median commission value are chosen

to represent the potential geographic distribution. These 10

models were imported into ArcGIS and summated using the raster

calculator routine in the Spatial Analyst extension. These maps

represent values between 0 and 10, with 0 equally ‘‘absent’’ and

values of 1 through 10 representing the number of models from

the best subset that predicted that pixel as present; the greater the

number, the higher the confidence in the model outcome [29].

Summated maps were produced for each modeling scenario in this

study. A map of the current distribution and two maps of the

projected distribution (i.e., A2 and B2 climate change scenarios)

were created to show the potential geographic distribution in 2050

for each scenario.

The accuracy of the current distribution was then quantified

through the use of accuracy metrics, which utilized the 15%

testing data that was withheld from the modeling experiment. A

receiver operating characteristic (ROC) analysis was used to

produce area under the curve (AUC) scores. Additionally, two

measures of omission (i.e., total and average), and two measures of

commission (i.e., total and average) were also calculated for the

current distribution model output. An AUC score ranges from 0.5

(lowest predictive accuracy – completely random) to 1.0 (perfect

score–points were predicted 100% of the time), but AUC

measurements are not ideal for validating the accuracy of GARP

because they are subject to an area effect [21,62,83]. GARP

usually only makes predictions across a small portion of the ROC

plot, but AUC scores are measured across the entire area, not just

the area predicted by GARP [83]. Because of this, ROC

measurements should be regarded with caution. A recent study

noted that the relative poorness of AUC scores is not necessarily a

failure of GARP to predict an accurate distribution, but rather

limitations of the statistics that are currently used to test model

accuracy [62]. To provide a more robust evaluation of the models

we presented AUC scores but along with measures of omission and

commission that were based on the 15% testing subset [62].

Analysis of Habitat Change
Summated maps from the best subset were reclassified to

visualize the habitat changes between the current predicted

distribution and the A2 and B2 scenarios. Grids for the current

distribution and the projected A2 and B2 distributions were

reclassified as presence (6 or more models agree) or absence (5 or

fewer models agree). The raster calculator was then used to

subtract the projected distributions from the current distribution.

In total, two maps were produced representing habitat change

(i.e., habitat expansion, habitat loss, no habitat change, unsuitable

environment) occurring for the A2 and B2 climate change

scenarios at each resolution and modeling scenario. The

percentages of area occupied for each of the four categories of

habitat change were tabulated.
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