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Abstract
Nepal boarders India and China and all three countries lie within the Central Asian Flyway

for migratory birds. Novel influenza A H7N9 caused human fatalities in China in 2013. Sub-

clinical infections of influenza A H7N9 in birds and the potential for virus dispersal by migra-

tory birds prompted this study to assess avian H7N9 viral intrusion into Nepal. Surveillance

of influenza A virus in migratory birds was implemented in early 2014 with assistance from

the Food and Agricultural Organization (FAO). Of 1811 environmental fecal samples col-

lected from seven wetland migratory bird roosting areas, influenza A H9N2 was found in

one sample from a ruddy shelduck in Koshi Tappu Wildlife Reserve located in southern

Nepal. Avian H7N9 and other highly pathogenic avian influenza viruses were not detected.

This study provides baseline data on the status of avian influenza virus in migratory bird

populations in Nepal.

Introduction
Wild birds, particularly aquatic species, are considered natural hosts of avian influenza virus
(AIV) [1, 2]. Low pathogenic avian influenza viruses (LPAIV) have co-evolved with their wild
host populations to such an extent that infections usually remain subclinical [2]. Wild birds
may transmit LPAIV directly or indirectly to poultry, although such infections are generally
not sustained [3]. Once introduced into domestic birds, low LPAIV occasionally undergo spon-
taneous mutations transforming into highly pathogenic avian influenza virus (HPAIV) vari-
ants [4, 5].

AIV is a major pathogen of concern to veterinary science, public health, and wildlife conser-
vation sectors. AIV often attains high virulence, transmissibility, and tissue tropism and cover
affects a wide host range due to its potential to evolve with capricious genetic shuffling [3]. The
HPAIV H5N1 that emerged in late 2003 in Southeast Asia spread throughout East Asia,
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Southeast Asia, Central Asia, Europe, the Middle East, and Africa, and had a devastating
impact on the poultry industry [6, 7]. Ecological and public health concern heightened as
H5N1 acquired enhanced virulence and expanded its host range. Thousands of wild migratory
birds, over 300 humans, and several other mammals died [8, 9].

The first report of three human fatalities caused by a novel avian influenza H7N9 in China
in March 2013 accentuates the fact that avian influenza continues to be an emerging public
health threat [10]. Of concern is the fact that the virus produces subclinical infections in
domestic and wild birds, dramatically increasing chances of a silent spillover of virus from
birds to humans and other animals [11]. Phylogenetic analyses suggest the current circulating
novel H7N9 could have originated by acquiring the HA fragment of H7N3 found in ducks, the
NA fragment from H7N9 found in migratory birds, and the remaining six internal genes from
distinct H9N2 viruses of poultry, gathered in at least two sequential re-assortment steps
[10,12–14]. Evidence that H7N9 originated from such intermingling suggests that other combi-
nations of AIV can be expected if close interactions among wild and domestic birds and other
species are allowed. Interestingly, 27 genotypes of novel H7N9 have already been identified
during recent outbreaks, and additional genotypes are evolving with poultry movement [12].

It is important to have a rigorous avian influenza A surveillance and monitoring mechanism
in place to understand the underlying ecological intricacies of the virus and timely capture of
circulating novel strain with pandemic potential [6, 15]. Information gathered from such sur-
veillance and monitoring is important in developing a strategic early warning system to rapidly
detect HPAIV and identify critical components to mitigate further transmission and spread
[15]. Among such components, the role of migratory birds in the introduction and dissemina-
tion of AIV cannot be excluded considering the ability of these viral reservoirs to cross coun-
tries and continents [6, 16].

Several studies have incriminated migratory birds in the likely spread of HPAIV H5N1from
Southeast Asia to the Qinghai Province of China; Mongolia; and Europe [8, 16–18]. If this is
true, then, it is even more probable for migratory birds to disperse H7N9 over longer distances
owing to its lower pathogenicity in birds. In fact, novel H7N9, genetically similar to the virus
isolated from humans and poultry in China, was detected in healthy tree sparrows in Shanghai
city in spring 2013 [19]. Systematic AIV surveillance studies of migratory birds have been con-
ducted in Europe [20, 21], North America [16, 22], Africa [23], the Middle East [24], and a few
Asian countries [25, 26]. Data on avian influenza is entirely lacking from Nepal, although it lies
in a strategically important geographical area between China and India [18]. Understanding
this need, an AIV surveillance of the migratory bird population in Nepal was conducted by the
Center for Molecular Dynamics Nepal (CMDN) in collaboration with the Food and Agricul-
ture Organization (FAO), Nepal.

Wetlands in Nepal lie in the path of the Central Asian Flyway (CAF) (Fig 1) [27] and pro-
vide over-wintering habitat for a number of migratory bird species [18, 28]. India and China,
bordering Nepal, lie along the same flyway and have recurrent histories of H5N1 among poul-
try and wild birds. The illegal trade of poultry and the movement of poultry products and wild
birds across the porous border places Nepal in danger of influenza virus introduction. Since
2009, following trends in neighboring countries, Nepal has suffered perennial H5N1 outbreaks
in poultry. Over 234 outbreaks have occurred, causing tremendous damage to the poultry
industry [7]. The emergence of the novel anthropogenic H7N9 virus in China and the possibil-
ity of its dispersal by migratory birds emphasize the urgency of thorough investigation in
Nepal. The main objective of this study was to assess the presence of AIV, particularly H7N9,
in the migratory bird population in Nepal.

Influenza A Surveillance in Migratory Birds, Nepal
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Materials and Methods

Sample size estimation and field sampling
Seven sites, mostly wetland areas in Nepal that are important stopover and roosting sites for
migratory birds, were identified with the assistance of an ornithologist (Fig 2). To guide field
researchers and ensure effective sampling, an illustrative field handbook was prepared with key
information such as common names, range of habitat and representative images of migratory
bird species previously documented in the chosen sampling sites.

Appropriate sample size needed for each sampling site was calculated using the Epi-Tools
Survey Toolbox for animal- and herd-level diseases [29]. We considered knowledge from the
previous study [30] which found an extremely low H7N9 prevalence of 0.0093% throughout
Asia. Sample size was calculated with a precision of 5% for a 95% probability of detecting at
least one positive case considering a high sensitivity and specificity rate for RT-PCR assay. A
total of 1811 environmental fecal droppings were collected from migratory bird roosting sites
between February and March of 2014 (Table 1). Fresh (moist) fecal droppings were collected
using a sterile swab, placed in individual cryovials containing sterile Viral Transport Medium
[31], and immediately frozen in a liquid nitrogen cryrofreezer. Field data collected included
recordings of the GPS locations of the collected samples. Photographs of migratory bird species
sighted at the sampling sites were also taken. Upon confirmation of influenza A in any of the
collected samples, free ranging backyard poultry (chickens and ducks) were also sampled

Fig 1. General flyways used by migratory shorebird species.Reprinted from Food and Agriculture Animal Production and Health Manual No. 5[27] under
a CC BY license, with permission from FAO copyright unit (2007).

doi:10.1371/journal.pone.0133035.g001
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(June-July, 2014) and screened for influenza A to detect possible viral spillover between wild
and local domestic birds. All samples were transported frozen in a dry shipper to CMDN’s
Kathmandu-based laboratory and stored in a -80°C freezer pending analysis.

Molecular Diagnosis
RNA Extraction, Reverse Transcription, and Real time PCR for H7. Samples were

pooled from each site (five samples pooled to one) prior to RNA extraction. RNA was extracted
using QIAamp viral RNA mini kit (Qiagen, Germany). Complementary DNA (cDNA) was

Fig 2. Sampling sites for avian influenza surveillance among wild migratory birds of Nepal.

doi:10.1371/journal.pone.0133035.g002

Table 1. Collection sites and sample sizes for Influenza A virus surveillance of migratory birds in
Nepal.

Sampling site Districts Number of samples

Chitwan National Park Chitwan 310

Fewa and Begas lakes Kaski 294

Taudaha lake Kathmandu 286

Langtang National Park Sindhupalchok 250

Jagadishpur lake Kapilvastu 222

Koshi Tappu Wildlife Reserve Sunsari 221

Bardia National Park Bardiya 228

Total sample size 1811

doi:10.1371/journal.pone.0133035.t001
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synthesized immediately after RNA extraction using a SuperScriptFirst-Strand Synthesis Kit
(Invitrogen, USA). Positive (strong and moderate) and negative extraction controls provided
by Australian Animal Health Laboratory (AAHL) were also extracted and reverse transcribed
to obtain cDNA following the same protocol. All extracted RNA was stored at -80°C.

All pooled samples were tested for influenza A virus in TaqMan real time PCR targeting
viral matrix gene using primers IVA161/IVA162M provided by AAHL [32]. Upon detecting
an influenza A positive result in the pooled sample, RNA from the corresponding individual
samples was re-extracted and screened for influenza A again to identity the individual sample
with influenza A virus. Each assay included a strong positive, a moderate positive, and a nega-
tive control, including a no-template control. Individual samples that tested positive for influ-
enza A virus were further characterized for H7 and N9 in separate Taqman real time PCR
assays using the primer described by AAHL [33].

PCR Characterization of HA and NA Subtypes of Influenza A. Any influenza A matrix
gene-positive sample that was negative for H7 was tested for Hemaglutinin (HA) and Neur-
aminidase (NA) profiling using subtype specific RT-PCR assays with specific primers for HA
[34] and NA[35]. The specific viral subtype was identified by DNA sequencing as described
below.

Bird Species Identification Using DNA Barcoding. The host species of the fecal sample
that had influenza A virus was identified using a DNA barcoding assay. The cytochrome oxi-
dase I (COI) region of mitochondrial DNA was amplified using PCR primers (Bird F1 and
Bird R1) [36] and the species of the host bird was identified by DNA sequencing as described
below.

DNA Sequencing of PCR Amplicons. PCR products of expected product size were
extracted and purified from agarose gel using a QIAquick Gel Extraction Kit (Qiagen, Ger-
many). The extracted product was DNA sequenced using the Big Dye Terminator Version 3.1
Cycle Sequencing Kit (Applied Biosystems, California, USA) with the same primers used in
RT-PCR. The cycle sequenced products were purified with the Big Dye X-terminator Kit
(Applied Biosystems, California, USA) and analyzed in an ABI-310 genetic analyzer (Applied
Biosystems, California, USA). Sequence ends of raw data were trimmed to reading frame and
were used in a BLASTN database search to obtain species identification.

Phylogenetic Analysis. Identified H9N2 virus isolates were further characterized to trace
their genetic relatedness to other similar viruses. A phylogenetic tree was constructed based on
the identified HA sequence data and compared with available H9 sequences in the NCBI data-
base. A bootstrap re-sampling process (1,000 replications) using the neighbor-joining method
was employed to assess the robustness of individual phylogeny nodes.

Results
Of total 1811 samples collected, one (0.055%) tested positive for influenza A virus. This partic-
ular sample was collected from the Koshi Tappu Wildlife Reserve (KTWR) in Sunsari district,
one of the most important roosting wetland habitats for various migratory bird species. The
sample tested negative in the H7N9 QPCR assay. Upon further characterizing HA and NA, the
identified influenza A virus was confirmed to be an H9N2 subtype (NCBI Genebank accession
number KP830043, http://dx.doi.org/10.6084/m9.figshare.1444228). The phylogenetic tree of
the HA gene (Fig 3) of the H9N2 isolate showed clustering to the H9 segment of influenza
viruses of various geographical origin isolated from various wild and domestic birds. The host
bird for this sample was identified as a ruddy shelduck (Tadorna ferruginea) (NCBI Genebank
accession number KP718122). No other HPAIV or LPAIV was detected.
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The H9N2 positive sample from KTWR was collected close to a human settlement (0.38
km). All cloacal and oro-phyrangeal samples collected from ducks (n = 307) and chickens
(n = 103) from households along 5 Km stretch from where influenza A H9N2 positive sample
was detected were negative for influenza A virus.

Discussion
The first cross-sectional molecular surveillance study of avian influenza among migratory
birds in Nepal revealed the evidence of presence of the LPAIV H9N2 in a ruddy shelduck, a
common migratory bird, close to human settlements in KTWR.

The detection of an infectious AIV in an environmental sample is an important finding
with significant public health and wildlife conservation implications. Shedding and persistence
of AIV in environment provides the virus with a potential to spill over to sympatric susceptible
hosts. AIV is shed in high concentrations in feces [37], and can contaminate water where virus
can remain infectious for a prolonged period of time and become a source of spread [38]. Most
global AIV surveillance studies have used invasive samples (cloacal or oro-pharyngeal swabs).
Wild birds are known to be natural hosts; detecting virus in invasive samples simply represents
virus existing in vivo. While such studies are important in understanding the temporal and
spatial diversity of circulating viral pool, their practical implication might not be as significant
as finding a potent virus that has been shed into the environment where it may infect other
hosts or impact pathogen spillover.

Poultry farming is important to Nepal’s economy, contributing nearly 4% of its total gross
domestic products (GDP). Free-ranging domesticated birds like chickens and ducks are popu-
lar in rural Nepal. Since the first report of H5N1 among backyard chickens in the eastern dis-
trict of India bordering West Bengal in January 2009, Nepal has experienced perennial
outbreaks of H5N1 in poultry, in both back-yard and commercial flocks, incurring huge eco-
nomic losses [7, 39]. Wetlands and wildlife reserves of Nepal are the ideal home for many win-
tering and summering wild migratory birds following the CAF [28]. Wildlife habitat is
increasingly encroached by human settlements in Nepal due to rapid population growth and
the limited availability of farm land. Such dramatic changes in landscape and landmass use
increase the chances of interspecies interactions, often providing a “mixing-vessel” conducive
for the emergence and spillover of novel zoonotic pathogens like AIV. Open cultivated fields in
the vicinity of wildlife protected buffer zones are a common attraction point for both domestic
and wild bird species as a source of food (grains and worms released during field tilling). Fur-
thermore, ponds and lakes are often shared by both wild and domestic waterfowl, increasing
the possibility of viral spillover from wild to domestic birds and vice versa. Although we didn’t
detect any AIV in domestic bird samples, this does not entirely exclude the possibility of viral
presence in them.

The ruddy shelduck is an important migratory bird species of the CAF and a common win-
ter visitor to Nepal [28]. Previous studies [18, 40] have shown that movement of ruddy shel-
duck is strongly associated with the spatial-temporal pattern of AIV outbreaks in poultry in
South Asia. This bird species was reported to carry H5N1 in the 2005 outbreak at the Qinghai
Lake of China [8]; LPAIV was isolated as in other studies [25]. This corroborates the carrier
role of this long-range migratory waterfowl species and the subsequent need to consider ducks
as one of the sentinel species in AIV surveillance. A phylogenetic study revealed the clustering

Fig 3. Phylogenetic tree of the HA gene of LPAI H9N2 virus from Nepal. The tree is generated by
neighbor-joining method in MEGA 6. Numbers at the branches indicate bootstrap values; only values > 70
are shown.

doi:10.1371/journal.pone.0133035.g003
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together of clade 2.3.2.1 of H5N1viruses originating from poultry in Nepal, Bangladesh, and
India indicating active movement of virus across neighboring porous borders, for which the
crow (Corvus splendens) has been incriminated[26]. Detection of the same clade of H5N1 virus
in crows from various areas of Nepal, including near the Indian border in 2012 and 2013 [7]
provides evidence of the reciprocation of virus between wild and domestic birds in Nepal. The
phylogenetic clustering of the identified H9 segment to that of other prevalent AIV isolated
from wild and domestic birds of mixed geographical origin suggest a possible role of migratory
birds in worldwide viral spread.

In a 2-month study, we detected AIV in one of 1811samples by RT-PCR, yielding an
approximate AIV detection rate of 0.055% among migratory birds in Nepal. The prevalence of
AIV in migratory birds has been markedly different among various studies. The prevalence has
ranged from 2.6% in an 8-year European study with 36,809 samples [21], 1.7% in a 10-month
study in Alaska [22], 3% in a 4-year Iranian study with 1146 sample [24], 3.5% in a 3-month
African study with 4553 samples [25], to 0% in 10,788 samples collected in Bangladesh [26].

The AIV detection rate in our study appears considerably lower than in other studies with
exception of the Bangladesh study. The brief sampling period of 2 months may be one obvious
explanation for the low AIV detection in the migratory birds in Nepal. In addition, this study
adopted non- invasively collected fecal droppings as the environmental sample source to avoid
additional financial, technical, and logistical needs required for collecting invasive samples
such as oro-pharyngeal or cloacal swabs from wild birds [15]. While environmental samples
were convenient alternative, influenza viruses are enveloped RNA viruses that are fragile and
prone to easily disintegrate when exposed to elements such as sunlight, desiccation, extreme
temperatures, and fungal growth, making them challenging to detect using molecular methods.
Lengthening the sampling period, increasing the sample size, and collecting some invasive
samples might have increased our AIV detection rate.

In our study, we did not detect H7N9 or HPAI including H5N1. Low HPAI detection is a
common finding of most AIV surveillance studies among healthy wild migratory birds. No
HPAIV was detected in large surveillance studies conducted in the U.S. [16], Europe [20, 21],
Alaska [22], Africa [23], Iran [24], and Mongolia [25]. This indicates that HPAIV is rare
among healthy wild bird populations [3], which could be due to greater tissue tropism of
HPAIV for the upper respiratory tract than for the gastrointestinal tract as evidenced by exper-
imental studies [41].

The one AIV positive wild sample in this study was H9N2, a low pathogenic subtype. This
subtype has occasionally been detected among wild bird species in North America, Europe,
and Iran. Unlike other LPAIV, which soon disappear after a brief circulation in poultry, H9N2
has succeeded in attaining an endemic status among poultry, mostly chickens, in most parts of
the world [3]. Hence, poultry carrying the H9N2 subtype have been critically observed for their
incubator role in the evolution of the currently circulating novel anthropogenic subtypes
H7N9 and H10N8, both of which have internal genes originating from H9N2 [42, 43]. It has
been postulated that H9N2-derived internal genes enabled the novel H7N9 to evolve and will
facilitate any migratory-bird-derived LAIV subtype to persist among poultry and be transmit-
ted to humans [42].

Conclusions
This was the first AIV surveillance study on wild migratory birds in Nepal and provides strong
evidence of the potential for AIV spillover through migratory birds in the region. A long-term,
continuous, and rigorous seasonal surveillance of wild birds at various sentinel sites is
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recommended to formulate a complete picture of the temporal, spatial, and strain variations of
AIV in Nepal.
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