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THEBIGGERPICTURE Multiple sclerosis (MS) is a disorder that strikes the central nervous system of the hu-
man body. This article reviews state-of-the-art decision support systems (DSSs) in MS research, as recent
studies have highlighted the importance of DSSs in the medical realm. However, the utilization of decision
support systems for MS remains an open challenge. A special focus in this article is given to model-driven
DSSs, which uses knowledge representation to simplify the complex process for decision makers. We find
that most investigated studies use knowledge-based and machine learning approaches. Based on the liter-
ature review, we suggest some future work of applying DSSs in the MS domain. Potential future directions
should focus on applying DSS technologies to understand the MS patterns, etiology, effects on the qual-
ity-of-life, and correlations with other disorders.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY

Multiple sclerosis (MS) is a neurological disorder that strikes the central nervous system. Due to the
complexity of this disease, healthcare sectors are increasingly in need of shared clinical decision-making
tools to provide practitioners with insightful knowledge and information about MS. These tools ought to
be comprehensible by both technical and non-technical healthcare audiences. To aid this cause, this litera-
ture review analyzes the state-of-the-art decision support systems (DSSs) in MS research with a special
focus on model-driven decision-making processes. The review clusters common methodologies used to
support the decision-making process in classifying, diagnosing, predicting, and treating MS. This work
observes that the majority of the investigated DSSs rely on knowledge-based and machine learning (ML) ap-
proaches, so the utilization of ontology and ML in the MS domain is observed to extend the scope of this re-
view. Finally, this review summarizes the state-of-the-art DSSs, discusses the methods that have common-
alities, and addresses the future work of applying DSS technologies in the MS field.
INTRODUCTION

Multiple sclerosis (MS) is a chronic neurological disorder that

stimulates the immune system to attack the central nervous sys-

tem of the human body.1–3 Genetic and environmental causes

are the possible triggers of MS while exposure to the Epstein-

Barr virus, vitamin D deficiency, and smoking habits are likely

factors that enable the progression of MS.4 However, the exact

causes of MS are still unknown. MS patients may experience

several symptoms independently or concurrently during the

course of the disease, such as sensory, visual, motor, cognitive,
This is an open access article und
and cerebellar disorders.5 MS affects several millions of people

around the globe, especially young adults.6 In general, men are

less likely to develop MS compared with women.7 Four medical

terms represent MS in terms of the progression level: relapsing-

remitting MS (RRMS), secondary-progressive MS (SPMS), pri-

mary-progressive MS (PPMS), and progressive-relapsing MS.4

The MS diagnostic procedure requires neurological examina-

tions, such as magnetic resonance imaging (MRI), lumbar punc-

tures (LP), and blood tests to confirm MS cases.8 In addition,

neurologists prescribe existing therapies to control the symp-

toms and the progression of MS as it turns out that this disorder
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cannot be cured or prevented.9 Thus, neither the treatment nor

the diagnosis of MS is easy. This is because MS shares several

clinical features with other diseases and has no consensus

approach in MS diagnosis.6 In fact, the decision making in

both treatment and diagnosis of MS is critical and relies heavily

on the experience and the judgment of the neurologist. There-

fore, the quality of decisions for that matter remains doubtful

due to the presence of uncertainties associated with MS. More-

over, MS is a preference-sensitive condition, so both the physi-

cian and the patient participate in the decision-making process,

i.e., shared decision making.10 Hence, this would impose a great

responsibility upon the contributors in the decision-making pro-

cess as they must have full knowledge about the current state of

the condition and the potential risks and benefits of all possible

options to achieve the optimal decision. Comprehensively, it

would be beneficial to have easy-to-use automated solutions

that could propose several optimal alternatives to make the

shared decision making easier for all participants in this process.

Decision support systems (DSSs) are computer-based

systems devoted to people who are concerned with decision

making so they could solve real-world problems via worthy deci-

sions.11 DSSs are largely accepted in modern commercial busi-

nesses and have been accomplishing significant successes.12

DSSs in the medical realm are very promising, especially for

enhancing the decision-making process. Recent studies

demonstrate the increasing importance of DSSs in medicine,

i.e., clinical decision support systems (CDSSs), for helping in-

tended decision makers to nominate the right decision among

several alternatives as often as possible.13 DSS technologies

are potentially favorable tools in the MS domain. For instance,

DSSs could provide decision makers with useful information

(e.g., alerts, warnings, or predictions) about MS cases.14 The

benefits of using DSSs in the MS domain include: enabling ac-

cess to neurologists, enhancing clinical documentation and pre-

scription processes, escalating diagnosis accuracy, minimizing

time loss and healthcare expense, enhancing diagnostic predic-

tions, maximizing the quality of patients’ lives and care provided,

and improving the quality of decisions.1,15 However, with all

these benefits, the utilization of DSSs in the MS field is not

encouraging. To the best of our knowledge, aside from this

review, the investigation of the DSSs in the MS domain is still

insufficient because there is no published review on the pre-

sented topic.

The goal of this paper is to analyze the state-of-the-art DSSs in

MS research. This work answers the following questions: (1)

What DSSs are currently used in the MS domain? (2) What are

their key fundamental methodologies? (3) What are they used

for? (4) What are the current most promising technologies asso-

ciated with decision making in the MS domain? Answering these

questions would (1) demonstrate the importance of adopting

DSSs in MS research and (2) show the extent of technologies,

mostly correlated with DSSs, adopted for decision-making pur-

poses in the scope of MS (definition of concepts and details of

methods are explained below in subsections ‘‘The Uses of

Ontology in MS Research’’ and "The Utilization of Machine

Learning in MS Studies").

A model-driven DSS is a type of DSS that uses complex and

quantitative models that provide a simplified and straightforward

knowledge representation to decision makers.16 Model-driven
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DSSs are distinguished by two characteristics: (1) a model in a

model-driven DSS is made accessible to experts with no tech-

nical background, and (2) DSSs of this type are reusable in equiv-

alent decision situations.16 Definitely, both the data science

community and the MS community need to have a clear over-

view of the current state of the automated tools used to support

decision making in the MS domain. This review is directed to

data scientists, especially those who are interested in complex

modeling approaches within the health informatics field. This re-

view demonstrates the current DSS technologies within the

domain of MS research, so data scientists can glance over the

recent trends and the potential future research paths to enrich

this research field with new automated decision-making technol-

ogies. Surely, MS community members and MS specialists will

find useful information about the most recent technologies that

could help them in their daily clinical practices.

The remainder of this paper is organized as follows: the next

section explains the methodology conducted to acquire the

needed resources. The following two sections (1) describe the

results in accordance with the analysis methodology and (2)

discuss remarkable findings and trends. The final section con-

cludes this study.

LITERATURE SEARCH METHODOLOGY

All relevant articles used to carry out this literature review were

collected from six database sources: Google Scholar, DBLP

Computer Science Bibliography, Web of Science, PubMed,

ACMDigital Library, and IEEE Xplore Digital Library. The search-

ing strategy utilized Multiple Sclerosis, Decision Support,

Ontology, Semantic Web, Machine Learning, and Knowledge

Graph as the search phrases, where the first phrase (i.e., MS)

is combined with each of the latter ones (i.e., technical terms)

with the logical operator ‘‘AND’’ to form a searching keyword.

Each keyword was used to retrieve articles that observe current

trends ofMS research with the help of the technical term noted in

the keyword. This is done to determine if there are correlations in

MS research between the retrieved articles and the use of DSSs

or the decision-making process in the MS domain. Articles pub-

lished in English between 2007 and 2019 were collected during

September and December 2019 and were screened out. Nar-

rowing the number of the selected articles took two steps. First,

the abstract (along with the title) of each article was analyzed to

compose a subset of articles corresponding to the searching

keywords. Subsequently, the full text of each article in the

composed subset was resolved to report themost interesting ar-

ticles that cope with the inclusion and exclusion criteria applied

to the searching strategy of this literature review.

Articles reviewed in this work comply with two inclusion

criteria. The first criterion ensures that themachine-driven model

applied in an article has a detailed description of its functionality.

The second criterion justifies that the whole purpose of an article

being analyzed is for diagnosing, treating, classifying, or predict-

ing MS specifically. Research papers that have pure medical

knowledge about MS and others that use solid mathematical

theories with no automated models or running computer sys-

tems are therefore excluded. Likewise, papers that are dedi-

cated to general neurology, except the ones that have MS as

an example or as a case study, are excluded as well. The
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Figure 1. Sources and Steps in the Literature
Selection Process
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acquired data from each article consists of the author, the main

intention of the paper, dataset information, system in use (if

applicable), applied model and algorithms (i.e., research meth-

odology), outcomes and remarks, and evaluation approaches

and results (if reported). Figure 1 briefly illustrates the literature

selection process.

LITERATURE ANALYSIS AND RESULTS

Using the searching strategy presented earlier, a total of 154 ar-

ticles were retrieved from several electronic databases (see

Figure 1). After scanning through the article abstracts, the list

was narrowed down from 154 to 95 articles. After the full-text

analysis phase, 25 of the 95 articles were selected based on

the inclusion and the exclusion criteria. The overall objective of

each of the selected research papers was determined for cate-

gorizing them into subgroups. It should be noted that one article

could belong to more than one category, but it was categorized

under the subgroup that was themost appropriate given the goal

of that article. The following subsections outline the main rele-

vantmethods and provide examples of how technologies related

to DSSs and decision-making processes are implemented for

the MS domain.

The Role of DSSs in MS Quest
Healthcare organizations are increasingly in need of DSSs,

namely CDSSs, that are understandable by non-technical audi-

ences, such as healthcare providers. CDSSs aid clinical decision

making by providing practitioners with insight knowledge and in-

formation about their patients for generating suitable assess-

ments or recommendations.17 In the MS domain, the use of

DSSs, or CDSSs, is just as important as their use in other health-

care areas. Indeed, the existing DSS technologies tied with MS,

as explained next and summarized in Table 1, are for the sake of

classifying, diagnosing, predicting, or treating MS.

Classification tasks have motivated a number of experts to

implement DSSs particularly to be used in theMS domain. Espo-

sito and De Pietro18 developed an ontology-based fuzzy DSS to

assist neurologists in classifying MS lesions, i.e., white matter
lesion (WML). They performed their study

on a dataset that contained brain MRIs of

120 patients between 20 and 63 years old

with clinically definite MS. The methodol-

ogy of this DSS relied on a knowledge-

based mechanism that integrated ontol-

ogies (to elucidate the structure of the

knowledge semantically and to formulate

clear outputs) and fuzzy logic (to compre-

hend the dataset’s uncertainty and fuzzi-

ness) as knowledge representation tech-

niques to embed an expert’s high-level

medical knowledge into the DSS. The

DSS combined the obtained knowledge,

in terms of fuzzy rules and ontologies,
with Fuzzy Inference Ruled by Else-Action, i.e., the FIREmethod.

As a matter of fact, this methodology comprised three stages:

knowledge elicitation, knowledge representation, and knowl-

edge reasoning, respectively. Thereby, this DSS was able to

classify WMLs and to obtain measures of their volumes. The au-

thors argued that their proposed DSS provided better outcomes

for patients with large lesions compared with patients with small

lesions. They supported their argument by evaluating the perfor-

mance of this DSS using the area under ROC curve (AUC) and

Similarity Measures. The result of the AUC ranged between

0.82 and 0.87. Using different thresholds (0.25, 0.50, and 0.75),

the similarity measures got the following results: 0.72–0.97 for

the similarity index, 0.67–0.97 for the overlap fraction, and

0.01–0.37 for the extra fraction.

De Falco et al.19 proposed a DSS that utilized Differential Evo-

lution (DE), an evolutionary algorithm, for automating the classi-

fication of potential MS lesions. This work used brainMRIs of 120

confirmed cases of MS. The methodology of this DSS extracted

explicit knowledge, a set of explicit IF-THEN rules (i.e., classifi-

cation rules), from the data in use. Furthermore, themethodology

proceeded by finding separately the best set of rules for each

class. The best set of rules at the end of the evolution emerged,

so the classification here was all about searching for the optimal

specification among others. As a result, this study reported a set

of rules obtained in the 12th run for fold 3 as the best set of rules

for the MS cases. The authors of this research used accuracy

(81.21% over the training set, 85.92% over the testing set, and

81.68% over the whole dataset), sensitivity (82.06% over the

training set, 88.18% over the testing set, and 82.64% over the

whole dataset), specificity (78.69% over the training set,

80.25% over the testing set, and 78.87 over the whole dataset),

and AUC (79.00% over the training set, 80.72% over the testing

set, and 79.19% over the whole dataset) as an evaluation strat-

egy to back their effort.

Siddiqui et al.20 established a design of an intelligent medical

DSS for classifying brain MRIs as normal or abnormal. The pri-

mary motivation behind this design was to introduce a general-

ized DSS that can operate efficiently and effectively on various

brain MRI datasets associated with neurological disorders. The
PATTER 1, November 13, 2020 3



Table 1. Summary of the Analyzed MS DSSs Articles

Author(s) Year

Objective

Methodology Basis System in UseClassification Diagnosis Prediction Treatment

Esposito and De Pietro18 2011 U Knowledge-based

De Falco et al.19 2016 U DE

Siddiqui et al.20 2015 U DWT, PCA, and LS-SVM

Esposito et al.21 2011 U Knowledge-based

Linder et al.22 2009 U MLR and ANN CAD tool

Pourakbari et al.23 2014 U Image processing

Dogan and Duru24 2011 U SVM and k-means

Almasi et al.25 2015 U Case-based reasoning

and rule-based

reasoning

Veloso26 2013 U Agent-based

simulation model

SLCMSR27 2007 U OLAP tool uses matching

algorithm

Individual Risk Profile

project

Finkelstein et al.28 2011 U HAT DSS

Veloso29 2014 U Agent-based

simulation model

Hillert and Stawiarz30 2015 U SMSreg

Reddel et al.31 2019 U AMS3 CDSS
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researchers here ran their DSS against two datasets that con-

sisted of T1- and T2-weighted brain MRIs of 340 right-handed

patients diagnosed with major brain disorders, including brains

affected by MS. In addition, the datasets also covered the pa-

tients’ demographics and clinical details. This DSS took the

advantage of the discrete wavelet transform (DWT), principal-

component analysis (PCA), and the least-squares support vector

machine (LS-SVM) approaches to secure the goal of this study.

The methodology of this work started with utilizing DWT in the

feature extraction phase. Then, PCA performed feature reduc-

tion. The last step was to train the LS-SVM classifier by using

the extracted reduced features. The authors claimed that their

DSS classified the human brain as healthy or diseased with

promising accuracy. Accordingly, their experiment yielded

better results and outperformed other classifiers regarding

sensitivity (100%), specificity (100%), and accuracy (100%).

Moreover, the result proved that the DSS has a notable general-

ization ability.

Esposito et al.21 implemented an evolutionary-fuzzy DSS to

support neurologists by recognizing MS lesions to evaluate the

health status of individuals affected byMS. They conducted their

experiment on the same dataset presented in Esposito and De

Pietro18,19 and De Falco et al.18,19 Essentially, the methodology

of this work composed knowledge representation, knowledge

reasoning, and knowledge tuning, respectively. Knowledge rep-

resentation interpreted and encoded the required medical

knowledge of experienced clinicians in terms of linguistic vari-

ables, linguistic values, and IF-THEN rules. Knowledge

reasoning specified a fuzzy inference technique that fitted the

structure of the knowledge used for medical inferences. Knowl-

edge tuning adopted DE to tune the knowledge through mem-

bership functions optimization for each linguistic variable

involved in the rules ultimately to achieve the highest correct
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classification rate. This system obtained the best outcomes

exceeding several classification algorithms compared with it in

the study’s literature. To aid this finding, the authors of this study

evaluated and compared their DSS’s accuracy, sensitivity, and

specificity with several classification techniques, namely ma-

chine learning (ML) algorithms. The study recorded the average

results over the 10 folds (accuracy on the training set was

89.10%, accuracy on the testing set was 88.79%, sensitivity

was 0.88, and specificity was 0.88) and the results for the best

fold in terms of the highest percentage of accuracy on the testing

set (accuracy on the training set was 88.71%, accuracy on the

testing set was 92.93%, sensitivity was 0.96, and specificity

was 0.84). Moreover, the study reported the 10-fold classifica-

tion accuracy of the proposed system (88.79) and compared it

with other classifiers.

Easing the diagnostic procedure has encouraged several

researchers to model DSSs. Linder et al.22 discussed proof of

principle study by demonstrating the use of a computer-assisted

decision (CAD) support that aimed to diagnose MS patients. The

idea here revolved around the ability to distinguish between 73

MS patients, 22 patients with other chronic inflammatory dis-

eases (CIDs) of the central nervous system, and 12 psychiatric

patients (control group) in terms of cerebrospinal fluid and blood

findings (i.e., standard laboratory findings). In other words, this

CAD facilitated MS diagnosis by discovering any significant dif-

ferences between MS patients and the other two groups of pa-

tients (MS versus CID and MS versus control group) based on

the major parameters of the standard laboratory findings. To

obtain the desired results, the authors here made the use of

univariate and multivariate analyses using multiple logistic

regression (MLR) and artificial neural networks (ANNs). MLR

categorized patients based on their characteristics while ANNs

performed feature selection on all parameters of the standard
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laboratory findings specified in the study. As a result, CAD was

able to differentiate between MS patients and the control group.

In comparison, CAD lacked the ability to deliver meaningful de-

cision support when differentiating MS and CID patients since

it did not disclose common parameters. Sensitivity, specificity,

and accuracy assessed the performance of CAD as an eligible

DSS. Noteworthy, the study evaluated the parameter sets

MLR2 and MLR5 (MLRs with two and five parameters, respec-

tively) and the ANN. The ANNs were able to perform with

84.9% sensitivity, 54.5% specificity, and 77.9% accuracy

when differentiating MS and CID patients. Similarly, The MLR2

and the MLR5 recorded, respectively, 94.5% sensitivity, 22.7%

specificity, and 77.9% accuracy (for MS versus CID). Further-

more, The ANNs distinguished MS and CID patients with

95.9% sensitivity, 66.7% specificity, and 91.8% accuracy. Like-

wise, The MLR2/MLR5 had 94.5%/95.9% sensitivity, 75.0%/

83.8% specificity, and 91.8%/94.1% accuracy (for MS versus

control group).

Pourakbari et al.23 designed a DSS suitable for diagnosing MS

as early as possible. The study reported that the analysis of

postural impairment, a type of quantitative movement disorders,

was valid for detecting MS, even in its early stages, and for man-

aging the disease before its severity progression. This study re-

corded the movement signals of 14 MS patients in the early

stages (able to walk without an assistive tool) with an age range

of 21–53 years. Also, the medical examination in this work docu-

mented the postural behaviors of 20 healthy subjects with an age

range of 20–60 years to compare their results with MS patients.

This DSS used image-processing algorithms to calculate the

postural oscillation rates as spatial signals. By obtaining proper

features (via statistical analysis) from these signals, this method

separated control subjects from patients. However, the authors

of this work did not evaluate the performance of their DSSs.

Dogan and Duru24 created a DSS for physicians by using im-

age processing, and supervised and unsupervised ML algo-

rithms, to detect lesions for diagnosing MS. Furthermore, the

study compared the functionality of two types of ML tasks (su-

pervised and unsupervised) concerning the objective. The pre-

sented techniques analyzed a dataset, collected by Loizou

et al.,32 containing brain MRIs of 38 MS and clinically isolated

syndrome (CIS) patients with average age equal to 34.1. For

the methodology, the linear SVM was the supervised ML algo-

rithm in use while k-means (with k = 4) acted as the unsupervised

ML algorithm. The outcomes were acceptable and promising

especially for SVM regarding the segmentation process. This is

because k-means relied on objective assignment compared

with SVM, which benefited from spatial coordinates of data.

Calculating the result accuracy for both ML algorithms was the

only evaluation mechanism presented in this work (70.24% for

k-means and 91.04% for SVM).

Almasi et al.25 depicted a DSS prototype that aimed to mini-

mize the time required to diagnose MS with the help of appro-

priate artificial intelligence (AI) techniques. In this work, the au-

thors adopted two AI methods: case-based reasoning and

rule-based reasoning. This work appeared to be limited as it

lacked the experimental data and the design evaluation that sup-

port the researchers’ arguments.

Predicting the course of MS has attracted the attention of

several researchers. For instance, Tintore et al.33 presented a
notable paper that addressed MS prediction by analyzing the

most common demographic, clinical, radiological, and biological

features that have a strong correlation with the prognosis of MS.

This study used a multivariate approach in the experiment and

successfully stated that demographic characteristics, oligoclo-

nal bands presence, and brain MRIs are considered as the

impact prognostic factors, ordered from the lowest to highest

impact factors, respectively. However, this study did not use

DSS technology.

Several studies elaborate on the application of DSSs to predict

optimally the probability of MS occurrence and progression. Ve-

loso26 demonstrated the use of an agent-based simulation

model that aimed to aid healthcare providers with a simulation

tool. This tool was able to predict long-term disability and treat-

ment effects on individuals affected byMS. For testing themeth-

odology, a model that populated 100 virtual agents simulating

patients with RRMS was created. Despite that, the validation

task of this tool used real data from a group of 50 patients diag-

nosed with RRMS that lasted for at least 10 years. The dataset

used was selected from a total of 173 patients. The author

concluded by claiming that this simulation model can be used

in everyday clinical practice for monitoring the disability epi-

sodes as it might scale for an individual with RRMS over 30

years. Aside from this, the tool was able to perform the treatment

effect assessment over the same time frame. Because of the lack

of real medical data for experimental use, evaluating the perfor-

mance of the model was not presented.

The Sylvia Lawry Center for Multiple Sclerosis Research

(SLCMSR)27 presented the "Individual Risk Profile" project that

aimed to accurately predict short-, mid-, and long-range prog-

nosis of MS during the lifetime of an individual affected by any

type of this disorder. This project consists of an online analytical

processing (OLAP) tool that uses a comprehensive database

(contained data of 20,000 patients pooled from the academic

and corporate sources), which is available to practitioners expe-

rienced inMSwith an interest in clinical trials for decision-making

purposes. To conduct this study, the researchers here derived

only the data of 1,059 patients from the comprehensive data-

base. The OLAP tool applied a matching algorithm as a strategy

to match the patient of interest with all similar patients retrieved

from the database. By doing so, the tool was able to predict the

course of MS during the lifespan of the patient of interest by

determining the disease course of all patients in the database

that are similar to the patient of interest. The developers of this

project argued that this work has potential advantages

compared with purely model-based predictors. However, they

also discussed that this tool needs improvements as it presented

several limitations, so they did not use any evaluation metrics to

assess the performance of this tool.

Numerous pieces of research have manifested the use of

DSSs to aid MS patients with treatment decisions. Finkelstein

et al.28 discussed the blueprint of the Home Automated Tele-

management (HAT) DSS for MS patients. This system took the

benefits of the current technologies to provide MS patients

with the most convenient therapy and exercise plans during

the rehabilitation phase. Furthermore, The HAT system adopted

the model of chronic disease care proposed by Wagner et al.34

The designers of this DSS stated that HAT was a successful pilot

DSS with promising outcomes for MS patients. The system
PATTER 1, November 13, 2020 5
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would enhance the quality-of-life and the awareness of MS pa-

tients by minimizing the frequency of doctor visits, allowing pa-

tients to self-observe their health frequently, educating them

on this condition, and guiding them through exercise routines

needed during the rehabilitation procedures. To this end, this

work observed a standalone system that was tested and evalu-

ated based on end-user opinions. Therefore, the study lacked

previous data acquisition, algorithm modeling, and performance

evaluation.

Veloso29 proposed aweb-based computer prognostic simula-

tion model that addressed the needs to start/modify treatment

plans, the transformation likelihood of a patient with CIS to def-

inite MS, the long-term prognosis of MS, and the level of

disability associated withMS progression. This simulationmodel

applied, reformulated, and extended the simulation model pre-

sented by Veloso26 with the usage of distinct algorithms. This

simulation model used two sets of data. First, the author ob-

tained a dataset from reference studies dealing with the natural

history of MS for experimenting on the proposed model. The

researcher then used a dataset of 50 patients who had been

living with RRMS for at least 10 years to validate the simulation

process and its result. The study conductor proclaimed that

this model answered the patients’ fundamental questions about

their current state with MS at various evolutionary stages during

the disease course. Finally, this work showed no evidence

regarding the performance evaluation of the model.

Hillert and Stawiarz30 presented a review article that demon-

strated The Swedish MS registry (SMSreg). SMSreg was devel-

oped as a web-based system to help all Departments of

Neurology across Sweden. This system functioned as a decision

support tool. Plus, it provided practitioners with patient informa-

tion needed at clinical visits. SMSreg included data on 14,500

patients and recruited the data of 1,000 new MS patients reach-

ing coverage of almost 80% throughout the country. As a

decision support tool, SMSreg was valuable as it summarized

the information needed to make decisions concerning disease-

modifying drugs. In addition, this tool offered the ability to

make decisions by comparing similar patients. Nevertheless,

there was not much to say about the framework of the method-

ology of this system nor about whether it got evaluated.

Reddel et al.31 explained the idea of using alemtuzumab in MS

Safety Systems (AMS3). AMS3 was developed as a CDSS to

determine and organize MS patients’ important care routines,

such as identifying risks associated with alemtuzumab therapy,

scheduling periodic tests, sending reminders when needed,

and analyzing test results, just to name a few. The study used

a dataset that included a total of 10 patients with active RRMS

receiving alemtuzumab treatment. The authors described the

system’s overall architecture without describing in more detail

the structure of the methodology, so this CDSS was evaluated

based on its acceptance within the healthcare community. The

designers of AMS3 argued that this CDSS accomplished the ex-

pected result.

Ultimately, based on the above-mentioned literature anal-

ysis, the use of DSSs in the MS field is quite limited due to

the rarity of this medical condition. However, decision making

is a critical task in MS practice. Researchers nowadays are

applying several technologies, alone or together with DSSs,

to support the process of decision making in the medical
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routine of MS. To keep up with this matter, the scope of this re-

view was expanded to cover a specific number of technologies

associated with decision making in MS studies. As noted,

knowledge-based and ML approaches often form the basics

of the DSS methodologies analyzed previously. Therefore, the

next subsections outline the decision-making process in MS

care using ontologies, the knowledge-based approach of inter-

est, and ML algorithms.

The Uses of Ontology in MS Research
The semantic web is an extension of the currentWorldWideWeb

that gives the information well-defined meaning, so the contents

of the web become both machine-readable and human-read-

able.35 To make this possible, a key component of the semantic

web, i.e., ontology, would offer a structured representation of the

semantics that is relevant to one or several knowledge do-

mains.36 An ontology is an explicit and formal specification of

the shared conceptualization of a domain by means of classes,

instances, properties, and semantic relationships.37 Capturing

and personalizing knowledge (e.g., knowledge about chronic

disorders) in formal, simple, powerful, and incremental ways

and then applying appropriate reasoning processes to the

personalized captured knowledge would be a remarkable result

in biomedical domain research.38 Such an idea would be

phenomenal in biomedicine as it reinforces sharing and reusing

medical knowledge among health practitioners for decision-

making purposes. This applies to MS as it is a chronic disorder.

Existing publications about ontologies that serve the process of

decision making related to MS are recapped next.

Hadzic et al.39 created a Mental Health Ontology (MHO) for

deriving knowledge that aimed to prevent, diagnose, and treat

and control mental disorders using data-mining algorithms to

expose the patterns in mental health data. MHO consisted of

subontologies representing mental disorder types, factors

causing a specific type, and treatments suitable for a certain

type. According to the findings of this work, MS was a physical

factor affecting mental health because it may result in mood dis-

orders.

Alfano et al.40 developed an ontology and a rule-based system

that can automatically measure the load of the brain lesions

(especially those that cannot be assessed visually) of MS pa-

tients. This was useful in terms of monitoring responses to treat-

ments and studying the level of progression during the course of

MS. This work utilized ontology as a knowledge representation

model while the rule-based system acted as a reasoner to infer

a new set of knowledge. To test the reasoning process, the pro-

posed method used the MRI data of an MS patient. The authors

stated that their approach showed greater sensibility as it recog-

nized more lesions compared with an algorithmic procedure.

Jensen et al.41 originated Neurological Disease Ontology (ND),

which aimed to formally structure common and accurate repre-

sentation of a variety of neurological diseases with more spe-

cifics for MS and Alzheimer disease for clinical applicability

and research purposes. The ultimate goal of NDwas to represent

each disease along with its genesis (genetically or environmen-

tally), etiology, symptoms, syndromes, progression levels,

diagnostic criteria, treatments, and relationships with other

neurological disorders as a means to maximizing the potential

reasoning capability. Up to the date of this work, this ontology
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contained nearly 450 classes in addition to over 700 classes im-

ported from external ontologies.

Malhotra et al.42 proposed MS Ontology, which is specific for

clinical and translational research related to MS. MS Ontology

used a conceptual hierarchy to represent medical knowledge

specific to MS, which was retrieved from scientific literature,

database sources, and electronic medical records. Moreover,

this ontology identified a huge amount of data that define the as-

sociations between risk factors, molecules, therapies, and

several other diseases, aiming to improve societies’ understand-

ing of MS. The authors argued that MS Ontology could acquire a

wide range of MS concepts. They supported their argument by

claiming thatMSOntology-obtained knowledgemore accurately

compared with PubMed advance searches.

All of these ontologies formulate knowledge bases that repre-

sent the domain knowledge of MS. Several reasoning and infer-

ence engines can make good use of expert knowledge captured

in knowledge bases to automate the decision-making process,

i.e., knowledge-based systems. This would enhance decisively

medical practice for MS and possibly equalize or even outper-

form the medical justification of qualified MS specialists.

The Utilization of Machine Learning in MS Studies
ML is an AI major discipline that draws attention toward its ability

to learn patterns from input data using an increasing variety of

algorithms (supervised and unsupervised) dedicated to auto-

mating the observation process that overcomes real-world chal-

lenges.43 Supervised ML algorithms train models using previ-

ously determined information (i.e., input data) representing

class labels to automatically classify new objects or data not

seen before.44 In contrast to supervised algorithms, unsuper-

vised ML algorithms do not require previous information about

the class labels as they train models to discover hidden struc-

tures and patterns (i.e., determine class labels) from unlabeled

target variables.45 ML gains momentum in the medical realm

for mining and analyzing large collections of medical data.46 In

fact, healthcare organizations, as with most public and private

organizations, have begun to apply ML as a central phase for

analyzing medical knowledge for decision-making purposes.47

Notably, MS experts have adopted ML techniques mainly to

distinguish MS from other pathologies and to investigate crucial

characteristics of MS during its course.48 The vague patterns of

MS (e.g., in terms of etiology, progression, clinical presentation,

and response to drug therapies) elevate ML algorithms as the

optimal set of tools that automate the recognition of patterns

and regularities in MS data. An overview of articles that describe

the use of the ML algorithms that yield better decision making

regarding classification, diagnosis, and detection of MS are

demonstrated next. To keep things simple, it should be noted

that this overview is limited to articles of interest published during

the last 5 years.

The success of ML has given the opportunity to pioneer algo-

rithms able to provide a better classification of MS. Zurita et al.48

developed SVM classifiers able to recognize brain areas

(affected by MS) that may assist to better diagnose potential

cases of RRMS. This experiment used a dataset containing diffu-

sion tensor imaging (DTI) and resting-state functional MRI

(rsfMRI) data of 107 RRMS patients and 50 control subjects. Us-

ing 12 well-constructed rsfMRI- and DTI-based linear SVM
learners, the authors here stated that these classifiers reliably

discriminated (were able to avoid bias and overfitting) between

RRMS patients and control subjects with accuracies up to 89%.

Lopez et al.49 utilized an unsupervised ML algorithm to cluster

MS patients based on their genomic similarity and potentially

discover valuable differences among these clusters. This algo-

rithm clustered instances of a dataset that contained DNA sam-

ples from 191 MS patients. The methodology of this work used

an agglomerative hierarchical clustering algorithm with multiple

linkage methods to identify underlying cluster structures with

the help of the majority vote approach. In addition, the method-

ology used a Silhouette index as an internal validity metric to

select the appropriate number of clusters. The outcomes of

this study revealed that the methodology presented here was

able to identify patient clusters genetically without specifying

the number of clusters in advance or indicating any previous

input parameter. According to the authors, this methodology

outperformed others found in the study’s literature regarding

overfitting, as it had a significant Rand index greater than the

benchmarked methods.

Ion-M�argineanu et al.50 built multiple binary classifiers to auto-

matically differentiate between patients with different clinical

forms of MS. Namely, the researchers performed nine binary

classification tasks for different combinations of MS types.

This work used clinical data, lesion loads, andmetabolic features

of 87 MS patients, and 18 individuals served as healthy control

subjects. The idea of this work was to compare the outcomes

of the linear discriminant analysis (LDA), SVM with a radial basis

function kernel (SVM-rbf), and random forest models. The results

of this work showed that SVM-rbf, trained on clinical data and

lesion loads, was the best classifier for distinguishing CIS from

RRMS (F1 score = 71) or RRMS plus SPMS (F1 score = 72).

Nevertheless, LDA, trained with clinical data, performed better

when discriminating RRMS from PPMS (F1 score = 85) or

SPMS (F1 score = 84).

Wang et al.51 aimed to segment MS lesions and non-specific

white matter (NSWM) lesions separately based on their shape

and spatial location features by adopting a spherical harmonics

descriptor using an ML pipeline. To perform the experiment, the

authors obtained two datasets. The first dataset contained 234

MS lesions and 190 NSWM lesions. The second dataset

included 160MS lesions and 119 NSWM lesions labeled by loca-

tion. The authors trained three different ML models: logistic

regression, SVM, and boosting tree (XGBoost). The authors

continued by arguing that the proposed pipeline successfully

classified MS and NSWM lesions with good accuracy

(70.52%–87.97% for the logistic regression, 70.29%–74.89%

for the SVM, and 85.58%–90.43% for the XGBoost) and AUC

(83.76%–95.42% for the logistic regression, 70.49%–87.01%

for the SVM, and 93.45%–96.43% for the XGBoost).

Automating the process of differentiating stable from poten-

tially evolving MS cases is a research topic highly in demand.

Salem et al.52 integrated intensity- and deformation-based ap-

proaches for automatically detecting new T2-w lesions. The

study used a dataset that consisted of images from 60 different

patients with CIS or early relapsing MS, with 36 of them being

confirmed MS cases due to the appearance of new T2-w lesions

in their scans. This work used a deformation-subtraction-based

logistic regressionmodel, i.e., a logistic regression algorithm that
PATTER 1, November 13, 2020 7
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adopts the deformation field (DF) aspect, to detect new T2-w le-

gions inside the white matter region. The authors declared that

there was a significant difference in the model’s performance

when including DF as it turned out that it improved the model’s

accuracy. In fact, the combination of DF and logistic regression

helped to boost the performance when detecting new T2-w le-

sions. To uphold this finding, the researchers compared their

model with two state-of-the-art approaches and three variants

of their model with fewer features. Their full model outperformed

all the other models and had the best values for all the evaluation

measures (sensitivity [74.30 ± 28.70], specificity [11.86 ± 18.40],

and dice similarity coefficient [0.77 ± 0.23 for detection and 0.56

± 0.23 for segmentation]) except when detecting very small

lesions.

Zhang et al.53 reported a study that compared the perfor-

mance of three ML algorithms with the intention to detect MS

in the brain by using stationary wavelet entropy. The authors

conducted their experiment on a dataset that included brain im-

ages of 38 MS patients and several healthy control subjects (the

population of healthy controls is not specified). The authors

applied three ML algorithms: decision tree (DT), k-nearest-

neighbor (KNN), and SVM. The experiment recorded KNN as

the best performer in terms of specificity (99.32%), precision

(99.09%), and accuracy (97.94%), while the SVM performed

the best in sensitivity only (97.34%). In contrast, the evaluation

results of DT were the worst in all of the four measures. Thus,

KNN yielded the best classification performance among the

three algorithms in this detection process.

McGinnis et al.54 proposed a technique for estimating walking

speed using a wearable device. The researchers of this proposal

used accelerometers worn in several body locations to charac-

terize gait speeds. To compare their mobility capabilities, this

work recruited 30 subjects diagnosed with MS and 7 healthy

controls. The authors utilized support vector regression (SVR)

models to measure walking speed features indicated from the

wearable accelerometer. In addition, the authors analyzed the

correlation between speed estimation accuracy and device loca-

tion combinations. They clarified that placing additional acceler-

ometers in proximal locations would improve the accuracy of

estimating the gait speed. The authors concluded their observa-

tion by claiming that there was a high correlation between the

ground truth and estimated speeds during comfortable

walking tests.

To better understand patterns that may underlie cardinal fac-

tors of MS, several recent studies strive to infuse ML into MS

research. In light of this fact, ML algorithms are adopted exces-

sively to automatize MS practice. The above-mentioned studies

show how ML benefits MS research. It is important to mention

that ML studies conducted for MS prediction (e.g., predicting

MS progression), treatment, and diagnosis are beyond the

scope of this review because they will form the baseline of future

work.

DISCUSSION

In the preceding sections, MS studies were reviewed and

analyzed about their usage of DSSs, ontology, and ML. Each

of these disciplines, along with their underlying technologies,

has certain benefits and drawbacks yielding the applicability of
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automating MS diagnosis, detection, treatment prescription,

classification, and prediction. By virtue of its nature as a prefer-

ence-sensitive condition, MS specialists and patients participate

more intensively in MS decisions, particularly regarding

diagnosis and treatment. Generally speaking, the MS diagnostic

procedure constrains all MS specialists to obey the guidance of

the criteria of McDonald et al.55 in addition to performing the

Expanded Disability Status Scale (EDSS)56 and clinical examina-

tions (e.g., MRI and LP) to confirmMS cases.MS specialists usu-

ally detect MS activities by comparing initial diagnosis reports

with follow-up reports. Nevertheless, these procedures require

intensive knowledge and experience given the inconclusiveness

in this medical condition due to the lack of consensus diagnostic

procedures. Furthermore, the variety of MS drug therapies offers

a range of potential benefits, but they may also tolerate life-

threatening risks. In like manner, predicting and classifying MS

during and before the course of the disease are very challenging

due to the ambiguity in terms of MS progression and occurrence

pattern. To fulfill the need for automated systems that could help

to overcome these gaps, several pieces of research, described

in the previous section, manifest the use of modern technolo-

gies, e.g., DSSs, for this essence with remarkable findings and

high-performance metrics.

Knowledge acquisition and representation of an expert is crit-

ical in developing reliable knowledge-based DSSs used for MS

clinical routines. For instance, studies18,21 have demonstrated

the use of fuzzy logic to handle the uncertainty in MS. This, in

turn, would accurize solid knowledge representation to perform

more rational knowledge reasoning that is able to make valid in-

ferences. Significantly, the work presented by Esposito and De-

Pietro18 integrated two knowledge representation approaches,

namely ontology in addition to fuzzy logic. The importance of

applying ontology here was to provide a shared understanding

of the MS domain, i.e., semantic interoperability. This mixture

led to knowledge elicitation, knowledge representation, and

knowledge reasoning and inference with reduced uncertainty.

Similarly, the methodology proposed by Esposito et al.21

combined fuzzy logic with DE to represent, reason, and tune

knowledge. DE optimizes a complex problem by improving a

candidate solution iteratively, so that it finds the best set of rules

that guarantees the best set of knowledge. This combination can

obtain the most optimal result because it leverages MS uncer-

tainty using the best set of knowledge and rules. It is worth

mentioning that De Falco et al.19 formulated a DSS using DE

that obtained explicit knowledge through an optimal set of rules.

To find this set of rules, each class has its own rules that are used

to recognize the class’s instances. At the end of the DE evolution,

the optimal set of rules that is used for classifying instances to

their corresponding classes, emerged to form the best classifi-

cation specification. Similarly, the study conducted by Esposito

et al.21 used the same DEmechanism demonstrated by De Falco

et al.19 in the knowledge-tuning phase. In fact, DE was applied to

achieve the highest correct classification rate by tuning the

knowledge via membership function optimization for each lin-

guistic variable involved in the rules. Remarkably, these pieces

of research performed well in classifying MS lesions with signif-

icant evaluation metrics results.

Two studies that used simulation models are reported in this

review. The study presented by Veloso26 used an agent-based
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simulation model that showed the prediction of disability and

treatment effects. This model virtually populated 100 agents

that simulated patients with RRMS. The beauty of this work is

its ability to abbreviate 30 years of monitoring and observing

the quality-of-life of RRMS patients. By the same token, the

work presented by Veloso29 extended the previousmethodology

with a web presence and the utilization of distinct algorithms.

This model’s functionality was extended as it considered other

forms of MS (CIS and SPMS) suggested to start/modify treat-

ment plans, and evaluated medical prognosis in the long-term.

After all, using such simulation systems in MS clinical practice

would allow clinicians to prompt several potentially rapid and

appropriate medical interventions before any complications

arise in the medical status of actual patients.

Certainly, DSSs need to be implemented in such a way as to

highly simulateMS specialists. To optimistically reach this objec-

tive, the underlying structure of DSSs should be able to learn new

patterns by observing subsets of data to produce reliable deci-

sions without human intervention. This goal would be possible

with the help ofML algorithms. TheCAD tool presented by Linder

et al.22 used ANN and logistic regression. This work showed

promising results. The logistic regression model was able to

discriminate MS patients based on their features, while the

ANN selected features that are correlated mostly with MS. Like-

wise, the study by Dogan and Duru24 compared SVM with k-

means in the lesion detection task. This comparison was in favor

of the SVM, although both algorithms performed the segmenta-

tion process acceptably with promising results. However, both

studies need improvements in terms of applying the most

suitable MLmodel by comparing the results of different ML algo-

rithms. In a word, it should be noted that each ML algorithm per-

forms differently depending on the problem and the dataset in

use, so comparing the performance of several ML algorithms

should be sufficient when adopting ML as the ground solution.

Commonly, the SVM algorithms have been used extensively in

several studies presented in this review whether as a DSS basis

or as standalone models. Some studies20,24,48,50,51,53,54 have

been reported to rely entirely or partially on SVMs despite the

fact that they are used for mutual or different objectives. For

instance, the linear SVM was applied in the DSS of Dogan and

Duru24 and in the experiment of Zurita et al.48 for diagnosing

MS. On the contrary, the study established in Ion-M�argineanu

et al.50 used the SVM with an rbf kernel to segregate patients

with different MS clinical forms. Furthermore, the standard

SVM model was used as a part of an ML structured pipeline by

Wang et al.51 and as an individual model of Zhang et al.53 for de-

tecting MS. Moreover, another study by Siddiqui et al.20 utilized

the LS-SVM classifier to classify brain MRIs as normal or

abnormal. In addition, McGinnis et al.54 used the SVR model to

measure walking speed features in a wearable device, which is

used to characterize gait speeds to compare MS patient

mobility. The comparison between all of the SVMs presented

in this review seems imbalanced for two reasons. First, they

are used for different objectives andwith different datasets. Sec-

ond, they are used partially as one of the essential tools of a DSS

paradigm or entirely as an independent method. However, the

performances of these SVMs can be explored despite the above

contradictions. To emphasize this, the LS-SVM was the best

SVM because it guarantees higher evaluation rates with mini-
mum computation time and complexity even when it is running

against huge datasets. The LS-SVM is an enhanced, reformu-

lated, and upgraded version of the classical SVM. LS-SVM en-

sures more accuracy by using least-squares to modify and cor-

rect the classifier’s behavior to minimize the errors, i.e., cost

function. As stated in Siddiqui et al.,20 the performance of the

model used in the study with the LS-SVM classifier that used

the rbf kernel exceeded all other models, especially those that

applied standard SVMwith different kernel values. Yet, exploring

and comparing the performance of several sets of parameters

within LS-SVM is something that needs to be considered in

future works that adopt LS-SVM to have the most optimal model

performance.

It could be inferred from this review that the number of studies

conducted to address the usage of DSSs in the MS field is quite

limited. Indeed, the acceptance of DSSs within the MS domain

remains limited. This condition is not getting proper attention

compared with other incurable diseases, such as Alzheimer dis-

ease due to its uncommonness and data scarcity. Nonetheless,

the direction of future work should incline toward applying DSS

technologies, and potentially knowledge graph techniques,

that are able to understandMS progression and occurrence pat-

terns. Additional work should also adopt these machine-based

approaches to emphasize MS etiology and long-term effects of

MS on the quality-of-life of the affected individuals. Moreover,

the correlation between MS and other disorders (especially

chronic neurological and autoimmune diseases) should be

investigated. In spite of this, MS’s intended researchers require

an extensive amount of data, but access to them is very

restricted. To overcome this issue, the FAIR principle for MS

data57 should be considered in the near future. Considering

these recommendations would enhance the clinical practice

experience in MS.

CONCLUSION

MS is a chronic neurological disease that affects the brain and

the spinal cord. The decision-making process regarding this

phenomenon is critical, and it is considered as shared decision

making. Automatic solutions proposing optimal alternatives

that could make the shared decision making easier are highly

in demand in the field of MS. DSSs in the MS realm are very

favorable, especially because of their ability to enhance the

shared decision-making process. Recent studies demonstrated

the increasing need for DSSs in the MS domain to aid decision

makers to nominate the right decision among several alterna-

tives. To our knowledge, the adaptation of DSSs in the field of

MS is still insufficient.

The objective of this paper is to provide a general overview of

the development of DSSs using different methodologies for

improving the clinical practice experience in MS, with a special

focus on the application of model-driven approaches. This over-

view is beneficial for those who need to better understand the

common methodologies that the current DSSs use to support

decision making in MS. All methodologies applied to develop

the current MS DSSs have high efficiency in classifying, diag-

nosing, predicting, or treating MS. However, the efficiency of

these methodologies is different with regard to their underlying

technologies. In addition to DSSs, current research topics are
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applying several technologies to support the decision-making

process in the MS domain. A knowledge-based approach

and ML mechanisms are considered, among others, in this

overview.

Future work should focus on applying DSS technologies to un-

derstand the progression and occurrence patterns of MS, to

emphasize MS etiology, to highlight the long-terms effects of

MS on the quality-of-life of the affected individuals, and to find

the correlation between MS and other disorders. Considering

these recommendations would enrich the field of MS. In conclu-

sion, DSS technologies have the potential to be pragmatic in the

MS domain and in MS research.
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38. Riaño, D., Real, F., López-Vallverdú, J.A., Campana, F., Ercolani, S., Me-
cocci, P., Annicchiarico, R., andCaltagirone, C. (2012). An ontology-based
personalization of health-care knowledge to support clinical decisions for
chronically ill patients. J. Biomed. Inform. 45, 429–446.

39. Hadzic, M., Chen, M., and Dillon, T.S. (2008). Towards the Mental Health
Ontology (2008 IEEE International Conference on Bioinformatics and
Biomedicine), pp. 284–288.

40. Alfano, B., Brunetti, A., De Pietro, G., and Esposito, A. (2007). An ontology
approach for classification of abnormal white matter in patients with mul-
tiple sclerosis. In HCI and Usability for Medicine and Health Care, Vol.
4799, A. Holzinger, ed. (Springer Berlin Heidelberg), pp. 389–402.

41. Jensen, M., Cox, A.P., Chaudhry, N., Ng,M., Sule, D., Duncan,W., Ray, P.,
Weinstock-Guttman, B., Smith, B., Ruttenberg, A., et al. (2013). The neuro-
logical disease ontology. J. Biomed. Semantics 4, 42.

42. Malhotra, A., G€undel, M., Rajput, A.M., Mevissen, H.-T., Saiz, A., Pastor,
X., Lozano-Rubi, R., Martinez-Lapsicina, E.H., Zubizarreta, I., Mueller,
B., et al. (2015). Knowledge retrieval from PubMed abstracts and elec-
tronic medical records with the multiple sclerosis ontology. PLoS One
10, e0116718.

43. Wottschel, V., Alexander, D.C., Kwok, P.P., Chard, D.T., Stromillo, M.L.,
De Stefano, N., Thompson, A.J., Miller, D.H., and Ciccarelli, O. (2015). Pre-
dicting outcome in clinically isolated syndrome using machine learning.
NeuroImage: Clin. 7, 281–287.
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