PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Klakattawi HS (2022) Survival analysis of
cancer patients using a new extended Weibull
distribution. PLoS ONE 17(2): €0264229. https:/
doi.org/10.1371/journal.pone.0264229

Editor: Qichun Zhang, University of Bradford,
UNITED KINGDOM

Received: October 1, 2021
Accepted: February 6, 2022
Published: February 23, 2022

Copyright: © 2022 Hadeel S. Klakattawi. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: The author received no specific funding
for this work.

Competing interests: The author have declared
that no competing interests exist.

Abbreviations: AIC, Akaike Information Criterion;
APKumW, alpha power Kumaraswamy Weibull;
APT, alpha power transformation; APW, alpha
power Weibull; BW, Beta Weibull; edf, cumulative
distribution function; EGW, Exponenetiated
generalized Weibull; EKumW, exponentiated

RESEARCH ARTICLE
Survival analysis of cancer patients using a
new extended Weibull distribution

Hadeel S. Klakattawi *

Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

* hklakattawi @ kau.edu.sa

Abstract

One of the most important applications of statistical analysis is in health research and appli-
cations. Cancer studies are mostly required special statistical considerations in order to find
the appropriate model for fitting the survival data. Existing classical distributions rarely fit
such data well and an increasing interest has been shown recently in developing more flexi-
ble distributions by introducing some additional parameters to the basic model. In this
paper, a new five-parameters distribution referred as alpha power Kumaraswamy Weibull
distribution is introduced and studied. Particularly, this distribution extends the Weibull distri-
bution based on a novel technique that combines two well known generalisation methods,
namely, alpha power and T-X transformations. Different characteristics of the proposed dis-
tribution, including moments, quantiles, Rényi entropy and order statistics are obtained. The
method of maximum likelihood is applied in order to estimate the model parameters based
on complete and censored data. The performance of these estimators are examined via
conducting some simulation studies. The potential importance and applicability of the pro-
posed distribution is illustrated empirically by means of six datasets that describe the sur-
vival of some cancer patients. The results of the analysis indicated to the promising
performance of the alpha power Kumaraswamy Weibull distribution in practice comparing to
some other competing distributions.

1 Introduction

Many statistical distributions have been extensively utilized for analysing time to event data
also referred to as survival or reliability data, in different areas of applicability, including the
medical field. Medical scientists are mostly interested in studying the survival of patients with
cancer in the applied research. These research are most often require special statistical atten-
tions and adjustments in the context of finding and choosing the appropriate model that accu-
rately determine and estimate the survival data and yielded in reliable results and valid
inferences. It is possible to consider the Weibull distribution [1], to be one of the most popular
distributions for modeling such data that explain the mortality and failure. However, the classi-
cal two-parameter Weibull distribution is less suitable for fitting when data show non-mono-
tonic failure rates due to its limitation in modeling only monotonically increasing and
decreasing hazard functions. Therefore, there is a crucial need in many cases to enhance the
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traditional Weibull for modeling biomedical data. It follows that many attempts have been
made to extend the baseline Weibull model by adding one or more additional parameters to
achieve more flexibility in generating different shapes of data. To illustrate, [2] suggested the
exponentiated Weibull distribution by applying the exponentiated method [3] in which a
shape parameter is added to a baseline distribution. Beta-Weibull ditribution [4] is introduced
based on the beta-generated method by [5]. Marshall-Olkin extended Weibull distribution [6]
has been suggested to modify the Weibull distribution using the technique by [7]. This distri-
bution has been applied to fit a dataset representing the remission times of bladder cancer
patients. Furthermore, the Maxwell-Weibull distribution is introduced by [8] to model life-
time data. On the basis of the zero truncated Poisson model, [9] proposed a new compound
distribution called the quasi Poisson Burr X exponentiated Weibull distribution, which accom-
modated many important failure rates. Moreover, in a recent study, [10] have derived a
bimodal form of the Weibull distribution.

Researchers have shown a keen interest in developing new methods for expanding lifetime
distributions. [11] developed a new method that add two extra shape parameters a, b > 0 to an
arbitrary baseline distribution, called Kumaraswamy generalized (Kum-G) with a cumulative
distribution function (cdf) defined as

FX"G(x:0.b,0) =1 —[1 — (G(x;0))"]’,

where X is a continuous random variable whose baseline (cdf) is G(x;0) with a vector of param-
eter(s) 8. A number of studies have been applied this method to develop new distribution such
as, the Kumaraswamy Gumbel by [12], the Kumaraswamy Birnbaum-Saunders by [13], the
Kumaraswamy Burr XII distribution by [14], the Kumaraswamy generalized Rayleigh distribu-
tion by [15], the Kumaraswamy Laplace distribution by [16], the Kumaraswamy half-logistic
distribution by [17], the Kumaraswamy exponentiated Weibull by [18], the Kumaraswamy
Marshall-Olkin exponential distribution by [19] and the Kumaraswamy Pareto IV distribution
by [20], among others.

[21] introduced the Kumaraswamy Weibull (KumW) distribution as a generalization of the
Weibull distribution and demonstrated its flexibility to fit failure data. The proposed distribu-
tion can be obtained by assuming G(x) = 1 — e"®" of the Weibull distribution with scale
parameter A > 0 and shape parameter ¢ > 0. Thus, the cdf and probability density function
(pdf) of the KumW is obtained respectively as

FYmW(x:a,b,c,h) =1 —[1 — (1 —e )7, (1)
and
FRemW (x:a, b, e, ) = abehx e M (1 — e ™) 1 — (1 — e’(k"y)a]b*l. (2)

The KumW distribution has been considered by some authors, for example, [22, 23] dis-
cussed different types of statistical inference for constant stress accelerated life tests based on
censored sampling data from the KumW distribution. [24] discussed some Bayesian analyses
for the KumW distribution. [25] considered a regression model for bivariate random variables
based on the bivariate KumW distribution. Although the KumW has been perfectly described
many datasets, it has been modified by some authors. For instance, [26] in which the KumW is
generalised by considering the new modified Kumaraswamy-G in [27]. Additionally, [28] who
consider the exponentiated class in [3] to generalise the KumW. More recently, [29] general-
ised the KumW by considering the transmuted class in [30].

On the other hand, [31] suggested a new approach, called alpha power transformation
(APT), for generating distributions with additional parameter o in order to add more
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flexibility. Then, the APT for an arbitrary baseline cdf G and pdf g for a random variable X
with a vector of parameter(s) 6 can be obtained as follows
0G0 _
— fa>0,a#1
P (xi0,0) = { @1 ()

G(x;0) if a=1,
with the corresponding pdf as

logo

g(x;0)0°™ ) if o> 0,0 £ 1
AT (x;0,0) = { %=1 (4)

g(x;0) if o =1.

[31] applied their suggested way to a one-parameter exponential distribution to develop
alpha power exponential distribution with two-parameters. Several authors have been applied
the method of APT to extend some exiting distributions in the literature. Examples include the
alpha power Weibull distribution by [32, 33], the alpha-power inverse Weibull distribution by
[34, 35], the alpha power inverted exponential by [36], the alpha power transformed extended
exponential distribution by [37], the alpha power transformed power Lindley by [38], the
alpha power transformed Lindley by, [39], the alpha power transformed inverse Lindley by
[40], the alpha power transformed inverse Lomax by [41], alpha power Maxwell distribution
by [42], the alpha power exponentiated inverse Rayleigh by [43] and the alpha power Weibull-
exponential by [44], among others.

Motivated by the idea that developing some new distributions will eliminate some issues
that inherent in the existing distributions, the main objective of this paper is to introduce a
novel generalization for the Weibull distribution. This distribution is constructed by combin-
ing the works of [21, 31] introducing a new five-parameter distribution refereed to as the alpha
power Kumaraswamy Weibull (APKumW) distribution. As compared to other probability dis-
tributions presented in the literature, the proposed model will increase the flexibility and
adaptability for describing different shapes of hazard-rate functions, such as decreasing,
increasing, bath-tub and upside down bath-tub shaped, which might extensively experienced
in real life data. Particularly, as indicated by [45] for the effectiveness of employing the APT
distributions for cancer research, this paper focuses in exploring the adaptability of the pro-
posed distribution to describe the survival time by analyzing some cancer datasets. Addition-
ally, another objective is to estimate the unknown model parameters using maximum
likelihood method for both complete and censored cancer datasets.

The rest of the paper is organized as follows. In Section 2, the APKumW distribution is
defined and its special cases are presented along with an useful expansion for its pdf. In Section
3, some of the properties of the proposed distribution are discussed. The maximum likelihood
estimators (MLEs) of the distribution parameters are obtained in Section 4 based on uncen-
sored and censored data. Consequently, some different simulation studies are carried out to
assess the performance of the MLEs in Section 5. Finally, different applications of the
APKumW distribution to complete and censored datasets are presented in Section 6. All
computations throughout this paper were performed using the statistical programming lan-
guage R.

2 Alpha power Kumaraswamy Weibull distribution

The APKumW distribution is suggested in this paper based on substituting by Eqs (1) and (2)
respectively in Eqs (3) and (4). That is, the random variable X is said to have the APKumW
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distribution with five parameters 0 = {a, b, ¢, A, }, if the cdf of X is

ocl*[l*(lfe*()“x)u)“]h _ 1

if o >0,0#1
Fro=q 21 (5

1-[1—(1—e®™)7 if a=1,
and its corresponding pdf is

log(#) abckx e (1 — e 7Y
»-l ifa>000#1
f(xa 0) = [1 . (1 . e—(}ux)c)“]b’Ial*[l—(l—g*“"")c)“]h
abck‘x e (1 — e 090) 1 — (1 — e ™))" if o= 1.

Additionally, the survival and hazard rate functions of the APKumW distribution are
respectively given by

o[y |
SE(x; 0) = (7
[1—(1—e ™) if =1,
and
log() abehx e () (1 — e (=)'
1= g if o>0,aa#1
(1 — e 0yt
h(x; 0) = = Q=™ sy (8)
R
¢ o1, L oy —
abch‘x e = ey if o =1.

Incorporating skewness to the base distribution is done by adding the parameter . The
APKumW model is therefore a suitable model to describe positively skewed patterns in bio-
medical and public health data. Fig 1 displays some of the shapes that the pdf and hazard func-
tions of the APKumW distribution can take for different values of its parameters. These
different behaviours indicate the flexibility and adaptability for the APKumW to fit a variety of
data shapes.

2.1 Special cases

Table 1 shows important special models of the APKumW distribution.

2.2 Expansion of the probability density function

Using the following power series expansion

ot =

> (—log(#))'#
g Koo

k=0
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e
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a=2.2,a=1.6,b=4.2,c=1.3,1=0.3

Fig 1. The APKumW pdf and hazard function for various values of its parameters.

https://doi.org/10.1371/journal.pone.0264229.9001

the pdf in Eq (6) can be written as

f(x;0) =

k

00

S ol agle) - (1 ooy

x . abo) x e M (1 —

0

Then, the following binomial expansion

e (rx)© )“_1 %

00
(1-2)"" = Z(—l)](b__ 1>zj ; for |z <1 and b > 0, (10)
=0 J
Table 1. Special models of the APKumW distribution.
o a b c Y Resulting Distribution
1 - - - - KumW
- - - 1 - APKumExp
- - - 2 - APKum-Rayleigh
- 1 1 1 - AP-Exponential
- 1 1 2 - AP-Rayleigh
- 1 1 - - AP-Weibull
1 - 1 - - Expontiated Weibull
1 - 1 2 - Expontiated Rayleigh
1 - 1 1 - Expontiated Exponential
1 1 1 1 - Exponential
1 1 1 1 - Rayleigh
1 1 1 - — Weibull

https://doi.org/10.1371/journal.pone.0264229.t001
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is applied twice to obtain a useful expansion of the pdf of the APKumW as follows

oo o0

f(x;0) = > i 1 abc?fZZi (_1k)!t : <b(k * 1) - 1) (a(j - 11) - 1) (log(a))*"!

=0 j=0 i=0 J

(11)

x671 e*(H»l)(lx)C .

3 Properties of alpha power Kumaraswamy Weibull distribution

Some properties of the APKumW distribution are considered in the following as

3.1 Simulation, quantiles and median
To simulate a random variable from APKumW distribution, Eq (5) can be used to obtain

11 1

e i I

where U is a random variable follows a uniform (0, 1) distribution. Also, the p™ quantile func-
tion of the APKumW distribution for 0 < p < 1, is given by

11 1

XP:H—log{1— [1— (1—%)%“}]9 (13)

Consequently for p = 3, the median for the APKumW can be obtained as

il [ (-

3.2 Moments

The 7" moment of a random variable X is given by
E(X") = / xX'f (x; @)dx.
0

Then, the " moment of the APKumW is given from Eq (11) as

E(X) = “bCWZii—(_lk); : <b(k th- 1) (a(j " 1.1) - 1) (log(x))*""

J

/ xr+c—le—(i+l)(7\x)cdx.
0

By letting u = (i+ 1)(Ax)", then the " moment can be obtained as

B(x7) = oci 1;&2%:2%:2&: (—1k)!f+;+k (b(k + '1) - 1) (a(j + 1'1) - 1) (log(0))*' x

J

1\ r
I'-+1
(i + 1) (c +1),
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where I'(.) is the gamma function. Subsequently, the mean and variance can be obtained by
substituting =1 and r = 2 in Eq (15).
The moment generating function of a random variable X can be defined with the form

M. (t) = E(e™) = /0OO ef (x; 0)dx.

That is, using the following power series expansion for the exponential function

i% (16)

1=0

the moment generating function of a random variable X whose pdf in Eq (6), can be obtained
similarly as

M.(1) = O{afocl iiii (;'14)*;% <b(k +1) - 1) (a(j + i1) — 1) (log(o)"* x

3.3 Rényi entropy
The Rényi entropy of a random variable X represents a measure of variation of the uncertainty
and given by
1 % ,
RE (v) = 1 vlog(/ [f (x; 0)] dx) ; v>0, v#0.

Then from Eq (6), we have

[f(x;0)] = <°dog(a)> (abch)' x (D00 (1 — =020y a=1)

a—1

[1— (1 — e @) gmii-me (0

Applying Eqs (9) and (10) twice, we obtain

- abck")vx"@*l)iii Dl (b(k *jv) - V) (“U * I_V) - V) x

k=0 j=0 i=0

0 = (-

vk (log(a))V+’<e—(i+v)(7\x)‘ )

abc)f) iii ),+,+k (b(k + 'v) - v> (u(j + iv) - v> "

—0 j=0 i=0 J

Vk(log(zx))wk /00x"<"‘1)e_(i+")(7“)[dx}.
0
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By assuming u = (i+ v)(Ax)", the Rényi entropy for the APKumW can be expressed as

A abo

RE (v) = - vlog(gC — 1) — log(he)+
g {ZZZ e (b(k +jv) — V> <a(i + iV) - V) " a8)

k=0 j=0 i=0

V¥ (log(x))"* (;%) U <”(C — DI %) }

3.4 Order statistics

Suppose that F(x) and f(x) are respectively the cdf and pdf of #n independent and identically
distributed random variables X;, X, .. .X,, with X;., < X., < ... < X,,., be their correspond-
ing ordered statistics. Then, the pdf of the s” order statistic can be obtained as

n!

oD = OF@IT - F@I™

Janl®) =
Using the binomial theorem, we have

n! w(Hh—S ws—1
fsm(x)zm;(—l) ( w )f(x)[F(x)] :

Substituting by Eqs (5) and (6) and using the binomial theorem, we get

W+V+1 -\ [wt+s—1 ottt
( w ) ( v ) (1 _ a)w-%—s log(a)x

abchx e 0 (1 — e Y 1 — (1 — e’()”")f)”]b_lx

O(—<v+1)[1_(1_r<’»X>L>“] )

n—s w4s—1

Jonl) = (5—1 n—s) 'ZZ

=0 v=0

Then, using the series expansion in Eq (9) and applying the binomial theorem in Eq (10)
twice, we obtain

n—s w+s—1 oo oo

oSS (1 s (W 01

'WOVOkOj:()t:O

(_1)w+v+k+j+i+1 v+1( + 1)
k' (1 _ OC)VH»S

(log(oc))"“ abo)fxe e DT

4 Parameter estimation for alpha power Kumaraswamy Weibull
distribution
The maximum likelihood method is applied to obtain the estimation for the parameters of

APKumW distribution. That is, if we have a random sample xy, x,, . . ., x,, from the APKumW
distribution, with the unknown vector of parameter 0 = (4, b, ¢, A, @), then the log-likelihood
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a n e a(l —e ™)
o =21+ cloglh) +Zlog Z“) log@xﬂ{lm[“”mx

function (€) can be defined as

1 z ¢
e lg<%<1)> + n log(abek’) + (¢ — 1) } “log() =3 0w) + (a— 1) log(1 — e )+
i=1

i=1 (20)

n

—1) ng (1= (1—e ™)) —log(a)) [1— (1 —e ™).

i=1

The associated nonlinear equations for the partial derivative of £ with respect to each
parameter, are given as

= =—+Zlog o { lgl(zi—:)[)a[b(l—log(a)[ Sy M)])_1]},(21)

pony ilog[l (1= )] [L - log(l - (1 — )T, (22)

o - e a(l — e )"
o ch Zx{ 1—e<>w> ”‘_1_1_(1_e—<>~cr’)“><

and

Then, the MLEs of the unknown parameters can be obtained by equating the equations
from Egs (21) to (25) to zero and solving them simultaneously. Particularly, a numerical itera-
tive approach, such as the Newton-Raphson algorithm should be applied to solve these equa-
tions. Alternatively, any software like R, might be used to maximise Eq (20) directly and obtain
the MLEs.

Studying survival times often results in the presence of censored observations, meaning
there are incomplete observations of the period of interest. Right censoring technique is
applied in medical studies when some patients lost to follow up and their exact occurrence
time cannot be determined. The most common form of right censoring, which is encountered
in survival analysis, is type I right censoring. A study of this type occurs when it is conducted
over a specified period of time that will end before all units have failed. To illustrate, consider a
study for a random sample of n patient in which, each patient is assigned a censoring time Y;
i=1,...,n,thatis the time between entry and the end of the study and where X3i=1, ..., n,
be the failure time of the i patient. These X;’s and Y;’s are supposed to be independent and fol-
low the APKumW distribution in Eq (6) and a non-informative distribution, respectively. For
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T; = min(X;, Y;), the pair (T}, 6;) is observed such that
5 { 1 if failure has occurred

0 if censoring has occurred

Then, the log-likelihood function (¢) will be
0= 5loglf(t)] + > (1 —5,) log[SF(t,)], (26)
i=1 i=1

where f(.) and SF(.) are respectively defined in Eqs (6) and (7). In order to obtain the MLEs,
the log-likelihood in Eq (26) can be maximized numerically.

5 Simulation study

Some simulation studies are conducted to evaluate the performance of the MLEs for the five
parameters of APKumW distribution. The simulation is considered over a number of itera-
tions equal to nsim = 1000, for different sample sizes n with the following cases for the true
parameters 0;,

e« Casel:a=0.50=06,c=13,1=0.2,a=0.1

e Casell:a=0.8,b=27,¢c=36,A=24,a=1.2

e Caselll:a=13,b=04,c=16,A=0.5a=0.2

e CaselV:a=22,b=1.6,c=14,1=0.07,2=0.03

The MLE:s for each estimator 0 can be evaluated using an accuracy measurement, such as
the root mean squared error (RMSE) that can be calculated as follows

R T’Sim (A) _ 0 2
RMSE(f) = 21:1155#") (27)

All estimation results are obtained using the “optim” function in R software. Table 2 shows
the results for the MLEs of the parameters of APKumW along with their corresponding
RMSE. Generally, it can be seen from this table, that the MLEs are more closer to the true val-
ues of the parameters as the sample size increased. In addition, RMSE became smaller as sam-
ple size n increased, indicating that the estimates are consistent. These results demonstrate that
maximum likelihood method is effective at estimating the parameters of the proposed
distribution.

6 Applications

Six real datasets for cancer patients are fitted using the APKumW distribution. The results
obtained using the APKumW distribution are compared against the corresponding ones
achieved with the application of the following

The Weibull distribution with the following pdf

4

flx) = Fx"_le_(%)u.
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Table 2. Simulation study: APKumW parameter estimates, together with the RMSE for three different cases with different sample sizes.

Case I Case II Case III Case IV
MLE RMSE MLE RMSE MLE RMSE MLE RMSE
n=25 a 0.7374 1.1311 1.1366 1.7467 3.1581 12.3097 4.1684 5.8308
b 1.3078 1.7491 2.9682 4.1624 0.4752 0.6268 1.5157 1.8984
c 2.2590 1.8346 6.1786 5.0080 2.0867 1.7713 2.2103 2.1365
A 0.4063 0.8406 2.9813 1.7717 1.0853 1.3514 0.1890 0.2221
3 0.4441 1.7620 2.8268 8.8754 0.8573 1.8160 0.5149 1.0372
n=>50 a 0.5936 0.7352 0.8191 0.8192 2.2807 4.3226 3.7718 4.3232
b 1.1829 1.3862 3.0076 3.9600 0.4590 0.4819 1.4895 1.8195
c 1.8486 1.2120 5.6346 3.9938 1.7671 0.9930 1.7707 1.1602
A 0.3280 0.6997 2.7180 1.0426 0.8880 0.9771 0.1720 0.1899
3 0.3669 1.0412 2.9617 6.8317 0.6719 1.3418 0.4554 0.9540
n =100 a 0.5002 0.3808 0.7360 0.5757 1.7846 1.3917 3.4064 3.2416
b 1.0501 0.9617 2.8792 2.8078 0.4423 0.4725 1.5827 1.5955
c 1.7149 0.9487 5.2997 3.2607 1.5933 0.4265 1.5137 0.6138
A 0.2617 0.4597 2.5268 0.6980 0.7591 0.6132 0.1450 0.1497
o 0.2640 0.6310 2.6456 5.7300 0.6315 1.2849 0.3413 0.7541
n =500 a 0.4883 0.1427 0.7330 0.2806 1.5301 0.6641 2.6718 1.3610
b 0.8331 0.5439 3.0105 1.8025 0.4243 0.3008 1.6417 0.9258
c 1.4369 0.4402 4.4465 1.9672 1.5428 0.2977 1.3714 0.3012
A 0.2056 0.1635 2.4009 0.4645 0.6278 0.3305 0.0939 0.0577
3 0.1791 0.2369 1.9772 2.8766 0.5035 0.8366 0.1442 0.3296
n =1000 a 0.4891 0.1038 0.7486 0.2159 1.4622 0.4818 2.4720 0.8942
b 0.7738 0.4584 2.8873 1.3060 0.4324 0.2165 1.6791 0.7932
c 1.3883 0.3229 4.1520 1.4735 1.5478 0.2613 1.3679 0.2323
A 0.1986 0.1182 2.3915 0.3327 0.5743 0.2204 0.0809 0.0341
0.1589 0.1963 1.5851 1.6256 0.4032 0.5784 0.0803 0.1853

https://doi.org/10.1371/journal.pone.0264229.t002

The Exponenetiated generalized Weibull (EGW) distribution [46] with the following pdf

The Beta Weibull (BW) distribution [4] with the following pdf
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The KumW distribution [21] with the following pdf
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Table 3. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the acute bone cancer data.

Distribution MLE and SE AIC KS P value
APKumW o = 0.0046 (0.0055), a = 5.0887 (2.1344), b = 0.4137 (0.3181), ¢ = 0.5358 (0.1424), A = 1.3007 (0.7691) 291.7005 0.0680 0.8888
Weibull ¢=0.7656 (0.0568), A = 2.9260 (0.4761) 326.8033 0.1887 0.0111
EGW a=2.7262(4.3589), b = 80.5514 (119.2631), ¢ = 0.2353 (0.0755), L = 0.15070 (0.9666) 294.0796 0.0924 0.5612
BW a =59.2646 (35.3442), b = 62.3944 (32.4899), ¢ = 0.1262 (0.0363), . = 41.4347 (42.1657) 298.9643 0.0988 0.4747
KumW a =2.7498 (0.0095), b = 0.3506 (0.0423), ¢ = 0.6483 (0.0035), A = 0.3447 (0.0052) 311.4273 0.1470 0.0853
EKumW a=1.273(0.4415), b = 1.9974 (1.0322), ¢ = 0.4002 (0.0658), A = 1.0345 (1.066), a = 5.4855 (2.0861) 302.2774 0.1168 0.272
APW ¢=0.9218 (0.078), L. = 0.0791 (0.0141), & = 0.0021 (0.001) 309.0348 0.1884 0.0112

https://doi.org/10.1371/journal.pone.0264229.t003

The alpha power Weibull (APW) distribution [32] with the following pdf

log (o) ¢ g .
Axc—l e pyloe ; ifa>0,aa#1
Fo) =d 21 chx e ™a #*
chxcle ™ : if o =1.

A variety of tools can be applied for comparing different competing distribution for a spe-
cific dataset and choosing the best model for the fitting. To investigate the goodness-of-fit for
the compared distribution, Akaike Information Criterion (AIC) and Kolmogorov-Smirnov
(KS) along with its P value are considered in order to choose the best distribution. The better
distribution is which corresponds to the lower values of AIC, KS and highest P value of KS sta-
tistic. The plots of the estimated cdf for each of the distributions are compared with the plot of
the empirical cdf. Also, the histogram of the observed frequencies is compared with the plots
of the expected frequencies for each fitted distribution. The MLEs of the parameters for all the
five datasets along with their SEs (in parentheses) and the corresponding goodness-of-fit
criteria for all the competing models are respectively presented in Tables 3-7. Additionally,

Table 4. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the head and Neck cancer data.

Distribution MLE and SE AIC KS P value
APKumW a =4.8428 (3.2155), b = 0.6523 (0.7809), ¢ = 0.5719 (0.2531), A = 0.026 (0.0106), = 0.3173 (1.0202) 565.1112 0.0751 0.9492
Weibull ¢=0.9386 (0.1007), A = 213.6881 (36.2325) 567.6877 0.1267 0.4435
EGW a=0.0784 (0.0131), b = 1.6582 (0.3456), ¢ = 0.3437 (0.0022), . = 0.0513 (0.0028) 602.3591 0.2687 0.0027
BW a=2.3728 (1.1206), b = 0.0759 (0.0119), ¢ = 0.3999 (0.002), A = 0.2225 (0.0025) 602.5257 0.3075 0.0003
KumW a=0.3532(0.1743), b = 0.0782 (0.0122), ¢ = 0.4911 (0.0025), A = 1.2577 (0.0025) 604.0207 0.3142 0.0002
EKumW a =7.8983 (2.4909), b = 6.8318 (3.9697), ¢ = 0.2203 (0.0377), A = 0.0541 (0.0336), a = 1.8148 (1.1851) 566.0263 0.0973 0.7625
APW ¢=0.8779 (0.077), > = 0.0105 (0.0089), o = 1.6918 (2.2826) 570.2769 0.1277 0.4342

https://doi.org/10.1371/journal.pone.0264229.t004

Table 5. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the blood cancer data.

Distribution MLE and SE AIC KS P value
APKumW a=0.1192 (0.0576), b = 1.493 (0.2111), ¢ = 12.8763 (0.0026), A = 0.1888 (0.0025), = 3.2018 (8.3932) 139.4392 0.0625 0.9976
Weibull ¢ =2.4993 (0.3370), A = 3.5183 (0.2316) 143.1159 0.1185 0.6284
EGW a=0.0814 (0.0147), b = 1.4848 (0.3171), ¢ = 1.7819 (0.0025), A = 0.7165 (0.0025) 149.7559 0.1495 0.3330
BW a=0.3617 (0.1295), b = 0.0431 (0.0071), ¢ = 1.008 (0.0023), A = 0.1524 (0.0023) 185.7482 0.3171 0.0006
KumW a =0.9562 (0.0734), b = 0.0838 (0.0133), ¢ = 2.5959 (0.0083), A = 1.3823 (0.0083) 146.7387 0.0975 0.8411
EKumW a=3.2765 (0.0021), b = 1.3117 (0.0677), ¢ = 4.1917 (0.0021), A = 0.2253 (0.002), a = 0.1367 (0.0218) 142.2623 0.1039 0.7806
APW ¢=2.101 (0.4359), . = 0.1058 (0.0827), ¢ = 5.3518 (6.7462) 143.3641 0.0919 0.888

https://doi.org/10.1371/journal.pone.0264229.t005
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Table 6. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the bladder cancer I data.

Distribution MLE and SE AIC KS P value
APKumW a =0.0692 (0.0859), b = 0.8434 (0.1146), ¢ = 9.3634 (0.0079), A = 0.3289 (0.0075), a = 8.4765 (35.1643), 100.1924 0.0806 0.9736
Weibull ¢=1.9570 (0.2816), A = 2.1645 (0.1918) 106.7741 0.165 0.2753
EGW a=0.0478 (0.0141), b = 0.3927 (0.0748), ¢ = 3.5985 (0.0036), A = 1.2523 (0.0043) 104.5355 0.1490 0.4015
BW a =0.8648 (0.3929), b = 0.0587 (0.0101), ¢ = 1.6055 (0.0016), A = 0.3582 (0.0016) 110.6557 0.1995 0.1139
KumW a =0.2273 (0.0026), b = 0.0487 (0.0081), c = 1.2286 (0.0014), A = 0.1863 (0.0013) 121.6362 0.2092 0.0855
EKumW a=0.2692 (0.1951), b = 0.1116 (0.0855), ¢ = 3.7307 (0.9426), A = 0.6668 (0.1644), a = 0.7241 (0.3537) 104.0068 0.0904 0.9302
APW ¢=1.6796 (0.3636), A = 0.3915 (0.2099), a = 4.5688 (5.7946) 107.2964 0.1406 0.4751

https://doi.org/10.1371/journal.pone.0264229.t006

Table 7. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the bladder cancer II data.

Distribution MLE and SE AIC KS P value
APKumW a=1.4958 (0.8164), b = 0.3964 (1.1823), ¢ = 1.0028 (0.4566), A = 0.1139 (0.2304), a = 0.0168 (0.0409), 829.509 0.0370 0.9947
Weibull ¢ =1.0478 (0.0676), . = 9.5607 (0.8529) 832.1738 0.0700 0.5570
EGW a=0.1608 (0.0169), b = 1.4844 (0.185), ¢ = 0.7023 (0.0026), A = 0.4745 (0.0026) 841.2811 0.1091 0.0947
BW a=0.8742 (0.1428), b = 0.163 (0.0157), ¢ = 0.8088 (0.0026), A = 0.9306 (0.0026) 854.7262 0.1755 0.0007
KumW a=0.8027 (0.1796), b = 0.1707 (0.0164), ¢ = 0.8367 (0.0026), A = 1.079 (0.0026) 852.5814 0.1664 0.0017
EKumW a=1.2965 (0.6309), b = 0.7662 (0.7314), ¢ = 0.6749 (0.1550), A = 0.4087 (0.4881), o = 2.1286 (1.1644) 831.4566 0.0418 0.9786
APW ¢ =0.9553 (0.088), A = 0.1449 (0.0656), o = 2.1243 (1.8644) 834.9494 0.0725 0.5115

https://doi.org/10.1371/journal.pone.0264229.t007

Figs 2-6 display on lefts the empirical and the fitted cdfs, and on rights the fitted pdfs with his-
togram of the observed datasets in Tables 3-7.

6.1 Acute bone cancer dataset

[48] considered a simulated data represents the survival times (in days) of 73 patients who
diagnosed with acute bone cancer, as follows: 0.09, 0.76, 1.81, 1.10, 3.72, 0.72, 2.49, 1.00, 0.53,
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Fig 2. Theoretical and empirical cdf and pdf comparison of the acute bone cancer data.
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Fig 3. Theoretical and empirical cdf and pdf comparison of the head and Neck cancer data.
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0.66, 31.61, 0.60, 0.20, 1.61, 1.88, 0.70, 1.36, 0.43, 3.16, 1.57, 4.93, 11.07, 1.63, 1.39, 4.54, 3.12,
86.01, 1.92, 0.92, 4.04, 1.16, 2.26, 0.20, 0.94, 1.82, 3.99, 1.46, 2.75, 1.38, 2.76, 1.86, 2.68, 1.76,
0.67,1.29, 1.56, 2.83, 0.71, 1.48, 2.41, 0.66, 0.65, 2.36, 1.29, 13.75, 0.67, 3.70, 0.76, 3.63, 0.68,
2.65,0.95, 2.30, 2.57, 0.61, 3.93, 1.56, 1.29, 9.94, 1.67, 1.42, 4.18, 1.37. This medical dataset is
considered and analyzed using the APKumW and the competitive models.

6.2 Head and Neck cancer dataset

Survival time for 44 patients diagnosed by Head and Neck cancer disease from [49] and ana-
lyzed recently by [50] is considered. The dataset are: 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35,
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Fig 4. Theoretical and empirical cdf and pdf comparison of the blood cancer data.
https://doi.org/10.1371/journal.pone.0264229.9004
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47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133,
140, 146, 155, 159, 173, 179, 194,195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.

6.3 Blood cancer dataset

This data consists of the life time (in years) of a 40 blood cancer (leukemia) patients from one
of Ministry of health hospitals in Saudi Arabia reported in [51]. This actual data are: 0.315,
0.496, 0.616, 1.145, 1.208, 1.263, 1.414, 2.025, 2.036, 2.162, 2.211, 2.370, 2.532, 2.693, 2.805,
2.910, 2.912, 3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534, 3.767, 3.751, 3.858, 3.986, 4.049,
4.244, 4.323, 4.381, 4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 5.074, 5.381.
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Fig 6. Theoretical and empirical cdf and pdf comparison of the bladder cancer II data.
https://doi.org/10.1371/journal.pone.0264229.9g006
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6.4 Bladder cancer I dataset

The dataset on the remission times (in months) of a 36 bladder cancer patients reported in
[52] and given by: 0.08, 0.2, 0.4, 0.5,0.51, 0.81, 0.87, 0.9, 1.05, 1.19, 1.26, 1.35, 1.4, 1.46, 1.76,
2.02,2.02,2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.02, 3.25,
3.31, 3.36, 3.36.

6.5 Bladder cancer II dataset

This application is from [53] and it is about the remission times (in months) of a 128 patients
suffering from bladder cancer. This data has been analyzed recently in many papers, such as
[54, 55]. The dataset values are as follows: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20,
2.23,3.52,4.98, 6.97,9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64,
5.09,7.26,9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32,
7.32,10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59,
10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,
17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36,
1.40, 3.02, 4.34,5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25,
8.37,12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36,
6.93, 8.65, 12.63, 22.69.

On the basis of the results presented in Tables 3-7, it can be seen that APKumW is the best
model of all fitted distributions, resulting in the lowest values for AIC, KS and highest P values
of KS statistic across all datasets. Besides, Figs 2-6 demonstrate the adequacy of the suggested
APKumW distribution due to its closed fit to the observed cancer datasets. Thus, it can be con-
cluded that the APKumW would be preferred to the other distributions applied to the consid-
ered cancer datasets.

6.6 Censored dataset

Listed below are the ordered remission times (in months) of a random sample of 137 bladder
cancer patients from [53]: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98,
6.97,9.02, 13.29, 24.80%, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09,
7.26,9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32,
10.06, 14.77, 32.15, 0.87%, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59,
10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,
10.86%, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 4.33*, 5.62, 7.87,
11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 3.02*%, 4.40, 5.85, 8.26, 11.98, 19.13,
1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 19.36%, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36,
4.65%, 6.76, 8.60%, 12.07, 21.73, 2.07, 3.36, 4.70%, 6.93, 8.65, 12.63, 22.69. The asterisk * means
censored data.

Table 8 shows the MLEs, SEs of the unknown parameters of the APKumW distribution for
the censored data obtained by maximizing the log-likelihood function in Eq (26). The table

Table 8. MLE, (SE) for the parameters and associated goodness of fit statistics for the censored data.

Distribution MLE and SE AIC
APKumW a =1.4053 (0.6525), b = 0.3253 (1.0591), ¢ = 1.0518 (0.3953), A = 0.1309 (0.2918), o = 846.8787
0.0273 (0.0637),
Weibull ¢=1.0164 (0.0655), A = 0.1106 (0.0099) 847.7042
EKumW a=0.4527 (0.1008), b = 0.2853 (0.0353), ¢ = 1.3493 (0.0028), A = 0.1782 (0.0023), & = 875.5156

0.9005 (0.1333)
https://doi.org/10.1371/journal.pone.0264229.1008
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also displays the MLEs, SEs of the unknown parameters of the Weibull and exponentiated
Kumaraswamy Weibull (EKumW) distributions based on the censored cancer data. As shown
by the lowest AIC for the APKumW, it appears that the distribution can fit censored data well.

7 Conclusion

Choosing a suitable model for fitting survival data has been a major concern among research-
ers. One of the most popular distributions for life-time data is the Weibull distribution. In this
paper, the Weibull distribution is extended to provide a new distribution called the APKumW
to model life time data. It has different special cases which have been presented in the paper. A
number of statistical characteristics of the proposed distribution have been studied, including
survival and hazard functions, quantiles, moments, Rényi entropy and order statistics. Infer-
ence of parameters for an APKumW was obtained using the method of maximum likelihood.
The estimates have been evaluated via different simulation studies. A good performance is
observed when the parameters have been estimated using the maximum likelihood method.
The applications of statistical distributions are essential for medical research and can have a
crucial impact on public health, especially for cancer patients. Thus, the usefulness of this dis-
tribution is illustrated through its applications to some real datasets that describe the survival
of some cancer patients, including both complete and censored cases. The results indicate the
superior performance of the APKumW distribution compared to other competitive distribu-
tions by means of different goodness-of-fit criteria. Overall, it is hoped that the proposed
APKumW distribution will provide an alternative to other existing distributions available for
modeling positive skewed real data in survival analysis, especially for cancer research.
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