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Abstract

One of the most important applications of statistical analysis is in health research and appli-

cations. Cancer studies are mostly required special statistical considerations in order to find

the appropriate model for fitting the survival data. Existing classical distributions rarely fit

such data well and an increasing interest has been shown recently in developing more flexi-

ble distributions by introducing some additional parameters to the basic model. In this

paper, a new five-parameters distribution referred as alpha power Kumaraswamy Weibull

distribution is introduced and studied. Particularly, this distribution extends the Weibull distri-

bution based on a novel technique that combines two well known generalisation methods,

namely, alpha power and T-X transformations. Different characteristics of the proposed dis-

tribution, including moments, quantiles, Rényi entropy and order statistics are obtained. The

method of maximum likelihood is applied in order to estimate the model parameters based

on complete and censored data. The performance of these estimators are examined via

conducting some simulation studies. The potential importance and applicability of the pro-

posed distribution is illustrated empirically by means of six datasets that describe the sur-

vival of some cancer patients. The results of the analysis indicated to the promising

performance of the alpha power Kumaraswamy Weibull distribution in practice comparing to

some other competing distributions.

1 Introduction

Many statistical distributions have been extensively utilized for analysing time to event data

also referred to as survival or reliability data, in different areas of applicability, including the

medical field. Medical scientists are mostly interested in studying the survival of patients with

cancer in the applied research. These research are most often require special statistical atten-

tions and adjustments in the context of finding and choosing the appropriate model that accu-

rately determine and estimate the survival data and yielded in reliable results and valid

inferences. It is possible to consider the Weibull distribution [1], to be one of the most popular

distributions for modeling such data that explain the mortality and failure. However, the classi-

cal two-parameter Weibull distribution is less suitable for fitting when data show non-mono-

tonic failure rates due to its limitation in modeling only monotonically increasing and

decreasing hazard functions. Therefore, there is a crucial need in many cases to enhance the
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traditional Weibull for modeling biomedical data. It follows that many attempts have been

made to extend the baseline Weibull model by adding one or more additional parameters to

achieve more flexibility in generating different shapes of data. To illustrate, [2] suggested the

exponentiated Weibull distribution by applying the exponentiated method [3] in which a

shape parameter is added to a baseline distribution. Beta-Weibull ditribution [4] is introduced

based on the beta-generated method by [5]. Marshall–Olkin extended Weibull distribution [6]

has been suggested to modify the Weibull distribution using the technique by [7]. This distri-

bution has been applied to fit a dataset representing the remission times of bladder cancer

patients. Furthermore, the Maxwell–Weibull distribution is introduced by [8] to model life-

time data. On the basis of the zero truncated Poisson model, [9] proposed a new compound

distribution called the quasi Poisson Burr X exponentiated Weibull distribution, which accom-

modated many important failure rates. Moreover, in a recent study, [10] have derived a

bimodal form of the Weibull distribution.

Researchers have shown a keen interest in developing new methods for expanding lifetime

distributions. [11] developed a new method that add two extra shape parameters a, b> 0 to an

arbitrary baseline distribution, called Kumaraswamy generalized (Kum-G) with a cumulative

distribution function (cdf) defined as

FKum� Gðx; a; b; θÞ ¼ 1 � ½1 � ðGðx; θÞÞa�b;

where X is a continuous random variable whose baseline (cdf) is G(x;θ) with a vector of param-

eter(s) θ. A number of studies have been applied this method to develop new distribution such

as, the Kumaraswamy Gumbel by [12], the Kumaraswamy Birnbaum-Saunders by [13], the

Kumaraswamy Burr XII distribution by [14], the Kumaraswamy generalized Rayleigh distribu-

tion by [15], the Kumaraswamy Laplace distribution by [16], the Kumaraswamy half-logistic

distribution by [17], the Kumaraswamy exponentiated Weibull by [18], the Kumaraswamy

Marshall-Olkin exponential distribution by [19] and the Kumaraswamy Pareto IV distribution

by [20], among others.

[21] introduced the Kumaraswamy Weibull (KumW) distribution as a generalization of the

Weibull distribution and demonstrated its flexibility to fit failure data. The proposed distribu-

tion can be obtained by assuming GðxÞ ¼ 1 � e� ðlxÞc of the Weibull distribution with scale

parameter λ> 0 and shape parameter c> 0. Thus, the cdf and probability density function

(pdf) of the KumW is obtained respectively as

FKumWðx; a; b; c; lÞ ¼ 1 � ½1 � ð1 � e� ðlxÞcÞa�b; ð1Þ

and

f KumWðx; a; b; c;lÞ ¼ abclcxc� 1e� ðlxÞcð1 � e� ðlxÞcÞa� 1
½1 � ð1 � e� ðlxÞcÞa�b� 1

: ð2Þ

The KumW distribution has been considered by some authors, for example, [22, 23] dis-

cussed different types of statistical inference for constant stress accelerated life tests based on

censored sampling data from the KumW distribution. [24] discussed some Bayesian analyses

for the KumW distribution. [25] considered a regression model for bivariate random variables

based on the bivariate KumW distribution. Although the KumW has been perfectly described

many datasets, it has been modified by some authors. For instance, [26] in which the KumW is

generalised by considering the new modified Kumaraswamy-G in [27]. Additionally, [28] who

consider the exponentiated class in [3] to generalise the KumW. More recently, [29] general-

ised the KumW by considering the transmuted class in [30].

On the other hand, [31] suggested a new approach, called alpha power transformation

(APT), for generating distributions with additional parameter α in order to add more
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flexibility. Then, the APT for an arbitrary baseline cdf G and pdf g for a random variable X
with a vector of parameter(s) θ can be obtained as follows

FAPTðx; a; θÞ ¼
aGðx;θÞ � 1

a � 1
if a > 0; a 6¼ 1

Gðx; θÞ if a ¼ 1;

8
><

>:
ð3Þ

with the corresponding pdf as

f APTðx; a; θÞ ¼

loga
a � 1

gðx; θÞaGðx;θÞ if a > 0; a 6¼ 1

gðx; θÞ if a ¼ 1:

8
><

>:
ð4Þ

[31] applied their suggested way to a one-parameter exponential distribution to develop

alpha power exponential distribution with two-parameters. Several authors have been applied

the method of APT to extend some exiting distributions in the literature. Examples include the

alpha power Weibull distribution by [32, 33], the alpha-power inverse Weibull distribution by

[34, 35], the alpha power inverted exponential by [36], the alpha power transformed extended

exponential distribution by [37], the alpha power transformed power Lindley by [38], the

alpha power transformed Lindley by, [39], the alpha power transformed inverse Lindley by

[40], the alpha power transformed inverse Lomax by [41], alpha power Maxwell distribution

by [42], the alpha power exponentiated inverse Rayleigh by [43] and the alpha power Weibull–

exponential by [44], among others.

Motivated by the idea that developing some new distributions will eliminate some issues

that inherent in the existing distributions, the main objective of this paper is to introduce a

novel generalization for the Weibull distribution. This distribution is constructed by combin-

ing the works of [21, 31] introducing a new five-parameter distribution refereed to as the alpha

power Kumaraswamy Weibull (APKumW) distribution. As compared to other probability dis-

tributions presented in the literature, the proposed model will increase the flexibility and

adaptability for describing different shapes of hazard-rate functions, such as decreasing,

increasing, bath-tub and upside down bath-tub shaped, which might extensively experienced

in real life data. Particularly, as indicated by [45] for the effectiveness of employing the APT

distributions for cancer research, this paper focuses in exploring the adaptability of the pro-

posed distribution to describe the survival time by analyzing some cancer datasets. Addition-

ally, another objective is to estimate the unknown model parameters using maximum

likelihood method for both complete and censored cancer datasets.

The rest of the paper is organized as follows. In Section 2, the APKumW distribution is

defined and its special cases are presented along with an useful expansion for its pdf. In Section

3, some of the properties of the proposed distribution are discussed. The maximum likelihood

estimators (MLEs) of the distribution parameters are obtained in Section 4 based on uncen-

sored and censored data. Consequently, some different simulation studies are carried out to

assess the performance of the MLEs in Section 5. Finally, different applications of the

APKumW distribution to complete and censored datasets are presented in Section 6. All

computations throughout this paper were performed using the statistical programming lan-

guage R.

2 Alpha power Kumaraswamy Weibull distribution

The APKumW distribution is suggested in this paper based on substituting by Eqs (1) and (2)

respectively in Eqs (3) and (4). That is, the random variable X is said to have the APKumW
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distribution with five parameters θ = {a, b, c, λ, α}, if the cdf of X is

Fðx; θÞ ¼

a1� ½1� ð1� e� ðlxÞ
c
Þa �b � 1

a � 1
if a > 0; a 6¼ 1

1 � ½1 � ð1 � e� ðlxÞcÞa�b if a ¼ 1;

8
>><

>>:

ð5Þ

and its corresponding pdf is

f ðx; θÞ ¼

logðaÞ
a � 1

abclcxc� 1e� ðlxÞcð1 � e� ðlxÞcÞa� 1
�

½1 � ð1 � e� ðlxÞcÞa�b� 1
a1� ½1� ð1� e� ðlxÞ

c
Þa �b

if a > 0; a 6¼ 1

abclcxc� 1e� ðlxÞcð1 � e� ðlxÞcÞa� 1
½1 � ð1 � e� ðlxÞcÞa�b� 1 if a ¼ 1:

8
>>>>>><

>>>>>>:

ð6Þ

Additionally, the survival and hazard rate functions of the APKumW distribution are

respectively given by

SFðx; θÞ ¼

a

a � 1
1 � a� ½1� ð1� e

� ðlxÞc Þa �b
� �

if a > 0; a 6¼ 1

½1 � ð1 � e� ðlxÞcÞa�b if a ¼ 1;

8
><

>:
ð7Þ

and

hðx; θÞ ¼

logðaÞ abclcxc� 1e� ðlxÞcð1 � e� ðlxÞcÞa� 1
�

½1 � ð1 � e� ðlxÞcÞa�b� 1 a� ½1� ð1� e
� ðlxÞc Þa �b

1 � a� ½1� ð1� e
� ðlxÞc Þa �b

if a > 0; a 6¼ 1

abclcxc� 1e� ðlxÞc
ð1 � e� ðlxÞcÞa� 1

1 � ð1 � e� ðlxÞcÞa
if a ¼ 1:

8
>>>>>>>>><

>>>>>>>>>:

ð8Þ

Incorporating skewness to the base distribution is done by adding the parameter α. The

APKumW model is therefore a suitable model to describe positively skewed patterns in bio-

medical and public health data. Fig 1 displays some of the shapes that the pdf and hazard func-

tions of the APKumW distribution can take for different values of its parameters. These

different behaviours indicate the flexibility and adaptability for the APKumW to fit a variety of

data shapes.

2.1 Special cases

Table 1 shows important special models of the APKumW distribution.

2.2 Expansion of the probability density function

Using the following power series expansion

a� z ¼
X1

k¼0

ð� logðaÞÞkzk

k!
; ð9Þ
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the pdf in Eq (6) can be written as

f ðx; θÞ ¼
a

a � 1
abclcxc� 1e� ðlxÞcð1 � e� ðlxÞcÞa� 1

�

X1

k¼0

ð� 1Þ
k

k!
ðlogðaÞÞkþ1

½1 � ð1 � e� ðlxÞ
c
Þ
a
�
bkþb� 1

:

Then, the following binomial expansion

ð1 � zÞb� 1
¼
X1

j¼0

ð� 1Þ
j b � 1

j

� �

zj ; for jzj < 1 and b > 0; ð10Þ

Fig 1. The APKumW pdf and hazard function for various values of its parameters.

https://doi.org/10.1371/journal.pone.0264229.g001

Table 1. Special models of the APKumW distribution.

α a b c λ Resulting Distribution

1 − − − − KumW

− − − 1 − APKumExp

− − − 2 − APKum-Rayleigh

− 1 1 1 − AP-Exponential

− 1 1 2 − AP-Rayleigh

− 1 1 − − AP-Weibull

1 − 1 − − Expontiated Weibull

1 − 1 2 − Expontiated Rayleigh

1 − 1 1 − Expontiated Exponential

1 1 1 1 − Exponential

1 1 1 1 − Rayleigh

1 1 1 − − Weibull

https://doi.org/10.1371/journal.pone.0264229.t001
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is applied twice to obtain a useful expansion of the pdf of the APKumW as follows

f ðx; θÞ ¼
a

a � 1
abclc

X1

k¼0

X1

j¼0

X1

i¼0

ð� 1Þ
iþjþk

k!
bðkþ 1Þ � 1

j

� �
aðjþ 1Þ � 1

i

� �

ðlogðaÞÞkþ1

xc� 1e� ðiþ1ÞðlxÞc :

ð11Þ

3 Properties of alpha power Kumaraswamy Weibull distribution

Some properties of the APKumW distribution are considered in the following as

3.1 Simulation, quantiles and median

To simulate a random variable from APKumW distribution, Eq (5) can be used to obtain

X ¼
1

l

�

� log
�

1 �

�

1 � 1 �
logðUða � 1Þ þ 1Þ

logðaÞ

� �
1

b
�
1

a
��

1

c
;

ð12Þ

where U is a random variable follows a uniform (0, 1) distribution. Also, the pth quantile func-

tion of the APKumW distribution for 0< p< 1, is given by

Xp ¼
1

l

�

� log
�

1 �

�

1 � 1 �
logðpða � 1Þ þ 1Þ

logðaÞ

� �
1

b
�
1

a
��

1

c
:

ð13Þ

Consequently for p ¼ 1

2
, the median for the APKumW can be obtained as

X0:5 ¼
1

l

�

� log
�

1 �

�

1 � 1 �
logðaþ 1Þ � logð2Þ

logðaÞ

� �
1

b
�
1

a
��

1

c
:

ð14Þ

3.2 Moments

The rthmoment of a random variable X is given by

EðXrÞ ¼
Z 1

0

xrf ðx; θÞdx:

Then, the rthmoment of the APKumW is given from Eq (11) as

EðXrÞ ¼
a

a � 1
abclc

X1

k¼0

X1

j¼0

X1

i¼0

ð� 1Þ
iþjþk

k!
bðkþ 1Þ � 1

j

� �
aðjþ 1Þ � 1

i

� �

ðlogðaÞÞkþ1
�

Z 1

0

xrþc� 1e� ðiþ1ÞðlxÞcdx:

By letting u = (i+ 1)(λx)c, then the rthmoment can be obtained as

EðXrÞ ¼
a

a � 1

ab
l
r

X1

k¼0

X1

j¼0

X1

i¼0

ð� 1Þ
iþjþk

k!
bðkþ 1Þ � 1

j

� �
aðjþ 1Þ � 1

i

� �

ðlogðaÞÞkþ1
�

1

iþ 1

� �r
cþ1

Gð
r
c
þ 1Þ;

ð15Þ
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where Γ(.) is the gamma function. Subsequently, the mean and variance can be obtained by

substituting r = 1 and r = 2 in Eq (15).

The moment generating function of a random variable X can be defined with the form

MxðtÞ ¼ EðetxÞ ¼
Z 1

0

etxf ðx; θÞdx:

That is, using the following power series expansion for the exponential function

ez ¼
X1

l¼0

ðzÞl

l!
; ð16Þ

the moment generating function of a random variable X whose pdf in Eq (6), can be obtained

similarly as

MxðtÞ ¼
aba
a � 1

X1

l¼0

X1

k¼0

X1

j¼0

X1

i¼0

ð� 1Þ
iþjþk

k! l!
bðkþ 1Þ � 1

j

� �
aðjþ 1Þ � 1

i

� �

ðlogðaÞÞkþ1
�

t
l

� �l
1

iþ 1

� �l
cþ1

Gð
l
c
þ 1Þ:

ð17Þ

3.3 Rényi entropy

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty

and given by

RExðnÞ ¼
1

1 � n
log

Z 1

� 1

½f ðx; θÞ�ndx
� �

; n > 0; n 6¼ 0:

Then from Eq (6), we have

½f ðx; θÞ�n ¼
alogðaÞ
a � 1

� �n

ðabclcÞnxnðc� 1Þe� nðlxÞcð1 � e� ðlxÞcÞnða� 1Þ
�

½1 � ð1 � e� ðlxÞcÞa�nðb� 1Þ
a� n½1� ð1� e

� ðlxÞc Þa �b :

Applying Eqs (9) and (10) twice, we obtain

½f ðx; θÞ�n ¼
a

a � 1
abclc

� �n
xnðc� 1Þ

X1

k¼0

X1

j¼0

X1

i¼0

ð� 1Þ
iþjþk

k!
bðkþ nÞ � n

j

� �
aðjþ nÞ � n

i

� �

�

nkðlogðaÞÞnþke� ðiþnÞðlxÞc :

Then,

RExðnÞ ¼
1

1 � n
log
�

a

a � 1
abclc

� �nX1

k¼0

X1

j¼0

X1

i¼0

ð� 1Þ
iþjþk

k!
bðkþ nÞ � n

j

� �
aðjþ nÞ � n

i

� �

�

nkðlogðaÞÞnþk
Z 1

0

xnðc� 1Þe� ðiþnÞðlxÞ
c
dx
�

:
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By assuming u = (i+ ν)(λx)c, the Rényi entropy for the APKumW can be expressed as

RExðnÞ ¼
n

1 � n
log

aba
a � 1

� �

� logðlcÞþ

1

1 � n
log
�
X1

k¼0

X1

j¼0

X1

i¼0

ð� 1Þ
iþjþk

k!
bðkþ nÞ � n

j

� �
aðjþ nÞ � n

i

� �

�

nkðlogðaÞÞnþk
1

iþ n

� �nðc� 1Þ
c þ

1
c

G
nðc � 1Þ

c
þ

1

c

� ��

:

ð18Þ

3.4 Order statistics

Suppose that F(x) and f(x) are respectively the cdf and pdf of n independent and identically

distributed random variables X1, X2, . . .Xn with X1:n< X2:n< . . .< Xn:n be their correspond-

ing ordered statistics. Then, the pdf of the sth order statistic can be obtained as

fs:nðxÞ ¼
n!

ðs � 1Þ!ðn � sÞ!
f ðxÞ½FðxÞ�s� 1

½1 � FðxÞ�n� s:

Using the binomial theorem, we have

fs:nðxÞ ¼
n!

ðs � 1Þ!ðn � sÞ!

Xn� s

w¼0

ð� 1Þ
w n � s

w

� �
f ðxÞ½FðxÞ�wþs� 1

:

Substituting by Eqs (5) and (6) and using the binomial theorem, we get

fs:nðxÞ ¼
n!

ðs � 1Þ!ðn � sÞ!

Xn� s

w¼0

Xwþs� 1

v¼0

ð� 1Þ
wþvþ1 n � s

w

� � wþ s � 1

v

� �
avþ1

ð1 � aÞ
wþs logðaÞ�

abclcxc� 1e� ðlxÞcð1 � e� ðlxÞcÞa� 1
½1 � ð1 � e� ðlxÞcÞa�b� 1

�

a� ðvþ1Þ½1� ð1� e� ðlxÞ
c
Þa �b :

Then, using the series expansion in Eq (9) and applying the binomial theorem in Eq (10)

twice, we obtain

fs:nðxÞ ¼
n!

ðs � 1Þ!ðn � sÞ!

Xn� s

w¼0

Xwþs� 1

v¼0

X1

k¼0

X1

j¼0

X1

i¼0

n � s
w

� � wþ s � 1

v

� �
bðkþ 1Þ � 1

j

� �
aðjþ 1Þ � 1

i

� �

�

ð� 1Þ
wþvþkþjþiþ1

k!
avþ1ðvþ 1Þ

k

ð1 � aÞ
wþs ðlogðaÞÞ

kþ1abclcxc� 1e� ðiþ1ÞðlxÞc :

ð19Þ

4 Parameter estimation for alpha power Kumaraswamy Weibull

distribution

The maximum likelihood method is applied to obtain the estimation for the parameters of

APKumW distribution. That is, if we have a random sample x1, x2, . . ., xn from the APKumW

distribution, with the unknown vector of parameter θ = (a, b, c, λ, α), then the log-likelihood
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function (ℓ) can be defined as

‘ ¼ n log
alogðaÞ
a � 1

� �

þ n logðabclcÞ þ ðc � 1Þ
Xn

i¼1

logðxiÞ �
Xn

i¼1

ðlxiÞ
c
þ ða � 1Þ

Xn

i¼1

logð1 � e� ðxilÞ
c
Þþ

ðb � 1Þ
Xn

i¼1

logð1 � ð1 � e� ðxilÞ
c
Þ
a
Þ � logðaÞ

Xn

i¼1

½1 � ð1 � e� ðlxiÞ
c
Þ
a
�
b
:

ð20Þ

The associated nonlinear equations for the partial derivative of ℓ with respect to each

parameter, are given as

@‘

@a
¼
n
a
þ
Xn

i¼1

logð1 � e� ðlxiÞ
c
Þ

�

1 �
ð1 � e� ðlxÞcÞa

1 � ð1 � e� ðlxÞcÞa
bð1 � logðaÞ½1 � ð1 � e� ðlxÞ

c
Þ
a
�
b
Þ � 1

h i�

; ð21Þ

@‘

@b
¼
n
b
þ
Xn

i¼1

log 1 � ð1 � e� ðlxÞ
c
Þ
a� �

1 � logðaÞ½1 � ð1 � e� ðlxÞ
c
Þ
a
�
b

h i
; ð22Þ

@‘

@c
¼
n
c
ð1þ c logðlÞÞ þ

Xn

i¼1

logðxiÞ �
Xn

i¼1

ðlxiÞ
c logðlxiÞ

�

1 �
e� ðlxÞc

1 � e� ðlxÞc
�

a � 1þ
að1 � e� ðlxÞcÞa

1 � ð1 � e� ðlxÞcÞa
�

ðbð1þ logðaÞ½1 � ð1 � e� ðlxÞcÞa�bÞ � 1Þ

��

;

ð23Þ

@‘

@l
¼
nc
l
� clc� 1

Xn

i¼1

xci

�

1 �
e� ðlxÞc

1 � e� ðlxÞc
�

a � 1 �
að1 � e� ðlxÞcÞa

1 � ð1 � e� ðlxÞcÞa
�

ðbð1 � logðaÞ½1 � ð1 � e� ðlxÞcÞa�bÞ � 1Þ

��

;

ð24Þ

and

@‘

@a
¼

1

a

n
logðaÞ

�
n

a � 1
�
Xn

i¼1

½1 � ð1 � e� ðlxiÞ
c
Þ
a
�
b

" #

: ð25Þ

Then, the MLEs of the unknown parameters can be obtained by equating the equations

from Eqs (21) to (25) to zero and solving them simultaneously. Particularly, a numerical itera-

tive approach, such as the Newton-Raphson algorithm should be applied to solve these equa-

tions. Alternatively, any software like R, might be used to maximise Eq (20) directly and obtain

the MLEs.

Studying survival times often results in the presence of censored observations, meaning

there are incomplete observations of the period of interest. Right censoring technique is

applied in medical studies when some patients lost to follow up and their exact occurrence

time cannot be determined. The most common form of right censoring, which is encountered

in survival analysis, is type I right censoring. A study of this type occurs when it is conducted

over a specified period of time that will end before all units have failed. To illustrate, consider a

study for a random sample of n patient in which, each patient is assigned a censoring time Yi;
i = 1, . . ., n, that is the time between entry and the end of the study and where Xi;i = 1, . . ., n,

be the failure time of the ith patient. These Xi’s and Yi’s are supposed to be independent and fol-

low the APKumW distribution in Eq (6) and a non-informative distribution, respectively. For
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Ti = min(Xi, Yi), the pair (Ti, δi) is observed such that

di ¼
1 if failure has occurred

0 if censoring has occurred

(

Then, the log-likelihood function (ℓ) will be

‘ ¼
Xn

i¼1

di log½f ðtiÞ� þ
Xn

i¼1

ð1 � diÞ log½SFðtiÞ�; ð26Þ

where f(.) and SF(.) are respectively defined in Eqs (6) and (7). In order to obtain the MLEs,

the log-likelihood in Eq (26) can be maximized numerically.

5 Simulation study

Some simulation studies are conducted to evaluate the performance of the MLEs for the five

parameters of APKumW distribution. The simulation is considered over a number of itera-

tions equal to nsim = 1000, for different sample sizes n with the following cases for the true

parameters θtr

• Case I: a = 0.5, b = 0.6, c = 1.3, λ = 0.2, α = 0.1

• Case II: a = 0.8, b = 2.7, c = 3.6, λ = 2.4, α = 1.2

• Case III: a = 1.3, b = 0.4, c = 1.6, λ = 0.5, α = 0.2

• Case IV: a = 2.2, b = 1.6, c = 1.4, λ = 0.07, α = 0.03

The MLEs for each estimator ŷ can be evaluated using an accuracy measurement, such as

the root mean squared error (RMSE) that can be calculated as follows

RMSEðŷÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnsim
i¼1
ðŷ i � ytrÞ

2

nsim

s

ð27Þ

All estimation results are obtained using the “optim” function in R software. Table 2 shows

the results for the MLEs of the parameters of APKumW along with their corresponding

RMSE. Generally, it can be seen from this table, that the MLEs are more closer to the true val-

ues of the parameters as the sample size increased. In addition, RMSE became smaller as sam-

ple size n increased, indicating that the estimates are consistent. These results demonstrate that

maximum likelihood method is effective at estimating the parameters of the proposed

distribution.

6 Applications

Six real datasets for cancer patients are fitted using the APKumW distribution. The results

obtained using the APKumW distribution are compared against the corresponding ones

achieved with the application of the following

The Weibull distribution with the following pdf

f ðxÞ ¼
c
l
c xc� 1e�

x
lð Þ
c

:
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The Exponenetiated generalized Weibull (EGW) distribution [46] with the following pdf

f ðxÞ ¼ ab
c
l
c xc� 1e� a

x
lð Þ
c

1 � e� a
x
lð Þ
ch ib� 1

:

The Beta Weibull (BW) distribution [4] with the following pdf

f ðxÞ ¼
Gðaþ bÞ
GðaÞGðbÞ

c
l
c xc� 1e� b

x
lð Þ
c

1 � e�
x
lð Þ
ch ia� 1

:

The KumW distribution [21] with the following pdf

f ðxÞ ¼ ab
c
l
c xc� 1e�

x
lð Þ
c

1 � e�
x
lð Þ
c� �a� 1

1 � 1 � e�
x
lð Þ
c� �ah ib� 1

:

The exponentiated Kumaraswamy Weibull (EKumW) distribution [47] with the following

pdf

f ðxÞ ¼ aabclcxc� 1e� ðlxÞcð1 � e� ðlxÞcÞa� 1
½1 � ð1 � e� ðlxÞcÞa�b� 1

�

f1 � ½1 � ð1 � e� ðlxÞcÞa�bga� 1
:

Table 2. Simulation study: APKumW parameter estimates, together with the RMSE for three different cases with different sample sizes.

Case I Case II Case III Case IV

MLE RMSE MLE RMSE MLE RMSE MLE RMSE

n = 25 a 0.7374 1.1311 1.1366 1.7467 3.1581 12.3097 4.1684 5.8308

b 1.3078 1.7491 2.9682 4.1624 0.4752 0.6268 1.5157 1.8984

c 2.2590 1.8346 6.1786 5.0080 2.0867 1.7713 2.2103 2.1365

λ 0.4063 0.8406 2.9813 1.7717 1.0853 1.3514 0.1890 0.2221

α 0.4441 1.7620 2.8268 8.8754 0.8573 1.8160 0.5149 1.0372

n = 50 a 0.5936 0.7352 0.8191 0.8192 2.2807 4.3226 3.7718 4.3232

b 1.1829 1.3862 3.0076 3.9600 0.4590 0.4819 1.4895 1.8195

c 1.8486 1.2120 5.6346 3.9938 1.7671 0.9930 1.7707 1.1602

λ 0.3280 0.6997 2.7180 1.0426 0.8880 0.9771 0.1720 0.1899

α 0.3669 1.0412 2.9617 6.8317 0.6719 1.3418 0.4554 0.9540

n = 100 a 0.5002 0.3808 0.7360 0.5757 1.7846 1.3917 3.4064 3.2416

b 1.0501 0.9617 2.8792 2.8078 0.4423 0.4725 1.5827 1.5955

c 1.7149 0.9487 5.2997 3.2607 1.5933 0.4265 1.5137 0.6138

λ 0.2617 0.4597 2.5268 0.6980 0.7591 0.6132 0.1450 0.1497

α 0.2640 0.6310 2.6456 5.7300 0.6315 1.2849 0.3413 0.7541

n = 500 a 0.4883 0.1427 0.7330 0.2806 1.5301 0.6641 2.6718 1.3610

b 0.8331 0.5439 3.0105 1.8025 0.4243 0.3008 1.6417 0.9258

c 1.4369 0.4402 4.4465 1.9672 1.5428 0.2977 1.3714 0.3012

λ 0.2056 0.1635 2.4009 0.4645 0.6278 0.3305 0.0939 0.0577

α 0.1791 0.2369 1.9772 2.8766 0.5035 0.8366 0.1442 0.3296

n = 1000 a 0.4891 0.1038 0.7486 0.2159 1.4622 0.4818 2.4720 0.8942

b 0.7738 0.4584 2.8873 1.3060 0.4324 0.2165 1.6791 0.7932

c 1.3883 0.3229 4.1520 1.4735 1.5478 0.2613 1.3679 0.2323

λ 0.1986 0.1182 2.3915 0.3327 0.5743 0.2204 0.0809 0.0341

α 0.1589 0.1963 1.5851 1.6256 0.4032 0.5784 0.0803 0.1853

https://doi.org/10.1371/journal.pone.0264229.t002
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The alpha power Weibull (APW) distribution [32] with the following pdf

f ðx; θÞ ¼
logðaÞ
a � 1

clxc� 1 e� lxca1� e� lx
c

; if a > 0; a 6¼ 1

clxc� 1e� lxc ; if a ¼ 1:

8
<

:

A variety of tools can be applied for comparing different competing distribution for a spe-

cific dataset and choosing the best model for the fitting. To investigate the goodness-of-fit for

the compared distribution, Akaike Information Criterion (AIC) and Kolmogorov–Smirnov

(KS) along with its P value are considered in order to choose the best distribution. The better

distribution is which corresponds to the lower values of AIC, KS and highest P value of KS sta-

tistic. The plots of the estimated cdf for each of the distributions are compared with the plot of

the empirical cdf. Also, the histogram of the observed frequencies is compared with the plots

of the expected frequencies for each fitted distribution. The MLEs of the parameters for all the

five datasets along with their SEs (in parentheses) and the corresponding goodness-of-fit

criteria for all the competing models are respectively presented in Tables 3–7. Additionally,

Table 3. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the acute bone cancer data.

Distribution MLE and SE AIC KS P value

APKumW α = 0.0046 (0.0055), a = 5.0887 (2.1344), b = 0.4137 (0.3181), c = 0.5358 (0.1424), λ = 1.3007 (0.7691) 291.7005 0.0680 0.8888

Weibull c = 0.7656 (0.0568), λ = 2.9260 (0.4761) 326.8033 0.1887 0.0111

EGW a = 2.7262 (4.3589), b = 80.5514 (119.2631), c = 0.2353 (0.0755), λ = 0.15070 (0.9666) 294.0796 0.0924 0.5612

BW a = 59.2646 (35.3442), b = 62.3944 (32.4899), c = 0.1262 (0.0363), λ = 41.4347 (42.1657) 298.9643 0.0988 0.4747

KumW a = 2.7498 (0.0095), b = 0.3506 (0.0423), c = 0.6483 (0.0035), λ = 0.3447 (0.0052) 311.4273 0.1470 0.0853

EKumW a = 1.273 (0.4415), b = 1.9974 (1.0322), c = 0.4002 (0.0658), λ = 1.0345 (1.066), α = 5.4855 (2.0861) 302.2774 0.1168 0.272

APW c = 0.9218 (0.078), λ = 0.0791 (0.0141), α = 0.0021 (0.001) 309.0348 0.1884 0.0112

https://doi.org/10.1371/journal.pone.0264229.t003

Table 4. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the head and Neck cancer data.

Distribution MLE and SE AIC KS P value

APKumW a = 4.8428 (3.2155), b = 0.6523 (0.7809), c = 0.5719 (0.2531), λ = 0.026 (0.0106), α = 0.3173 (1.0202) 565.1112 0.0751 0.9492

Weibull c = 0.9386 (0.1007), λ = 213.6881 (36.2325) 567.6877 0.1267 0.4435

EGW a = 0.0784 (0.0131), b = 1.6582 (0.3456), c = 0.3437 (0.0022), λ = 0.0513 (0.0028) 602.3591 0.2687 0.0027

BW a = 2.3728 (1.1206), b = 0.0759 (0.0119), c = 0.3999 (0.002), λ = 0.2225 (0.0025) 602.5257 0.3075 0.0003

KumW a = 0.3532 (0.1743), b = 0.0782 (0.0122), c = 0.4911 (0.0025), λ = 1.2577 (0.0025) 604.0207 0.3142 0.0002

EKumW a = 7.8983 (2.4909), b = 6.8318 (3.9697), c = 0.2203 (0.0377), λ = 0.0541 (0.0336), α = 1.8148 (1.1851) 566.0263 0.0973 0.7625

APW c = 0.8779 (0.077), λ = 0.0105 (0.0089), α = 1.6918 (2.2826) 570.2769 0.1277 0.4342

https://doi.org/10.1371/journal.pone.0264229.t004

Table 5. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the blood cancer data.

Distribution MLE and SE AIC KS P value

APKumW a = 0.1192 (0.0576), b = 1.493 (0.2111), c = 12.8763 (0.0026), λ = 0.1888 (0.0025), α = 3.2018 (8.3932) 139.4392 0.0625 0.9976

Weibull c = 2.4993 (0.3370), λ = 3.5183 (0.2316) 143.1159 0.1185 0.6284

EGW a = 0.0814 (0.0147), b = 1.4848 (0.3171), c = 1.7819 (0.0025), λ = 0.7165 (0.0025) 149.7559 0.1495 0.3330

BW a = 0.3617 (0.1295), b = 0.0431 (0.0071), c = 1.008 (0.0023), λ = 0.1524 (0.0023) 185.7482 0.3171 0.0006

KumW a = 0.9562 (0.0734), b = 0.0838 (0.0133), c = 2.5959 (0.0083), λ = 1.3823 (0.0083) 146.7387 0.0975 0.8411

EKumW a = 3.2765 (0.0021), b = 1.3117 (0.0677), c = 4.1917 (0.0021), λ = 0.2253 (0.002), α = 0.1367 (0.0218) 142.2623 0.1039 0.7806

APW c = 2.101 (0.4359), λ = 0.1058 (0.0827), α = 5.3518 (6.7462) 143.3641 0.0919 0.888

https://doi.org/10.1371/journal.pone.0264229.t005
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Figs 2–6 display on lefts the empirical and the fitted cdfs, and on rights the fitted pdfs with his-

togram of the observed datasets in Tables 3–7.

6.1 Acute bone cancer dataset

[48] considered a simulated data represents the survival times (in days) of 73 patients who

diagnosed with acute bone cancer, as follows: 0.09, 0.76, 1.81, 1.10, 3.72, 0.72, 2.49, 1.00, 0.53,

Table 6. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the bladder cancer I data.

Distribution MLE and SE AIC KS P value

APKumW a = 0.0692 (0.0859), b = 0.8434 (0.1146), c = 9.3634 (0.0079), λ = 0.3289 (0.0075), α = 8.4765 (35.1643), 100.1924 0.0806 0.9736

Weibull c = 1.9570 (0.2816), λ = 2.1645 (0.1918) 106.7741 0.165 0.2753

EGW a = 0.0478 (0.0141), b = 0.3927 (0.0748), c = 3.5985 (0.0036), λ = 1.2523 (0.0043) 104.5355 0.1490 0.4015

BW a = 0.8648 (0.3929), b = 0.0587 (0.0101), c = 1.6055 (0.0016), λ = 0.3582 (0.0016) 110.6557 0.1995 0.1139

KumW a = 0.2273 (0.0026), b = 0.0487 (0.0081), c = 1.2286 (0.0014), λ = 0.1863 (0.0013) 121.6362 0.2092 0.0855

EKumW a = 0.2692 (0.1951), b = 0.1116 (0.0855), c = 3.7307 (0.9426), λ = 0.6668 (0.1644), α = 0.7241 (0.3537) 104.0068 0.0904 0.9302

APW c = 1.6796 (0.3636), λ = 0.3915 (0.2099), α = 4.5688 (5.7946) 107.2964 0.1406 0.4751

https://doi.org/10.1371/journal.pone.0264229.t006

Table 7. MLEs, (SEs) for the parameters and associated goodness of fit statistics for the bladder cancer II data.

Distribution MLE and SE AIC KS P value

APKumW a = 1.4958 (0.8164), b = 0.3964 (1.1823), c = 1.0028 (0.4566), λ = 0.1139 (0.2304), α = 0.0168 (0.0409), 829.509 0.0370 0.9947

Weibull c = 1.0478 (0.0676), λ = 9.5607 (0.8529) 832.1738 0.0700 0.5570

EGW a = 0.1608 (0.0169), b = 1.4844 (0.185), c = 0.7023 (0.0026), λ = 0.4745 (0.0026) 841.2811 0.1091 0.0947

BW a = 0.8742 (0.1428), b = 0.163 (0.0157), c = 0.8088 (0.0026), λ = 0.9306 (0.0026) 854.7262 0.1755 0.0007

KumW a = 0.8027 (0.1796), b = 0.1707 (0.0164), c = 0.8367 (0.0026), λ = 1.079 (0.0026) 852.5814 0.1664 0.0017

EKumW a = 1.2965 (0.6309), b = 0.7662 (0.7314), c = 0.6749 (0.1550), λ = 0.4087 (0.4881), α = 2.1286 (1.1644) 831.4566 0.0418 0.9786

APW c = 0.9553 (0.088), λ = 0.1449 (0.0656), α = 2.1243 (1.8644) 834.9494 0.0725 0.5115

https://doi.org/10.1371/journal.pone.0264229.t007

Fig 2. Theoretical and empirical cdf and pdf comparison of the acute bone cancer data.

https://doi.org/10.1371/journal.pone.0264229.g002
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0.66, 31.61, 0.60, 0.20, 1.61, 1.88, 0.70, 1.36, 0.43, 3.16, 1.57, 4.93, 11.07, 1.63, 1.39, 4.54, 3.12,

86.01, 1.92, 0.92, 4.04, 1.16, 2.26, 0.20, 0.94, 1.82, 3.99, 1.46, 2.75, 1.38, 2.76, 1.86, 2.68, 1.76,

0.67, 1.29, 1.56, 2.83, 0.71, 1.48, 2.41, 0.66, 0.65, 2.36, 1.29, 13.75, 0.67, 3.70, 0.76, 3.63, 0.68,

2.65, 0.95, 2.30, 2.57, 0.61, 3.93, 1.56, 1.29, 9.94, 1.67, 1.42, 4.18, 1.37. This medical dataset is

considered and analyzed using the APKumW and the competitive models.

6.2 Head and Neck cancer dataset

Survival time for 44 patients diagnosed by Head and Neck cancer disease from [49] and ana-

lyzed recently by [50] is considered. The dataset are: 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35,

Fig 3. Theoretical and empirical cdf and pdf comparison of the head and Neck cancer data.

https://doi.org/10.1371/journal.pone.0264229.g003

Fig 4. Theoretical and empirical cdf and pdf comparison of the blood cancer data.

https://doi.org/10.1371/journal.pone.0264229.g004
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47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133,

140, 146, 155, 159, 173, 179, 194,195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.

6.3 Blood cancer dataset

This data consists of the life time (in years) of a 40 blood cancer (leukemia) patients from one

of Ministry of health hospitals in Saudi Arabia reported in [51]. This actual data are: 0.315,

0.496, 0.616, 1.145, 1.208, 1.263, 1.414, 2.025, 2.036, 2.162, 2.211, 2.370, 2.532, 2.693, 2.805,

2.910, 2.912, 3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534, 3.767, 3.751, 3.858, 3.986, 4.049,

4.244, 4.323, 4.381, 4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 5.074, 5.381.

Fig 6. Theoretical and empirical cdf and pdf comparison of the bladder cancer II data.

https://doi.org/10.1371/journal.pone.0264229.g006

Fig 5. Theoretical and empirical cdf and pdf comparison of the bladder cancer I data.

https://doi.org/10.1371/journal.pone.0264229.g005
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6.4 Bladder cancer I dataset

The dataset on the remission times (in months) of a 36 bladder cancer patients reported in

[52] and given by: 0.08, 0.2, 0.4, 0.5,0.51, 0.81, 0.87, 0.9, 1.05, 1.19, 1.26, 1.35, 1.4, 1.46, 1.76,

2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.02, 3.25,

3.31, 3.36, 3.36.

6.5 Bladder cancer II dataset

This application is from [53] and it is about the remission times (in months) of a 128 patients

suffering from bladder cancer. This data has been analyzed recently in many papers, such as

[54, 55]. The dataset values are as follows: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20,

2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64,

5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32,

7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59,

10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,

17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36,

1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25,

8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36,

6.93, 8.65, 12.63, 22.69.

On the basis of the results presented in Tables 3–7, it can be seen that APKumW is the best

model of all fitted distributions, resulting in the lowest values for AIC, KS and highest P values

of KS statistic across all datasets. Besides, Figs 2–6 demonstrate the adequacy of the suggested

APKumW distribution due to its closed fit to the observed cancer datasets. Thus, it can be con-

cluded that the APKumW would be preferred to the other distributions applied to the consid-

ered cancer datasets.

6.6 Censored dataset

Listed below are the ordered remission times (in months) of a random sample of 137 bladder

cancer patients from [53]: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98,

6.97, 9.02, 13.29, 24.80�, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09,

7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32,

10.06, 14.77, 32.15, 0.87�, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59,

10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,

10.86�, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 4.33�, 5.62, 7.87,

11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 3.02�, 4.40, 5.85, 8.26, 11.98, 19.13,

1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 19.36�, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36,

4.65�, 6.76, 8.60�, 12.07, 21.73, 2.07, 3.36, 4.70�, 6.93, 8.65, 12.63, 22.69. The asterisk � means

censored data.

Table 8 shows the MLEs, SEs of the unknown parameters of the APKumW distribution for

the censored data obtained by maximizing the log-likelihood function in Eq (26). The table

Table 8. MLE, (SE) for the parameters and associated goodness of fit statistics for the censored data.

Distribution MLE and SE AIC

APKumW a = 1.4053 (0.6525), b = 0.3253 (1.0591), c = 1.0518 (0.3953), λ = 0.1309 (0.2918), α =

0.0273 (0.0637),

846.8787

Weibull c = 1.0164 (0.0655), λ = 0.1106 (0.0099) 847.7042

EKumW a = 0.4527 (0.1008), b = 0.2853 (0.0353), c = 1.3493 (0.0028), λ = 0.1782 (0.0023), α =

0.9005 (0.1333)

875.5156

https://doi.org/10.1371/journal.pone.0264229.t008
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also displays the MLEs, SEs of the unknown parameters of the Weibull and exponentiated

Kumaraswamy Weibull (EKumW) distributions based on the censored cancer data. As shown

by the lowest AIC for the APKumW, it appears that the distribution can fit censored data well.

7 Conclusion

Choosing a suitable model for fitting survival data has been a major concern among research-

ers. One of the most popular distributions for life-time data is the Weibull distribution. In this

paper, the Weibull distribution is extended to provide a new distribution called the APKumW

to model life time data. It has different special cases which have been presented in the paper. A

number of statistical characteristics of the proposed distribution have been studied, including

survival and hazard functions, quantiles, moments, Rényi entropy and order statistics. Infer-

ence of parameters for an APKumW was obtained using the method of maximum likelihood.

The estimates have been evaluated via different simulation studies. A good performance is

observed when the parameters have been estimated using the maximum likelihood method.

The applications of statistical distributions are essential for medical research and can have a

crucial impact on public health, especially for cancer patients. Thus, the usefulness of this dis-

tribution is illustrated through its applications to some real datasets that describe the survival

of some cancer patients, including both complete and censored cases. The results indicate the

superior performance of the APKumW distribution compared to other competitive distribu-

tions by means of different goodness-of-fit criteria. Overall, it is hoped that the proposed

APKumW distribution will provide an alternative to other existing distributions available for

modeling positive skewed real data in survival analysis, especially for cancer research.
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