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CALD1, CNN1, and TAGLN identified as potential
prognostic molecular markers of bladder cancer
by bioinformatics analysis
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Abstract
Background: Bladder cancer (BC) is one of the most common malignant neoplasms in the genitourinary tract. We employed the
GSE13507 data set from the Gene Expression Omnibus (GEO) database in order to identify key genes related to tumorigenesis,
progression, and prognosis in BC patients.

Methods:The data set used in this study included 10 normal bladder mucosae tissue samples and 165 primary BC tissue samples.
Differentially expressed genes (DEGs) in the 2 types of samples were identified by GEO2R. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the online website DAVID. The
online website STRING was used to construct a protein–protein interaction network. Moreover, the plugins in MCODE and
cytoHubba in Cytoscape were employed to find the hub genes and modules in these DEGs.

Results: We identified 154 DEGs comprising 135 downregulated genes and 19 upregulated genes. The GO enrichment results
were mainly related to the contractile fiber part, extracellular region part, actin cytoskeleton, and extracellular region. The KEGG
pathway enrichment results mainly comprised type I diabetes mellitus, asthma, systemic lupus erythematosus, and allograft
rejection. A module was identified from the protein–protein interaction network. In total, 15 hub genes were selected and 3 of them
comprising CALD1, CNN1, and TAGLN were associated with both overall survival and disease-free survival.

Conclusion: CALD1, CNN1, and TAGLN may be potential biomarkers for diagnosis as well as therapeutic targets in BC
patients.

Abbreviations: BC = bladder cancer, CLCA4 = calcium activated chloride channel A4, DEGs = differentially expressed genes,
DFS = disease-free survival, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, MCODE = molecular
complex detection, OS = overall survival, STRING = Search Tool for the Retrieval of Interacting Genes.
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[1]
1. Introduction

Bladder cancer (BC) is one of the most common malignancies in
the urinary tract, where it is promoted by testosterone and
inhibited by estrogen, and the risk of BC in men is 3 times higher
than that in 4 women.[1] It is-well known that the only reliable
tool for the diagnosis and post-treatment monitoring of BC
patients is based on cystoscopy, which is expensive and
unpleasant, and patients must undergo several cystoscopies each
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year to check for recurrence. However, this method has no
effects on healthy people and even high risk people who might
potentially become BC patients. BC is an important public health
problem, where it comprises the 7th and 17th most common
tumor in men and women, respectively.[2] In China, the
occurrence of BC increased dramatically from 1991 to 2009,
and it caused >20,000 deaths in 2009.[3,4] Despite many
aggressive treatment measures, the survival status of advanced
or metastatic BC patients is still poor, and until recently, it had
not changed greatly for decades.[5]

Newly discovered biomarkers for gene mutations in BC could
significantly improve the accuracy of urine tests for identifying
BC.[1] In addition, abnormal MUC16 glycoforms could serve as
potential biomarkers for targeted therapeutics in BC patients.[6]

Calcium activated chloride channel A4 (CLCA4), a tumor
suppressor, has been shown to contribute to the progression of
several tumors, including BC. It has been reported that a low
expression level of CLCA4 is associated with tumor aggres-
siveness and unfavorable clinical survival, and it may inhibit BC
cell proliferation, migration, and invasion by suppressing the
PI3K/AKT signaling pathway.[7] Real-time polymerase chain
reaction analysis indicates that CLCA4 mRNA is highly
expressed in human brain, testis, small intestine, colon, and
lung tissues.[8]

High-throughput sequencing analysis is being used increasingly,
and it has been applied as a very important tool in various branches
ofmedicine, such as for early cancer diagnosis, cancer grading, and
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progression prediction. In the current study, we used the
GSE13507 data set from the Gene Expression Omnibus (GEO)
and an online tool called GEO2R, to determine the differentially
expressed genes (DEGs) in BC and normal sample types. We then
constructed a protein–protein interaction (PPI) network for the
DEGs and identified 15 hub genes. Subsequently, we performed
Gene Ontology (GO) enrichment analysis to identify biological
process, cellular components, andmolecular function components,
as well as enrichment analysis of the DEGs based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, and we
constructed amodule of the hub genes.Moreover, overall survival
(OS) and disease-free survival (DFS) analyses of the hub geneswere
performed using an online website. The expression levels and
Pearson correlation analysis of the genes were employed to
visualize the potential relationships among the genes, as well as to
provide novel insights regardingpotential therapeutic targets inBC
patients.
2. Materials and methods

2.1. Patient information

We selected gene expression profiles from the GSE13507 data set
in the GEO database, which is a free public database. The
GSE13507 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE13507, accessed December 6, 2017) gene expression
profiles comprised 256 samples from the GPL6102 platform
(Illumina human-6 v2.0 expression beadchip), with 10 normal
bladder mucosae tissues, 165 primary BC tissues, 23 recurrent
non-muscle invasive tumor tissues, and 58 normal-looking
bladder mucosae surrounding cancer tissues.[10,11] In order to
construct a reliable model, 165 primary BC samples and 10
normal bladder mucosae samples were selected for the
analysis. This study based on public sources data, which contains
its ethnic approval. Thus, we do not need any further ethnic
approval.
Table 1

Top 15 hub genes among 154 differentially expressed genes.

Gene
Degree of
connectivity

Betweenness
centrality

Adjusted
P value

TPM1 15 0.0667 8.46E–05
TPM2 14 0.0243 2.08E–04
2.2. Data processing

The online tool called GEO2R (https://www.ncbi.nlm.nih.gov/
geo/geo2r/, accessed December 11, 2017) was used to determine
the DEGs in the primary BC and normal bladder mucosae
samples.[12] The adjusted P values were used to reduce the false
positive rate with the Benjamini and Hochberg false discovery
rate method by default. Adjusted P values <.05 and jlogFCj ≥2
were set as cut-off values. In total, 154 DEGs were determined,
which comprised 135 downregulated genes and 19 upregulated
genes. The top 15 hub genes were then selected as the hub genes
using the default MCC method in cytoHubba, which is a
Cytoscape plugin.[13,14]
MYH11 14 0.0633 1.05E–05
ACTA2 21 0.5429 2.79E–05
MYL9 10 0.0009 3.87E–05
CNN1 10 0.0029 6.70E–06
TAGLN 10 0.0029 1.40E–04
CALD1 11 0.0071 1.43E–04
ACTG2 13 0.0194 2.34E–04
TOP2A 15 0.5136 3.32E–06
CCNB2 9 0.0513 4.89E–05
ASPM 8 0 1.92E–04
NUSAP1 8 0 2.29E–06
TPX2 8 0 1.22E–04
CDC20 8 0 1.25E–07
2.3. GO and KEGG pathway enrichment analysis of DEGs

GO enrichment analysis is a widely used method for annotating
specific genes, gene products, and assembling biological
attributes for high-throughput genome and transcriptome
data.[15] KEGG is a database resource used for understanding
the high level functions and utilities of a biological system based
on molecular level information obtained by genome sequencing
and other high-throughput experimental techniques.[16] The
Database for Annotation, Visualization, and Integrated Discov-
ery v6.7 (DAVID, https://david-d.ncifcrf.gov/, accessed Decem-
ber 13, 2017) was employed to identify the enriched biological
2

process, cellular component, molecular function, and KEGG
pathways for the 154 DEGs.[17,18]
2.4. PPI network and module analysis

The online Search Tool for the Retrieval of Interacting Genes
(STRING) website was employed to construct the relationships
among proteins. The Molecular Complex Detection (MCODE)
plugin in Cytoscape was then utilized to screenmodules in the PPI
network with the default settings.[19] GO and KEGG pathway
enrichment analyses were performed using the genes identified by
the MCODE plugin on the DAVID website.
2.5. Survival analysis, expression levels, and correlations
of hub genes

The online Gene Expression Profiling Interactive Analysis
(GEPIA, http://gepia.cancer-pku.cn/index.html, accessed Decem-
ber 20, 2017) resource was employed to depict the OS and DFS
outcomes based on the hub gene expression levels.[20] The genes
related to both OS and DFS were identified for further study
based on Pearson correlation analysis and the tissue expression
levels in both BC and normal tissues.
3. Results

3.1. Identification of DEGs and hub genes

In total, 165 primary BC and 10 normal bladder mucosae
samples were considered in this study. The online GEO2R tool
was utilized to determine the DEGs based on cut-off values:
adjusted P values<.05 and j logFC j ≥2. We identified 154 DEGs
comprising 135 downregulated genes and 19 upregulated genes.
A PPI network was constructed using the 154 DEGs. Further-
more, 15 hub genes were identified among the 154 DEGs using
the default MCC method. The 15 hub genes were TPM1, TPM2,
MYH11, ACTA2, MYL9, CNN1, TAGLN, CALD1, ACTG2,
TOP2A, CCNB2, ASPM, NUSAP1, TPX2, and CDC20
(Table 1). Details of the 154 DEGs are presented in Supplemen-
tary Table 1, http://links.lww.com/MD/C720.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507
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Table 2

Top 20 enriched genes according to GO analysis of differentially expressed genes.

Expression Category Term Count % P value FDR

GOTERM_CC_FAT GO:0043292∼contractile fiber 14 11.02 2.77E–11 3.46E–08
GOTERM_CC_FAT GO:0044449∼contractile fiber part 13 10.24 1.92E–10 2.40E–07
GOTERM_CC_FAT GO:0015629∼actin cytoskeleton 17 13.39 9.82E–10 1.23E–06
GOTERM_CC_FAT GO:0044421∼extracellular region part 28 22.05 2.19E–08 2.73E–05
GOTERM_CC_FAT GO:0005576∼extracellular region 41 32.28 7.01E–08 8.75E–05
GOTERM_CC_FAT GO:0030016∼myofibril 10 7.87 4.19E–07 5.22E–04
GOTERM_CC_FAT GO:0031012∼extracellular matrix 15 11.81 1.32E–06 0.001649

Down-regulated GOTERM_MF_FAT GO:0019838∼growth factor binding 9 7.09 1.64E–06 0.002145
GOTERM_MF_FAT GO:0008092∼cytoskeletal protein binding 17 13.39 1.82E–06 0.002384
GOTERM_CC_FAT GO:0032432∼actin filament bundle 6 4.72 2.35E–06 0.002927
GOTERM_CC_FAT GO:0030485∼ smooth muscle contractile fiber 4 3.15 2.40E–06 0.002993
GOTERM_CC_FAT GO:0042641∼actomyosin 6 4.72 2.86E–06 0.003568
GOTERM_CC_FAT GO:0005578∼proteinaceous extracellular matrix 14 11.02 3.21E–06 0.004008
GOTERM_BP_FAT GO:0007010∼cytoskeleton organization 15 11.81 4.73E–06 0.007493
GOTERM_BP_FAT GO:0030036∼actin cytoskeleton organization 11 8.66 7.73E–06 0.012245
GOTERM_MF_FAT GO:0003779∼actin binding 13 10.24 9.16E–06 0.012005
GOTERM_BP_FAT GO:0030198∼ extracellular matrix organization 8 6.30 1.31E–05 0.020832
GOTERM_BP_FAT GO:0030029∼actin filament-based process 11 8.66 1.36E–05 0.02148
GOTERM_MF_FAT GO:0008307∼structural constituent of muscle 6 4.72 1.83E–05 0.024009
GOTERM_CC_FAT GO:0030017∼sarcomere 8 6.30 1.98E–05 0.024651

BP=biological process, CC=cellular component, FDR= false discovery rate, GO=Gene Ontology, MF=molecular function.
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3.2. GO and KEGG pathway enrichment analysis for
154 DEGs
After importing the 135 downregulated genes, DAVID was used
to obtain the enrichment results based on GO and KEGG
pathway analysis. Among the GO enrichment results, the top 20
GO results were contractile fiber, contractile fiber part, actin
cytoskeleton, extracellular region part, extracellular region,
myofibril, extracellular matrix, growth factor binding, cytoskel-
etal protein binding, actin filament bundle, smooth muscle
contractile fiber, actomyosin, proteinaceous extracellular matrix,
cytoskeleton organization, actin cytoskeleton organization, actin
binding, extracellular matrix organization, actin filament-based
process, structural constituent of muscle, and sarcomere
(Table 2). However, the 19 upregulated genes were not enriched
for any GO terms. Details of the 170 GO enrichment results are
Table 3

Enriched KEGG pathway analysis of differentially expressed genes.

Category Term Count % P va

hsa04940: Type I diabetes mellitus 6 4.72 3.57E
hsa05310: asthma 5 3.94 1.29E
hsa05322: systemic lupus erythematosus 7 5.51 2.63E

Down-regulated DEGs hsa05330: allograft rejection 5 3.94 3.04E
hsa05332: graft-versus-host disease 5 3.94 4.16E
hsa05416: viral myocarditis 6 4.72 4.48E
hsa04672: intestinal immune network for IgA production 5 3.94 0.001
hsa05320: autoimmune thyroid disease 5 3.94 0.001
hsa04270: vascular smooth muscle contraction 6 4.72 0.003
hsa04260: cardiac muscle contraction 5 3.94 0.005
hsa04612: antigen processing and presentation 5 3.94 0.006
hsa04514: cell adhesion molecules (CAMs) 6 4.72 0.006
hsa04610: complement and coagulation cascades 4 3.15 0.025
hsa04510: focal adhesion 6 4.72 0.036
hsa05410: hypertrophic cardiomyopathy (HCM) 4 3.15 0.043
hsa04640: hematopoietic cell lineage 4 3.15 0.044
hsa05414: dilated cardiomyopathy 4 3.15 0.052
hsa00590: arachidonic acid metabolism 3 2.36 0.094

DEGs=differentially expressed gens, FDR= false discovery rate, KEGG=Kyoto Encyclopedia of Genes
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shown in Supplementary Table 2, http://links.lww.com/MD/
C720.
According to the KEGG pathway enrichment analysis of the

135 downregulated genes, the 17 enriched pathways comprised
type I diabetes mellitus, asthma, systemic lupus erythematosus,
allograft rejection, graft-versus-host disease, viral myocarditis,
intestinal immune network for IgA production, autoimmune
thyroid disease, vascular smooth muscle contraction, cardiac
muscle contraction, antigen processing and presentation, cell
adhesion molecules, complement and coagulation cascades,
focal adhesion, hypertrophic cardiomyopathy, hematopoietic
cell lineage, dilated cardiomyopathy, and arachidonic acid
metabolism. The 19 upregulated genes were not enriched for
any pathways. Details of the enrichment results are shown in
Table 3.
lue FDR Genes

–05 0.036647 CPE, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, HLA-DRA
–04 0.131716 HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, HLA-DRA
–04 0.269763 C7, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, C1S, HLA-DRA
–04 0.311299 HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, HLA-DRA
–04 0.425725 HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, HLA-DRA
–04 0.458319 HLA-DRB1, HLA-DRB3, MYH11, HLA-DRB4, HLA-DRB5, HLA-DPA1, HLA-DRA
001 1.022221 HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, HLA-DRA
165 1.1886 HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, HLA-DRA
479 3.511432 ACTG2, ACTA2, CALD1, MYH11, KCNMB1, MYL9
545 5.543058 ACTC1, COX7A1, ATP1A2, TPM2, TPM1
907 6.86188 HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, HLA-DRA
992 6.94371 HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DPA1, JAM3, HLA-DRA
341 23.14515 C7, A2M, C1S, CFD
665 31.82673 CCND2, TNC, COL1A2, PDGFRA, FLNC, MYL9
146 36.38663 ACTC1, DES, TPM2, TPM1
423 37.25183 HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DRA
477 42.46943 ACTC1, DES, TPM2, TPM1
045 63.68626 PTGDS, PTGS1, GPX3

and Genomes.
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Figure 1. The protein–protein interaction network of the top 15 hub genes.
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3.3. PPI network of hub genes and module obtained using
MCODE
STRING was employed to obtain an interaction network
comprising the 15 hub genes, where each interacted with at
least 5 other proteins. The network is presented in Fig. 1. Based
on the PPI network, Cytoscape determined a module using the
default MCODE settings, where 20 genes were assembled in the
module. The assembled genes were analyzed to determine their
enriched GO and KEGG pathways (Table 4).
The enriched KEGG pathways comprised vascular smooth

muscle contraction, cardiac muscle contraction, hypertrophic
Table 4

Top 20 enriched terms detected for the 20 genes by GO analysis and

Category Term

GOTERM_CC_FAT GO:0005856∼cytoskeleton
GOTERM_CC_FAT GO:0043232∼intracellular non-membrane-bounded organe
GOTERM_CC_FAT GO:0043228∼non-membrane-bounded organelle
GOTERM_CC_FAT GO:0044430∼cytoskeletal part
GOTERM_CC_FAT GO:0015629∼actin cytoskeleton
GOTERM_CC_FAT GO:0044449∼contractile fiber part
GOTERM_CC_FAT GO:0043292∼contractile fiber
GOTERM_CC_FAT GO:0030485∼ smooth muscle contractile fiber
GOTERM_BP_FAT GO:0007010∼cytoskeleton organization
GOTERM_MF_FAT GO:0008092∼cytoskeletal protein binding
GOTERM_BP_FAT GO:0000279∼M phase
GOTERM_BP_FAT GO:0000278∼ mitotic cell cycle
GOTERM_BP_FAT GO:0022403∼cell cycle phase
GOTERM_CC_FAT GO:0005819∼spindle
GOTERM_BP_FAT GO:0006936∼ muscle contraction
GOTERM_MF_FAT GO:0003779∼ actin binding
GOTERM_BP_FAT GO:0003012∼ muscle system process
GOTERM_CC_FAT GO:0015630∼ microtubule cytoskeleton
GOTERM_CC_FAT GO:0042641∼ actomyosin
GOTERM_BP_FAT GO:0022402∼ cell cycle process

BP=biological process, CC=cellular component, FDR= false discovery rate, GO=gene ontology, MF=

4

cardiomyopathy, dilated cardiomyopathy, and cell cycle. The
detailed module and KEGG pathways are shown in Fig. 2.
According to the GO enrichment results for the 20 genes, the

top 20 enriched GO terms comprised cytoskeleton, intracellular
non-membrane-bounded organelles, non-membrane-bounded
organelles, cytoskeletal part, actin cytoskeleton, contractile fiber
part, contractile fiber, smooth muscle contractile fiber, cytoskel-
eton organization, cytoskeletal protein binding, M phase, mitotic
cell cycle, cell cycle phase, spindle, muscle contraction, actin
binding, muscle system process, microtubule cytoskeleton,
actomyosin, and cell cycle process (Fig. 3). Details of the 106
MCODE.

Count % P value FDR

17 85 4.84E–15 5.37E–12
lle 18 90 1.63E–12 1.79E–09

18 90 1.63E–12 1.79E–09
14 70 3.61E–12 3.97E–09
9 45 7.16E–10 7.87E–07
7 35 4.77E–09 5.25E–06
7 35 7.22E–09 7.94E–06
4 20 7.81E-09 8.59E-06
9 45 6.04E–08 8.28E–05
9 45 8.71E–08 8.53E–05
8 40 1.85E–07 2.53E–04
8 40 4.11E–07 5.62E–04
8 40 8.76E–07 0.0012
6 30 1.04E–06 0.001144
6 30 1.77E–06 0.00243
7 35 2.35E–06 0.002297
6 30 2.81E–06 0.003851
8 40 3.47E–06 0.00381
4 20 5.60E–06 0.00616
8 40 6.94E–06 0.009508

molecular function.



Figure 2. Module obtained from the protein–protein interaction network and enriched pathways for genes in the module. (A) The module was generated using
MCODE. (B) Enriched pathways in the module. MCODE=molecular complex detection.

Liu et al. Medicine (2019) 98:2 www.md-journal.com
GO enrichment results are shown in Supplementary Table 3,
http://links.lww.com/MD/C720.

3.4. Survival curves, expression levels, and correlation
analysis of hub genes

Among the 15 hub genes, CALD1, CNN1, TAGLN, TMP2,
ACTA2, MYH11, and TMP1 had statistically significant P
values, whereCALD1,CNN1, andTAGLNwere related to both
OS and DFS (all P �.05). TMP2, ACTA2, MYH11, and TMP1
only had relationships with OS (all P�0.05). The detailed results
are shown in Fig. 4.
Among the 15 hub genes, only the genes that had relationships

with OS and DFS were selected for further analysis, that is,
CALD1, CNN1, and TAGLN. The expression levels of these 3
genes are shown in Fig. 3, where all of them were low in tumor
5

tissues but high in normal tissues, and they differed significantly
between the normal and BC tissues. In addition, their low
expression levels were associated with a better prognosis. The
Pearson correlation coefficients between the gene expression
levels are shown in Fig. 3 (all R >0.9).
4. Discussion

BC originates from the epithelial lining of the urinary bladder and
it is one of the most common genitourinary tumors. In China, the
incidence and mortality of BC has increased rapidly in recent
decades.[21] Currently, pathological analyses including the
clinical stage and tumor grade are the main determinants used
for risk evaluation and therapeutic decision making for BC
patients.[22] However, none of the conventional histopatholog-
ical parameters has satisfactory sensitivity and specificity for

http://links.lww.com/MD/C720
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Figure 3. Expression levels and Pearson correlation analysis of CALD1, CNN1, and TAGLN genes.
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detecting, monitoring, and determining the prognosis in BC
patients.[22,23] Due to these limitations, many studies have tried to
identify potential molecular markers for early detection, early
diagnosis, and the development of effective treatments.
In the present study, we employed gene expression profiles

from the GSE13507 data set in the GEO database to identify
potential molecular markers in BC patients. The data set
comprised 256 samples, with 10 normal bladder mucosae tissue
samples, 165 primary BC tissue samples, 23 recurrent non-
muscle invasive tumor tissue samples, and 58 normal-looking
bladder mucosae surrounding cancer tissue samples. In order to
identify potential molecular makers compared with healthy
people, we selected 10 normal bladder mucosae and 165 primary
BC tissue samples. In total, 154 DEGs were detected using the
GEO2R online tool, where 135 genes were downregulated and
19 genes were upregulated. Moreover, the MCODE plugin and
cytoHubba plugin were employed to produce a module and
detect 15 hub genes in these DEGs. To obtain a more in-depth
understanding of these DEGs, we performed GO and KEGG
pathway enrichment analyses.
The GO enrichment results showed that the downregulated

genes were mainly involved with contractile fiber, actin
cytoskeleton, extracellular region part, growth factor binding,
actin filament bundle, and cytoskeleton organization. Moreover,
the KEGG pathway enrichment results indicated that the
6

downregulated genes were mainly involved with type I diabetes
mellitus, asthma, systemic lupus erythematosus, allograft rejec-
tion, graft-versus-host disease, and viral myocarditis. However,
the 19 upregulated genes were not enriched for any GO terms or
KEGGpathways. In total, 20 genes were assembled in themodule
based on the PPI network and the enriched KEGG pathways for
these 20 genes included vascular smooth muscle contraction,
cardiac muscle contraction, hypertrophic cardiomyopathy,
dilated cardiomyopathy, and the cell cycle. Among the DEGs,
15 hub genes were selected in the PPI network, where 7 genes
comprisingCALD1,CNN1, TAGLN, TMP2,ACTA2,MYH11,
and TMP1 had significant correlations with the patient
prognosis. CALD1, CNN1, and TAGLN had relationships with
both OS and DFS, so they were subjected to further analysis,
where they all had low expression levels in tumor tissues but high
expression levels in normal tissues. In addition, their low
expression levels were associated with a better prognosis. Based
on these results, we hypothesize that CALD1, CNN1, and
TAGLN may function as oncogenes.
CALD1 is a novel target of TEA domain family member 4, and

it is involved with cell proliferation and migration.[24] In the
transactivated CALD1 gene and human CALD1 promoter, their
2 glucocorticoid-response element-like sequences may be bound
directly by an activated form of glucocorticoid receptor, thereby
upregulating the caldesmon protein and regulating cell migration



[25]

Figure 4. Prognostic analysis of overall survival and disease-free survival forCALD1 (A and B),CNN1 (C and D), TAGLN (E and F), TPM2 (G), ACTA2 (H),MYH11 (I),
and TPM1 (J) genes.

Liu et al. Medicine (2019) 98:2 www.md-journal.com
via the reorganization of the actin cytoskeleton. CALD1 was
identified as a tumor-specific splicing variant in all of the
validated colon, urinary bladder, and prostate organ samples
among 102 normal and cancer tissue samples.[26] It has been
suggested that CALD1 may indicate general cancer-related
splicing events.[26] Splicing variants of CALD1 are differentially
expressed in glioma neovascularization versus normal brain
microvasculature.[27] The missplicing of CALD1 is an indepen-
dent epigenetic event that is regulated at the transcriptional level,
which is correlated with the breakdown of tight junctions among
epithelial cells in the glioma microvasculature.[27]

CNN1 plays a tumor-suppressive role in ovarian cancer[28] and
it is a structural molecular signature of cancer initiation and
progression.[29]CNN1 functions as a tumor suppressor gene and it
is an indicator of cell migration in primary cultured invasive
hepatocellular carcinoma cells.[30]TAGLN is a downstream target
ofmiR-144 and its expression level is upregulated in osteosarcoma
cell, where it is inversely correlated with miR-144 expression.[31]

The expression of TAGLN in NF-1 associated malignant
peripheral nerve sheath tumors is upregulated by hypomethylation
in its promoter and subpromoter regions.[32]TAGLN is signifi-
cantly overexpressed in lung adenocarcinoma and it may be a
reliable therapeutic target and a potential biomarker for predicting
the prognosis of lung adenocarcinoma patients.[33] TAGLN is
coexpressed with TAZ-AXL-CTGF, where it is upregulated and
associated with the progression of colon cancer.[34]

There are some limitations need recognized. Other population,
including some clinical samples to validate the expression
(mRNA and protein), are warranted to further validate our
7

findings. In addition, functional trials are needed to explore
properties of metastasis and proliferation.
Thus, in this study, we determined the DEGs between normal

bladder mucosae and primary BC samples in the GSE13507 data
set. The hub genes among the DEGs were associated with the
prognoses of BC patients, and 3 were correlated with both OS
and DFS. These genes have associations with many diseases,
including colon cancer, hepatocellular carcinoma, osteosarcoma,
lung adenocarcinoma, and glioma. However, our study have
several limitations. Large samples are required to increase the
reliability of the findings. Functional experiments are needed to
validate our results. According to our bioinformatics analysis and
previous studies, we suggest that the CALD1, CNN1, and
TAGLN genesmay be potential molecular makers in BC patients.
5. Conclusions

We identified 3 potential molecular markers for BC diagnosis and
they may even be therapeutic targets in BC patients, but more
detailed functional validation and investigations of the mecha-
nisms related to these genes are necessary. Our results may
provide some powerful insights to facilitate the future individu-
alized treatment of BC patients.
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