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Abstract

Background

Health in early life is crucial for health later in life. Exposure to air pollution during embryonic

and early-life development can result in placental epigenetic modification and foetus repro-

gramming, which can influence disease susceptibility in later life. Objectives: The aim of this

paper was to investigate the placental adaptation in the level of global DNA methylation and

differential gene expression in the methylation cycle in new-borns exposed to high fine par-

ticulate matter in the foetal stage.

Study design

This is a nested case-control study. We enrolled pregnant healthy women attending prenatal

care clinics in Tehran, Iran, who were residents of selected polluted and unpolluted regions,

before the 14th week of pregnancy. We calculated the regional background levels of particle

mass- particles with aerodynamics diameter smaller than 2.5 μm (PM2.5) and 10 μm

(PM10)—of two regions of interest. At the time of delivery, placental tissue was taken for

gene expression and DNA methylation analyses. We also recorded birth outcomes (the

new-born’s sex, birth date, birth weight and length, head and chest circumference, gesta-

tional age, Apgar score, and level of neonatal care required).

Results

As regards PM2.5 and PM10 concentrations in different time windows of pregnancy,

there were significantly independent positive correlations between PM10 and PM2.5 in the

first trimester of all subjects and placental global DNA methylation levels (p-value = 0.01,
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p-value = 0.03, respectively). The gene expression analysis showed there was significant

correlation between S-adenosylmethionine expression and PM2.5 (p = 0.003) and PM10

levels in the first trimester (p = 0.03).

Conclusion

Our data showed prenatal exposures to air pollutants in the first trimester could influence

placental adaptation by DNA methylation.

Introduction

Air pollution is the most pervasive environmental concern and a global public health threat for

all people in all age groups. Emerging studies have focused on the exposure effects on early life

developmental and child’s health during pregnancy. The effects of exposure to ambient air pol-

lution on prenatal and early childhood health have been systematically reviewed [1]. Most of

the evidence has reported the impact of environmental pollution on adverse birth outcomes,

such as low birth weight and preterm delivery [1–3].

There is evidence that placental morphology and function are affected by fine particulate

matter (PM) in rodents [4]. Moreover, a cohort study suggested that exposure to ambient air

pollution during pregnancy reduces the birth size [5]. A recent study has demonstrated the

influence of PM on placental transcriptome changes [6]. The authors reported an inverse cor-

relation of placental BDNF and SYN1 gene expression levels at birth with PM2.5 exposure in

the first trimester of pregnancy. However, the mechanisms that may underlie the placental

adaptations in response to air pollutants are not clear yet. The changes in gene expression asso-

ciated with placental adaptive responses can be attributed—at least in part—to epigenetic alter-

ations [7, 8]. Compared with other embryonic tissues, placental is more direct contact with air

pollution and more susceptible to environmentally induced epigenetic alterations [9].

One of the best-studied epigenetic modifications in the context of altered environment cues

is DNA methylation, which involves the addition of a methyl group at the 5’ position of a cyto-

sine adjacent to a guanine (CpG dinucleotide). It seems that maternal exposure to air pollut-

ants is associated with an epigenetic modification, such as DNA methylation in the placenta.

Recent genome-wide studies of DNA methylation in human placenta have revealed a number

of interesting patterns that are consistent with the proposal that epigenetic regulation may play

important roles in the adaptive response to intrinsic and extrinsic factors [10]. Although DNA

methylation is essential for imprinted and non-imprinted gene expression that regulate foetus

growth and placental function such as nutrition transfer, it is more likely to be vital in the

adaptive response of the placenta to environmental signals [11, 12].

The molecular mechanisms that may link various environmental influences with DNA

methylation alterations in the placenta and other foetal organs are largely speculated. The

activity of placental DNA methyltransferase-1 (DNMT-1a)—as a methyl donor group—plays

an essential role in the faithful transmission of mother to daughter cells during cell division

cycle [13]. SAMe is the main substrate involved in methyl group transfers in the methylation

cycle.

This study was designed to investigate the placental adaptation in the level of global DNA

methylation and differential gene expression of DNMT-1 α, and SAMe, new-borns exposed to

high PM in utero.

Air pollution and placental adaptation

PLOS ONE | https://doi.org/10.1371/journal.pone.0199772 July 6, 2018 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0199772


Material and methods

Study design

This is a nested case-control of a birth cohort study designed by the Tehran University of

Medical Sciences. The protocol of the study was published earlier [14]. The research has been

supported by the National Institute for Medical Research Development of Iran (Grant No.

940173).

Study area in Tehran

The PM concentrations (μg/m3) were detected from 21 monitoring stations of Tehran Air

Quality Control Company, to undergo analyses. Based on the annual mean levels of PM2.5

(μg/m3) and PM10 (μg/m3) in 2015, two regions were selected as our study areas; the most

polluted (polluted region) and the least polluted (non-polluted region) (http://air.tehran.ir).

The most polluted so-called "Traffic Zone" covers the city center during peak traffic hours [15]

and the annual mean levels of PM2.5 and PM10 were 34.6–43.6, 79.7–110.8, respectively. The

least polluted area is located in northwest of Tehran and the annual mean levels of PM2.5 and

PM10 were 20.5–30.2 and 49.5–62, respectively. The detail of distribution of monitoring sta-

tions and the sampling regions were summarized in Fig 1.

Fig 1. Distribution of monitoring stations and the sampling regions- polluted and non-polluted- in Tehran, Iran. The mean levels of PM2.5 and PM 10 are based

on Tehran Air Quality Control Company report in 2015 -http://air.tehran.ir.

https://doi.org/10.1371/journal.pone.0199772.g001
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Study population

In this study, we enrolled 100 pregnant women who attended prenatal care clinics in two

regions in Tehran, Iran: polluted (N = 50) and non- polluted (N = 50) between April 2016 and

March 2017. During pregnancy, if a mother moved out of the selected region, was employed,

or travelled regularly between polluted and unpolluted regions, she was excluded from the

study [14].

Written informed consent was obtained from all study participants in accordance with pro-

cedures approved by the Ethical Committee of the National Institute for Medical Research

Development (IR.NIMAD.REC.1394.018) of Iran.

The work has been carried out in accordance with the Code of Ethics of the World Medical

Association (Declaration of Helsinki) for experiments involving humans, and Uniform

Requirements for manuscripts submitted to biomedical journals.

Exposure measurement

We calculated the regional background daily levels of PM10 and PM2.5 for each mother’s

home address from the date of last menstrual period (LMP) to delivery time. The values of air

pollutants were obtained from 9 stations of the Tehran Air Quality Control Company in 4×4

km grids [16] in two selected regions. Also, the PM levels we measured manually by using

Dylos DC1100 air quality monitors (Dylos Corporation, Riverside, CA, USA) in 3 sites (Fig 1).

To explore the potential effect of exposures during pregnancy, we calculated daily regional

PM10 and PM2.5 concentrations (micrograms per cubic meter) for each of the three trimes-

ters of pregnancy. We also calculated the mean daily exposure during the whole pregnancy.

Based on WHO air quality guidelines, 10μg/m3 and 20μg/m3 as annual averages of PM2.5

and PM10, respectively, were used to compare the ambient PM with WHO standard values

[17]. Also, three interim targets (IT) were used to highlight long-term health effects that rela-

tive to the PM concentrations [17].

Tissue biopsy

The placental tissue biopsy was taken from the foetal side, 1–1.5 cm below the chorioamniotic

membrane, at a fixed location in relation to the umbilical cord.

Global DNA methylation analysis

Genomic DNA was isolated from placental tissue using the standard method. In brief, DNA

was extracted by the phenol method from homogenized placental tissues. We determined

global DNA methylation, as published earlier [18]. Briefly, RNA was first removed by treating

50 μg DNA in 300 μL 1X Tris-EDTA buffer with RNase A (Fermentas Life Science, Cat No:

EN0531) and RNase T1 (Fermentas Life Science, Cat No: EN0541) at final concentrations of

100 μg/mL and 2,000 units/mL, respectively, for 2 h at 37˚C, which was followed by ethanol

precipitation. The dissolved DNA was then digested with 50 μg/mL DNase I (Fermentas Life

Science, Cat No: EN0521) for 14 h at 37 ˚C, denatured by heating at 100 ˚C for 3 minutes, and

rapidly cooled on ice. Then, 2 volumes 30 mM sodium acetate pH 5.2 (Carlo Erba Reagenti

SpA, Cat No: 478167) with ZnSO4 and nuclease P1 (Sigma-Aldrich, Cat No: N8630) at final

concentrations of 1mM and 50 μg/ml, respectively, were added and the mixture incubated

for a further 16 h at 37 ˚C. Hydrolyzed DNA from all subjects was maintained at -80˚C until

analysis. Global DNA methylation was expressed as the percentage of 5-methyldeoxycytidine

(5-mdC) versus the sum of 5-mdC and deoxycytidine (dC): [5-mdC/(5-mdC + dC)]%.

Air pollution and placental adaptation
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Gene expression analysis

We extracted RNA from placental tissues using a Qiagen kit (QIAGEN NV, Venlo, and the

Netherlands). The integrity of total RNA was checked by electrophoresis through an agarose

gel. After DNase I treatment, 1 μg of total RNA was reverse transcribed using random hexam-

ers as primers and Superscript II reverse transcriptase (Fermentaze). Gene expression was ana-

lysed by using real time polymerase chain reaction after complementary DNA synthesis.

Candidate genes include DNA (cytosine-5)-methyltransferase-1-alpha (DNMT1-a), SAMe
and GAPDH. Expression of the genes was determined by quantitative real-time polymerase

chain reaction using an Applied Biosystems (ABI) 7900HT Real-Time PCR System. The pres-

ence of specific gene products was also confirmed with melting curve analysis. The primer

sequences were used as follow: DNMT1a (f) 5’ CCT AGC CCC AGG ATT ACA AGG,

DNMT1a (r) 5’ ACT CAT CCG ATT TGG CTG CTC TTT C, SAMe (f) 5’ CACCATCAA
GCACATCGGCTA, SAMe (R) 5’ CCGAACATCAAACCCTGATCTC, GAPDH (f) 5’ TTC TCT
GAT TTG GTC GTA TTG G, GAPDH (r) 5’ CAT GTA AAC CAT GTA GTT GAG GTC.

All samples were amplified in duplicate, and the mean was obtained for further calculations.

The expression amounts were calculated by using the expression of the GAPDH, which was

used as a reference gene. The Ct for each sample was normalized to the corresponding sample

geometric mean of GAPDH.

Statistical analysis

We presented categorical data as frequencies (%) and numbers, and continuous data as

mean ± standard error for variables with normal distribution or median (IQR) for variables

without normal distribution. We used chi-square test to compare the prevalence of adverse

birth outcomes in the two regions. Mann Whitney U test compared the differences in global

DNA methylation levels in placenta of pregnant women in the two regions (polluted and non-

polluted).

We used Spearman correlation coefficients to assess the association of global DNA methyla-

tion from placental tissue with PM10 and PM2.5 concentrations. A univariate model was used

to determine the independent association of PM10, and PM2.5 exposures during pregnancy

with placental global DNA methylation.

The 2(-ΔCt) formula was used to calculate relative transcript abundance. Fold changes were

used to compare gene expression differences of all included genes in placental tissue between

the two groups, that is, pregnant women who lived in polluted and non-polluted regions. We

considered a fold-change value>1.5 for gene expression and 2-tailed P values <.05 as statisti-

cally significant.

Results

In 2016, the annual mean levels of PM2.5 (μg/m3) and PM10 (μg/m3) in all regions of Tehran,

Iran, were higher than WHO air quality guidelines (AQG), mean (min, max) for PM2.5; 87.29

(33, 156) and for PM10; 60.20 (19, 135).

Apart from the values in the WHO guidelines, three interim targets (IT) were defined [17].

The annual mean levels of PM2.5 was in IT1 category and the interim of PM10 was in IT2 cate-

gory. Indeed, only 22 days were in clean criteria.

Study population characteristics and exposure levels

Among the 100 pregnant women enrolled in the study, four women were excluded because

they moved out of the selected region during pregnancy and four women delivered in other

Air pollution and placental adaptation
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cities. For the purposes of data analysis, 92 women were included: 48 women who lived in a

polluted region and 44 women who lived in a non-polluted region. The baseline characteristics

of mothers and their new-borns are shown in Table 1. There were no significant differences in

age, pre-gestational BMI, gravity, and parity. The mean regional background levels of PM10,

PM2.5 for total pregnancy duration and each of the three trimesters of pregnancy were pre-

sented in Table 2.

Fine particulate matter levels and perinatal outcome

Based on PM concentrations, there was no significant correlation between birth outcomes,

including gestational age, weight, length, head and chest circumference, at the time of birth

and PM2.5 and PM10 levels in whole pregnancy or in each trimester (p-value>0.05) (S1

Table).

Quantification of placental global DNA methylation related to maternal

age, pre-gestational BMI, and gravity and birth outcomes

In all subjects, there were no significant correlations between placental global DNA methyla-

tion levels with maternal age, pre-gestational BMI, gravity, and parity (p-value>0.05) (S2

Table). Similar results were found in each region (p-value>0.05).

Regarding birth outcomes, there was no significant correlation between maternal and pla-

cental global DNA methylation levels and birth outcomes, including gestational age, weight,

length, and head and chest circumference at the time of birth (p-value>0.05) (S3 Table).

Placental global DNA methylation in polluted region compared with non-

polluted region

No significant difference was observed in the global DNA methylation levels of placental in

two regions: non-polluted vs. polluted regions (2.44 (0.86) vs. 2.59 (0.70), p-value = 0.42,

respectively).

As regards PM2.5 and PM10 concentrations in different time windows of pregnancy, there

was significant positive correlations between PM2.5 and PM10 in the first trimester of all sub-

jects in two regions and placental global DNA methylation levels (Table 3). Also, there was

significant correlation between PM2.5 in third trimester of subjects in polluted region and pla-

cental global DNA methylation levels (r = 0.31, p = 0.04).

In univariate model, after adjusting for gestational age, new-born sex, and region, there was

only significant association between PM2.5 (p-value = 0.03) and PM10 (p-value = 0.01) only in

the first trimester and placental global DNA methylation levels.

Differently expressions of DNMT-1 α, and SAMe genes in placental tissue

Regarding selected regions, the data analysis showed not differentially expressed selected

genes in placental samples from mothers in polluted compared to ones in non-polluted

regions; with a fold change<1.5 and/or p value> 0.05 (fold change values: DNMT-1 α = -1.2,

and SAMe = 1.1) (Fig 2).

Based on PM concentrations, there was only significant correlation between SAMe expres-

sion and PM2.5 in first (r = -0.37, p = 0.01) and third (r = -0.42, p = 0.003) trimesters and

PM10 levels in first trimester (r = -0.31, p = 0.04) (Table 4).

In total, our data showed no significant association between RNA expression of DNMT-1 α
and SAMe (r = 0.09, p = 0.42).

Air pollution and placental adaptation
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Table 1. Baseline characteristics of the mother-newborn pairs in two regions, mean± SE or number (%).

Polluted (48) Non-polluted (44) p-value

Maternal

Age, year 30.00±0.71 30.09±0.79 0.93

Pre. Gestational BMI, Kg/m2 25.31±0.53 24.51±0.60 0.33

Weight. Gain during pregnancy, Kg 13.31±0.70 13.48±1.29 0.78

Systolic Blood Pressure, mmHg 114.00±2.33 108.84±1.51 0.07

Diastolic Blood Pressure, mmHg 73.77±2.16 71.42±1.76 0.40

Gravity 1.9±0.14 2.1±0.13 0.35

Previous Abortion 12 (25) 13 (29) 0.62

Education level 0.15

Middle-school 3 (6) 4 (9)

High-school 32 (66) 21 (48)

University 13 (28) 19 (43)

Social Economical Status 0.83

Land lord 20 (42) 19 (43)

Tenant 28 (58) 25 (57)

Taking Acid folic during pregnancy 23 (48) 24 0.69

Taking Iron during pregnancy 38 (79) 34 0.85

Taking perinatal Multivitamin 42 (87.5) 40 0.69

GDM - 3 0.09

Hypertension during 8 (16) 4 0.36

Social Class -

Equal 38 (79) 30 (68)

More save 0 0

More pay 2 (4) 0

No response 8(17) 14 (32)

Newborn

Sex (Female) 24 (50) 18 (41) 0.35

Gestational age, weeks 38.93±0.16 38.48±0.22 0.09

Pre-term (<37 weeks) 0 1 (2) 0.44

Season at birth 0.09

Winter 21 (44) 12 (27)

Fall 27 (56) 32 (73)

Apgar score 1min 0.62

9 42 (88) 41 (93)

8 3 (6) 3 (7)

<8 3 (6) 0

Apgar score 5min 0.63

9–10 46 (96) 44 (100)

<9 2 (4) 0

Birth weight, gr 3243.25±63.30 3285.25±64.47 0.64

Birth length, cm 50.06±0.38 50.30±0.37 0.67

Head circumference, cm 34.36±0.47 34.73±0.21 0.27

Chest circumference, cm 33.93±0.47 33.30±0.31 0.40

Numerical variables were expressed as the mean ± standard error (SE) and categorical variables were presented as

frequencies (%) and numbers. (-) not statistically was tested because of incomplete data.

https://doi.org/10.1371/journal.pone.0199772.t001
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Correlation between placental global DNA methylation levels and RNA

expression levels of DNMT-1 α, and SAMe
There were significant negative correlations between placental global DNA methylation and

gene expressions of SAMe (r = -0.24, p = 0.039) and DNMT-1 α(r = -.26, p = 0.028).

Based on selected regions, there were only significant negative correlation between gene

expression levels of SAMe and global DNA methylation levels (r = -0.31, p = -0.04) in placental

tissues of mothers who lived in a polluted region.

Discussion

Growing evidence suggests that placental adaptations in the molecular levels are crucial in ‘the

developmental programming of adult diseases’ [10]. During pregnancy, developmental adap-

tations due to epigenetic modification may not only permanently ‘program’ the foetus and

cause adverse pregnancy outcomes but can also lead to possible future diseases in adult life.

We supposed exposure to fine particulate matter (PM) during early time of development

could affect placental DNA methylation levels.

Table 2. Fine particulate matter levels in two regions; polluted and non-polluted.

Polluted (N = 48) Non-polluted (N = 44) P-value

PM 2.5 (μ/m2)

Whole pregnancy 37.12±.50 25.18±.68 0.0001

Trimester 1 30.99±0.86 20.43±.68 0.0001

Trimester 2 38.44±0.71 26.37±1.23 0.0001

Trimester 3 42.44±.74 29.04±1.11 0.0001

PM 10 (μ/m2)

Whole pregnancy 91.45±2.51 70.43±1.13 0.0001

Trimester 1 74.34±2.66 64.97±2.52 0.01

Trimester 2 94.88±3.35 74.06±1.65 0.0001

Trimester 3 104.89±2.61 72.13±1.33 0.0001

Numerical variables were expressed as the mean ± standard error (SE). PM2.5; fine particulate matter with a

diameter 2.5 μm, PM 10; fine particulate matter with a diameter 10 μm.

https://doi.org/10.1371/journal.pone.0199772.t002

Table 3. Correlation between fine particulate matter concentrations and placental DNA methylation in different time windows of pregnancy.

Total polluted Non-polluted

Placental CM (%) Placental CM (%) Placental CM (%)

Spearman’s rho p-value Spearman’s rho p-value Spearman’s rho p-value

PM.2.5- Whole pregnancy .17 .11 .31� .02 .14 .41

PM2.5- Trimester 1 .26� .01 .40�� .003 .42�� .009

PM2.5-Trimester 2 -.005 .96 -.07 .62 .04 .79

PM2.5 –Trimester 3 .08 .43 .29� .04 -.09 .59

PM10 -Whole pregnancy .14 .20 .16 .25 .25 .13

PM10 –Trimester 1 .38�� .0001 .42�� .002 .40� .01

PM10 –Trimester 2 .10 .34 .10 .48 .27 .11

PM10 –Trimester 3 -.07 .50 -.06 .67 -.18 .29

�correlation is significant at the 0.05 level

��correlation is significant at the 0.01 level

https://doi.org/10.1371/journal.pone.0199772.t003
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To shed light on the possible impacts of maternal air pollution exposure and to find out

important clues relating to exposure, we measured the levels of PM10 and PM2.5 at different

times of pregnancy in women who lived in polluted and non-polluted regions of Tehran, Iran.

Our observations in different time windows of pregnancy on PM-induced placental global

DNA methylation levels showed significant direct independent correlation between PM2.5

and PM10 concentrations with placental global DNA methylation only in the first trimester.

There was no significant difference between placental global DNA methylation levels

between mothers who live in polluted and non-polluted regions. Not surprisingly, the first

trimester of pregnancy is the critical time for foetal development. As the function of placental

is important in environmental challenges and foetal programming, molecular regulations or

epigenetic modifications that occur in placental tissue are vital to modify the effect of inter-

actions between environmental factors and foetus.

Recent genome-wide studies of DNA methylation in human placenta have revealed a num-

ber of interesting patterns that are consistent with the proposal that epigenetic regulation

may play important roles in the adaptive response to intrinsic and extrinsic factors [19, 20]. It

appears that alterations in genomic DNA methylation as well as gene-specific DNA methyla-

tion and gene expression patterns during foetal development can result from the exposure to

Fig 2. Differently expressed genes in placental tissues of mothers who lived in polluted region compared to those

in non-polluted region. Not differentially expressed selected genes in placental samples from mothers in polluted

compare to ones in non-polluted regions; with a fold change<1.5 (fold change values: DNMT-1 α = -1.2, and

SAMe = 1.1).

https://doi.org/10.1371/journal.pone.0199772.g002
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fine particulate matter. In line with our findings, both animal models studies and human ones

have reported that exposure to environmental pollutants is associated with changes in DNA

methylation patterns [21–24].

In our data, there was no significant difference in birth outcomes, including birth weight,

length, head and chest circumference of new-borns, in the two regions. Also, we did not find

any significant correlation between PM levels and birth outcomes. As a dynamic process, in

response to maternal environmental cues, placental epigenetic modifications occur to improve

foetal viability until birth. This dynamic placental adaptation is an additional protection layer

of the foetus in the deal with abnormal maternal–foetal environment [10]. However, depend-

ing on the severity of abnormal maternal environment conditions and timing, not only may

the placental adaptive response be insufficient to maintain a normal foetal growth, but also

induce detrimental secondary effects, such as changes in the placental vascular resistance and

abnormal placental hormone metabolism [10].

Our second aim was to evaluate RNA expression of selected genes contributing to DNA

methylation patterns in response to inhalation of particulate matter during pregnancy;

DNMT-1a, and SAMe. Our assessments showed significant mild-negative correlations between

placental global DNA methylation and gene expressions of SAMe and DNMT-1a. A positive

correlation between donor methyl and active enzyme and DNA methylation levels would be

expected. It can be attributed to placental adaption in the levels of gene expressions indepen-

dent of global hyper-methylation in response to PM exposure. On the other hand, it is possible

that the indirect correlation is a placental plasticity to balance DNA methylation levels in the

last two trimesters. Otherwise, other epigenetic mechanisms and intracellular molecular path-

ways could modify gene expression patterns of placental tissue in response to abnormal extra-

uterine condition. As a ‘maintenance’ methyltransferase, DNMT-1a functions in accurate

Table 4. Correlation between fine particulate matter concentrations and RNA expression levels of DNMT-1 α and SAMe.

Total Polluted Non-polluted

DNMT-1 α SAMe DNMT-1 α SAMe DNMT-1 α SAMe
PM2.5-Whole pregnancy rho -.10 -.02 -.15 -.37� .02 -.08

p-value .38 .86 .31 .01 .91 .63

PM2.5-Trimester 1 rho -.17 -.06 -.23 -.42�� -.15 -.17

p-value .12 .59 .12 .003 .39 .31

PM2.5-Trimester 2 rho -.04 .06 -.02 .114 .01 -.29

p-value .68 .57 .89 .45 .95 .08

PM2.5-Trimester3 rho -.07 .05 -.13 -.42�� .02 .05

p-value .53 .63 .36 .003 .90 .77

PM10-Whole pregnancy rho -.04 -.19 -.15 -.27 .02 -.08

p-value .71 .09 .29 .06 .92 .63

PM10-Trimester 1 rho -.09 -.40�� -.120 -.31� -.15 -.17

p-value .42 .0001 .42 .03 .39 .31

PM10-Trimester 1 rho -.05 -.08 -.19 -.23 .01 -.29

p-value .66 .46 .17 .12 .95 .08

PM10-Trimester 1 rho .007 .084 .08 -.11 .02 .05

p-value .95 .45 .57 .46 .90 .77

Rho; Spearman,

�correlation is significant at the 0.05 level

��correlation is significant at the 0.01 level

DNMT1-a; relative gene expression of DNMT1-a, SAMe; relative gene expression of SAMe

https://doi.org/10.1371/journal.pone.0199772.t004
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propagation of the genomic methylation profile from mother to daughter cells following cell

division [25]. Despite this unjustifiable reverse correlation between global hyper-methylation

and enzyme activity of DNMT and SAMe, it is clear that DNMT-1a levels are important in

some locus-specific or repeat-based DNA methylation and, consequently, in gene expression

levels for correct placental development. Alterations of DNA methylation patterns could mod-

ulate immune responses and inflammatory genes, in response to the inhalation of particulate

matter. Of note, the placenta is a remarkable organ; during the short time of pregnancy, espe-

cially in the first trimester, placental enables the foetus to survive within the confines of the

abnormal extra- and intra-uterine environment.

Several limitations in our study are worth noting. Firstly, some confounding factors, such

as some lifestyle-related factors, environmental tobacco smoke, the season, and environmental

temperature, could have a plausible impact on placental tissue DNA methylation. To minimize

the effects of lifestyle and regional differences on methylation patterns, we adjusted for the

mother’s socioeconomic status, and maternal diet in the analysis. We also considered exposure

to other air pollutants, such as second-hand smoke in our analysis. More importantly, mothers

who smoke or live with a smoker were excluded from our study. It should be noted that we

may ignore some unknown factors that have influences on blood and tissue DNA methylation,

as well as levels of air pollutants. Secondly, it is likely that the results due to paired comparisons

may not be significant when multiple comparison statistics are considered. This study certainly

makes multiple comparisons and it is difficult to ascertain the effect on significance. Therefore,

more large-scale studies need to evaluate the role of air pollution components in placental tis-

sue adaptations.

Conclusion

All things considered, Tehran is a one of the most polluted cities in the world with PM2.5 lev-

els 8.7 times and PM10 levels four times values higher than those recommended by the WHO.

Our data highlight the role of maternal environmental exposures during first trimester on

placental adaptive responses in the levels of DNA methylation. Hence, the first trimester of

pregnancy is likely most relevant to PM exposure and may represent a higher risk and critical

time for influencing disease susceptibility in later life. Consequence, in first trimester, prenatal

care and classroom-educations of health and air pollution could be helpful in preventing air

pollution harmful effects. Undoubtedly, perinatal care during first trimester is important; it is

suggested that prevention of air pollution be considered in routine antepartum algorithm in

polluted cities.

Though our study shows that exposure to PM during first trimester is associated with pla-

cental global DNA methylation levels, it is recommended that further studies to clarify the

mechanisms of placental adaptation to prevent the influence of environmental pollutants on

the early development of the foetus and disease susceptibility in adult ages.
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