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Abstract

Background: Pulmonary first pass filtration of particles marginally exceeding ,7 mm (the size of a red blood cell) is used
routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to
lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration,
and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the
highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this
broad grouping, which patients were at higher risk of stroke.

Methodology: 497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary
haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were
examined using logistic regression, receiver operating characteristic analyses, and platelet studies.

Principal Findings: Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52
(IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli
or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92,
1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For
the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 mmol/L
compared to mid-normal range (7–27 mmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated
with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for
participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).

Significance: These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary
arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are
likely to include enhanced aggregation of circulating platelets.
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Introduction

Who is most at risk of paradoxical embolic strokes through the

right-to-left shunts provided by pulmonary arteriovenous mal-

formations (PAVMs)[1]? This question is important not only for

patients, but also to further our understanding of pulmonary

capillary filtration.[2][3]

The pulmonary capillary bed normally provides a first-pass

filtration system for particulate matter forming or entering the

circulation in the preceding cardiac cycle: lung viability is

preserved due to dual arterial supply from systemic arteries,

particularly the bronchial circulation (Figure 1A). [1][2][3]

Pulmonary capillary filtration is used routinely in clinical

diagnostics, using intravenous injection of technetium-labelled

albumin macroaggregates marginally larger than 7 mm erythro-

cytes for nuclear medicine perfusion studies, [4][5] or bubble

contrast in echocardiography.[6]
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PAVMs are anatomical right-to-left shunts between pulmonary

arteries and pulmonary veins, [1] (Figure 1), and by thoracic CT

scanning, are estimated to affect ,1/2,600 individuals. [7] Right-

to-left shunts, including intrapulmonary shunts below the resolu-

tion of CT-scan detection, can be quantified by the circulatory

survival of intravenously injected particles: particles transiting the

shunts bypass the pulmonary capillaries, and reach the left

ventricle and systemic arterial tree. Technetium-labelled albumin

macroaggregates as used for conventional perfusion studies permit

precise quantification of right-to-left shunt size as a proportion of

the cardiac output. [4][8][9][10][11] Contrast echocardiography

can provide broad grades of shunt severity, ranging from Grade 1

(found in at least 7–8% of the general population [12][13]), to

Grade 3 which is more frequently associated with visible PAVMs

on CT scan. [13[14][15][16][17][18] Additionally, because

PAVMs allow deoxygenated pulmonary arterial blood to bypass

the pulmonary capillary bed, arterial PO2 and haemoglobin

saturation (SaO2) are inversely related to the size of the right-to-

left shunt fraction.[1][4][9][10]

Substantial proportions of PAVM patients experience ischaemic

strokes. [1][13][18][19][20][21] Paradoxical embolic events are

more common in patients with Grade 3 shunts, the shunt severity

usually present when PAVMs are visible on CT scan.

[13[14][15][16][17][18] Once PAVMs are sufficiently large for

CT detection, or Grade 3 shunts, there is no clear evidence that

stroke risk is substantially influenced by further increase in shunt

size,[18][20] or by conventional stroke risk factors.[20] Under-

standing which PAVM patients have their strokes at particular

times is important because while PAVM treatment by embolisa-

tion reduces stroke risk, [20] PAVMs are often technically too

Figure 1. Right-to-left shunt and hypoxaemia evaluations. A: Cartoon of the circulations indicating site of the pulmonary capillary filter, the
dual pulmonary and bronchial/systemic arterial supply to lung tissue, and a pulmonary arteriovenous malformations (PAVM, red arrow). B:
Relationship between quantified right-to-left shunt (measured using with 99mTc-labelled albumin macroaggregates (10–80 mm) or microspheres (7–
25 mm)), with same-day oxygen saturation (SaO2), representing 309 paired values in 198 individuals since 1999. The linear regression coefficient of
21.22 (95% CI 21.31, 21.14; p,0.0001) indicates a strong relationship that explains 73% of the total variance in erect SaO2 (adjusted r2 0.73). The
shunt explained a smaller proportion of the total variance in supine SaO2 (adjusted r2 0.54, data not shown). C–F: Representative right lateral brain
images following injection of 99mTc-labelled albumin macroaggregates for shunt diagnosis and quantification: C) R-L shunt 48.8% of the cardiac
output, associated with a resting SaO2 of 59%. D) R-L shunt 25%; SaO2 83%. E) R-L shunt 7.7%; SaO2 93.7%. Note the intense activity in the lung
apices as expected. F) R-L shunt 3.3%; SaO2 96%. Note that the gain has been turned up but no cerebral activity is visible. This is the same individual
as in D), with the images taken 6 months before (D) and 3 months after (F) embolisation which obliterated the causative PAVMs.
doi:10.1371/journal.pone.0088812.g001
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small for embolisation, and many treated patients are left with

residual right-to-left shunts.[1][20]

The majority of PAVMs occur as part of hereditary hemor-

rhagic telangiectasia (HHT) [1][4][11][13][18][19][20][21] This

vascular condition [22][23][24] is usually caused by mutations in

endoglin (ENG, HHT type 1), [25] ACVRL1/ALK1 (HHT type 2),

[26] or Smad4 (HHT-juvenile polyposis).[27] PAVMs affect

approximately 50% of HHT patients [21] and are particularly

common in HHT1, with 85% of ENG mutation carriers

demonstrating right-to-left shunts on contrast echocardiography.

[28] HHT also commonly results in hepatic, [29] cerebral [30]

and other visceral AVMs; mucocutaneous telangiectasia that lead

to epistaxis [31][32] and gastrointestinal bleeding [33]; and iron

deficiency which has been recently confirmed to result from

under-replacement of haemorrhagic iron losses.[34] At the outset

of this study, there was no indication that any aspect of HHT

pathology other than PAVM-associated factors would be related to

stroke risk. The general presumption was that ischaemic strokes

developed as a result of paradoxical emboli of venous throm-

boemboli (VTE) either from the systemic venous circulation, [35]

or arising in the PAVM sac, [36] and that stroke risk would

increase with the severity of PAVMs.[19]

The study objectives, to identify new risk factors for ischaemic

stroke in PAVM patients, were achieved. Here, focusing on

PAVM patients with underlying HHT, we provide new insights

into which PAVM patients more commonly have ischaemic

strokes.

Methods

All studies were conducted according to the principles expressed

in the Declaration of Helsinki. Ethical approved was from the

Hammersmith, Queen Charlotte’s, Chelsea, and Acton Hospital

Research Ethics Committee. For LREC 2000/5764: ‘‘ Case Notes

Review: Hammersmith Hospital patients with pulmonary arter-

iovenous malformations and hereditary haemorrhagic telangiecta-

sia (HHT),’’ the ethics committee approved the review of the case

notes for research purposes without seeking individual consents.

For LREC 2000/6308 ‘‘Studies of blood cells derived from HHT

Patients’’, individuals provided written consent for the blood tests

which were not part of standard clinical practice.

The study objective was to identify further risk factors for

ischaemic stroke in PAVM patients. Our previous studies in a

PAVM population in which 205/219 (93.6%) had HHT,

demonstrated an ischaemic stroke rate of 13.7%. [20] A

population of 450 would therefore have 90% power to detect a

difference of 0.45 standard deviations for tested variables at the

5% significance level (two-tailed). As it was not clear whether such

stroke rates and hence power calculations would apply to PAVM

cohorts with a greater number of sporadic cases, for the current

study, analyses were restricted to PAVM patients with HHT.

Study Cohort
The cohort represents 497 consecutive adult PAVM patients

with a clinical diagnosis of HHT,[37] and radiologically-con-

firmed PAVMs, reviewed May 1999-February 2013 in a pan-UK

tertiary service (www.imperial.ac.uk/nhli/hht_pavm_

patient).

Assessments were performed in keeping with clinical service

practice. As detailed below, based on existing protocols and a

systematic literature review [38], from the outset of the study in

1999, individuals presenting with definite or possible HHT [37]

and/or PAVMs underwent detailed same-day clinical assessments

including imaging (chest x-ray and thoracic CT scans if not

performed previously); pulmonary function testing including

measurement of oxygen saturation by pulse oximetry (SaO2);

blood tests; and shunt studies, before subsequent embolisation of

PAVMs where appropriate. Over the 14 years of the study,

routine clinic protocols were updated according to new published

evidence, and results of additional research study protocols.

Standard Clinical Assessments
Imaging. Chest x-rays were performed for all patients on

presentation and in follow up. At the outset of the study in 1999,

based on a literature review of published PAVM cases [38] and

established service practices,[10] thoracic CT scans were only

performed if there were relevant symptoms (respiratory or

neurological such as transient ischaemic attacks, strokes or brain

abscess); or if there was evidence of hypoxaemia or a rightto-left

shunt by screening methods (see below). By 2002, it was apparent

that very small PAVMs with feeding artery diameters ,3 mm

could be associated with ischaemic stroke and/or brain

abscess,[20] and CT scans were introduced as routine screening

for all patients, if not performed previously, initially using adapted

Remy protocols.[39] The radiation burden has been substantially

decreased, and the resolution improved, by the use of newer

multislice, multidetector CT, which limit x-ray exposure to a single

short breath-hold acquisition, and which allow multiplanar and

three dimensional reconstructions of the data.[40]

Although we were aware that other PAVM groups internation-

ally were introducing contrast echocardiography as a screening

tool, [41] and research studies were performed, [42] contrast

echocardiography was not introduced routinely into the service for

PAVM screening. As discussed at the time, [43][44] this was

because of the high frequency of apparent false negatives where

PAVMs were not identified by subsequent angiography, con-

sidered to be the gold standard for detection of PAVMs (10/25

cases in [41]; 20% in [45] and 6/11 in [46]); the frequency with

which the studies were positive requiring subsequent CT

evaluations [1][44]; service logistics; patient preference for the

speed and cannula free CT scan; research study variability in grey

scale and spectral Doppler of the carotid artery post Echovist

injection on repeated studies; [42][47] limited correlations with

validated methods of right-to-left shunt quantification; [42][47]

and provocation of angina with electrocardiographic ST segment

depression in a patient with a large right-to-left shunt. These

research studies were never formally published due to the untimely

death of the late Professor Martin Blomley.[48]

Right-to-left (R-L) shunt measurements. These were

routinely made at the outset of the study using established

departmental protocols. [4][8][9][10][49][50] For these nuclear

medicine quantifications, 71–150 MBq (median 100 [IQR

93,106]) MBq of 99mtechnetium-labelled albumin macroaggre-

gates were injected into the antecubital vein. The shunt was

formally quantified by the proportion of radioactive tracer

detected over the right kidney (posterior view), adjusted for dose

injected, and assuming the right kidney receives 10% of cardiac

output (kidney dose method). [4][11] By 2002, it was apparent that

very small PAVMs with right-to-left shunts below the usual

diagnostic cut off [10] could be associated with strokes and brain

abscess: this was formally confirmed as a lack of association with

paradoxical embolic endpoints. [20] Routine right-to-left shunt

measurements were phased out after 2006 in view of these data;

the cerebral images (Figure 1C–F); patient reports of headaches

provoked by the scans; and further validations of oxygen

quantification methodologies.

Other clinical assessments. General clinical variables

defined at the time of initial clinic assessment included a full
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symptomatic review [51]; full past medical, [20][52] pregnancy,

[53] and family [53][54] histories; histories of current or ex-

smoking; full drug history with a particular focus on treatments

used for HHT haemorrhage (in this series, female hormones,

tranexamic acid and iron/blood replacement (oral and intrave-

nous iron; blood transfusions)); hypertension on treatment or blood

pressure .140/90; atrial fibrillation on treatment or ECG; and

known diabetes mellitus, hypercholesterolaemia or cardiac disease.

Headaches were defined as migrainous for patients on migraine

treatment, or describing recurrent headaches with aura and/or

teichopsia.[55]

Strokes were defined as clinically evident, focal cerebral deficits

of rapid onset, at least 24 hs in duration. This population have

heightened susceptibility to other strokes and stroke-like pathol-

ogies [1][12][13][14]. We have previously addressed haemor-

rhagic strokes, [54] brain abscesses,[20][56] and migraines, [55] in

the population. For the current study which focused specifically on

ischaemic strokes, an independent report of a causative infarct on

clinical post stroke cross-sectional imaging was required to assign

ischaemic aetiology.

Polycythaemia, and anaemia due to iron deficiency, are

common problems in PAVM and HHT patients.

[14][15][16][51] Throughout the study, blood tests included full

blood counts with haematinics, routine biochemistry, coagulation

screens, and iron assessments (serum iron and transferrin

saturation index (Tf SI)). To optimise clinical management, blood

tests were taken at standardised times to minimise variability due

to diurnal variation in iron levels, which at the study outset was

anticipated to lead to daytime falls in iron [57] Following the

identification of venous thromboemboli risks and elevated FVIII in

a research study protocol [52], Factor VIII:Ag was included in

routine blood tests from 2002, but to avoid confounding variables,

not within 6 months of a known confounding state such as VTE,

infection, therapeutic embolisation, surgery or pregnancy.[52][57]

Our interim 2006 analyses demonstrated multiple associations

between clinically relevant endpoints and iron treatment and/or

iron deficiency (Shovlin, Jackson, and Kulinskaya, 2006 unpub-

lished). Recognising that identifying incorrect associations could

lead to potentially detrimental clinical care, the iron deficiency/

treatment associations were not published in the relevant manu-

scripts. [20][52][58][59] Instead, extensive literature searches to

identify potential mechanistic routes were undertaken, and

relevant clinical research study protocols performed to define

why iron deficiency was present; [34] examine relationships with

hypoxaemia compensations; [51] and explore potential mechan-

isms for associations with thrombotic and other clinical endpoints

([60] CIBA Foundation searches; current manuscript; Mollet et al

manuscript in preparation). For the clinical service, ferritin, which

had not been measured initially due to concerns about interpreta-

tion in populations at high risk of hepatic AVMs,[61][62] was

measured routinely from 2006.

Embolisation. 262 (62.1%) patients underwent embolisation

treatment of PAVMs, [40][58][63] with embolisation not

indicated in the remainder primarily due to PAVMs with feeding

arteries too small for treatment. Other reasons for no embolisation

include previous maximal treatment elsewhere, contraindications

(four with very severe pulmonary hypertension,[58] with one on a

liver transplant waiting list), or patient preference. Pulmonary

artery pressures (PAP) were measured in 262 patients undergoing

embolisation, recorded by a centrally-placed catheter prior to

contrast injection.[40][58][63]

Study Specific Methods
Oxygen saturation and validations. Pulse oximetry had

been introduced into the PAVM clinical service more than a

decade earlier [10] because of patient preference compared to the

repeated arterial punctures required to obtain arterial blood gases.

Pulse oximetry at 1 minute intervals for 10 minutes standing, with

the mean of the recordings at minutes 7, 8, 9 and 10, had been

validated as a robust measure of PAVM severity, better reflecting

right-to-left shunt size than SaO2 in other postures, or on

exercise.[10]

For the current study, Table 1 demonstrates that the replicate

four values following 7, 8, 9 and 10 minutes standing were highly

reproducible. To further validate the mean value for use in the

current manuscript, the mean SaO2 was compared in the

subgroup of patients with same-day right-to-left shunt measure-

ments. Same-day shunt measurements were available in 198 cases

and ranged from 0.7–48.8% of cardiac output (median 5.3%). The

right-to-left shunt explained 73% of the total variance in mean

SaO2 (Figure 1B).

Blood tests and validations. Iron deficiency is a common

problem in HHT patients [14][15][16] A low serum ferritin

defines iron deficiency, but as discussed previously by ourselves

[60] and others, [61][62] iron deficiency may be present in the

setting of a normal or high ferritin due to concurrent pathologies:

Inflammation, liver pathology, kidney disease, malignancy,

rheumatoid disease, hyperthyroidism, heavy alcohol intake, and

hepatic AVMs are all associated with high ferritin concentrations

despite severe iron deficiency. [60][61][62] Additionally, iron

deficiency may be difficult to assess in the PAVM/HHT patients,

because secondary polycythaemia in hypoxaemic patients masks

anticipated anaemia. [35][51][60] To evaluate if low serum iron

levels were capturing similar iron deficient cohorts to low serum

ferritin, haematinic variables were examined in patients with

ferritin,15 mg/L, ferritin,20 mg/L, or serum iron ,11 mmol/L

irrespective of ferritin. As shown in Table 2, the iron-deficient

haematinic variables were indistinguishable between these three

iron-deficiency definitions, and all differed substantially from the

group without evidence of iron deficiency. We concluded that it

was appropriate to use low serum iron, measured during the

standardised afternoon timepoints, as a marker of a clinically

relevant iron deficient state.

Platelet aggregation. Following identification of a poten-

tially highly relevant manuscript describing modified platelet

aggregation responses to serotonin (5 hydroxytryptophan, 5HT) in

iron deficient patients[64] platelet aggregation responses were

examined in a subgroup of HHT patients. The maximal %

aggregation, and slope representing rate of platelet aggregation

were measured with light transmission (Born) aggregometry

(Helena Bioscience APACT4) in platelet rich plasma (PRP) within

2 hours of blood sampling: 10 mls of blood from consenting

individuals was collected into citrate tubes, and centrifuged at

900 rpms for 10 mins to generate platelet rich plasma. To

generate platelet poor plasma, the remaining blood was cen-

trifuged at 3,000 rpms for a further 10 mins. The turbid platelet

rich plasma and clear platelet poor plasma were used for APACT4

turbidity reference settings representing 0 and 100% aggregation

respectively. For experimental assays, fresh solutions of adenosine

diphosphate (ADP, Helena Biosciences), and serotonin (5HT,

Sigma) were prepared, and serial dilutions used to generate

working concentrations. For ADP these were 50 mM, 20 mM,

10 mM, and 5 mM; for 5HT 20,000 mM, 2,000 mM, 400 mM,

200 mM and 20 mM. For aggregation assays, 25 ml of agonist was

added to 225 ml of platelet rich plasma, and aggregation over

300 s measured by the loss in plasma turbidity as platelets
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aggregated and sedimented. All measured read outs were entered

into an Excel database and blood test values added, before

transferring to STATA for statistical analyses which used absolute

iron/ferritin values (for graphical illustration, patients were divided

into groups).

Very careful patient selection was used to permit utilisation of

serum ferritin, because in Woods et al, [64] platelet aggregation

reflected iron status over preceding weeks and not days. Multiple

disease states are associated with high ferritin concentrations

despite severe iron deficiency both in the general population,

[61][62] and in HHT patients [60] who have normal iron

handling and appropriate hepcidin levels. [34] Potential partici-

pants were therefore selected if (based on current nosebleeds[65]

and prior history/investigations), they were anticipated to be

consistently iron deficient or non iron deficient, not taking anti-

platelet agents, [66] not transfused or receiving intravenous iron,

[60] and without known concurrent inflammatory or hepatic

disease. [60][61][62] Due to logistics of same-day blood sampling

and processing, platelet assays were performed before the routine

ferritin and iron results were known.

Statistical analyses. Statistical analyses were performed

using STATA IC version 12 (Statacorp, Texas), with adjustments

for multiple testing performed using the false discovery rate

(FDR).[67] Datasets utilised presentation values (non stroke

patients), or timepoint closest to the stroke (stroke patients).

Age/gender and iron-adjusted odds ratios were calculated by

adding each variable to separate models which were simulta-

neously examining the associations of first ischaemic stroke with

age and gender, or serum iron: p values were calculated by post-

estimation Wald tests. Final models were confirmed using receiver

operating characteristic (ROC) analyses. Variance contributions in

multivariate analysis of variance (MANOVA) were calculated

using Wilks’ lambda.

Results

Population demographics
Full demographics of the series are presented in Table 3. The

median age of the 497 consecutive and unselected PAVM/HHT

patients was 47 (IQR 35, 60)ys. 302(60.8%) were female.

231(46.4%) had recognisable neurovascular risk factors, including

185(37.2%) current/former smokers, 75(15.1%) with documented

or treated hypertension, and smaller numbers with hypercholes-

terolaemia, diabetes, or arrhythmias. SaO2 ranged from 59–100%

(median 94.75%, IQR 91,96%). Due to HHT bleeding, pre-

dominantly from the nose, [34] 137(28%) had used iron tablets,

17(3.5%) had used intravenous iron, and 42(8.6%) had been

transfused.

Table 1. SaO2 measurement reproducibility.

Overall Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Number of datasets 522 104 104 104 104 103

SaO2 erect (%): mean (SD) 93.9 (4.1) 86.9 (3.7) 93.2 (1.0) 95.4 (0.72) 96.5 (0.6) 97.3 (0.68)

SD of 4 replicates (%): mean (SD) 0.40 (0.44) 0.60 (0.74) 0.37 (0.29) 0.34 (0.30) 0.30 (0.31) 0.38 (0.30)

SaO2 values measured by pulse oximetry following 7, 8, 9 and10 minutes standing. The variability within these measurements has not been presented previously. 522
consecutive datasets for the 165 PAVM patients first presenting between 2006 and 2010 were analysed and represent their datasets at presentation and in follow up. To
illustrate reproducibility across all severities of hypoxaemia, datasets were divided into quintiles based on SaO2, each with over 100 datasets. SD, standard deviation.
doi:10.1371/journal.pone.0088812.t001

Table 2. Comparison of iron deficiency classifications.

Median Lower quartile (Q1) Upper quartile (Q1)

No ID ferr,15 ferr ,20 iron ,11 No ID ferr,15 ferr ,20 iron ,11 No ID ferr,15 ferr ,20 iron ,11

Age (yr) 48 47.5 47.5 52 35 37.5 39 43 62 52.5 54 61

SaO2 (%) 95 95 94.6 94.9 92 90.5 89.3 92 96.5 96 95.5 95.8

BMI (kg/m2) 25.8 25.1 25.3 26.3 22.9 21.9 21.9 21.9 28.2 28.3 29.8 30.2

Haemoglobin (g/dl) 15.1 12.8 12.9 13 13.9 11.6 12.3 11.9 16 13.7 13.8 14.2

Haematocrit 0.44 0.4 0.4 0.4 0.41 0.38 0.39 0.38 0.47 0.42 0.43 0.44

MCV (fl) 89.6 84.8 85 85 86.8 73.4 73.9 76.4 92.8 86.9 87.4 87.4

MCH (pg) 30.7 26.6 27.2 27.6 29.4 22.6 22.8 23.9 31.8 29 29.1 29.2

MCHC (g/dL) 34 32.1 32.2 32 33.3 30.7 30.6 31 34.7 33.1 33.4 33.2

Serum iron (mmol/L) 18 7 8.5 7 16 4 4 4 24 13 13 10

Serum TfSI (%) 30.5 10.5 15 11 27 6 6 6 44 17.5 21 15

Serum ferritin mg/L 51 7 9.5 19 31.5 5.5 6 7 93 10.5 14 40

Oxygen content (mls/dl) 18.8 16 16 16.3 17.4 14.9 14.8 14.8 20.1 17.4 17.6 18.1

For patients presenting between 2006 and 2010, iron deficiency was assigned as absent (No ID) if ferritin, iron and TfSI were all clearly in the normal range
(ferritin.20 mg/L, serum iron.11 mmol/L and TfSI.20%, N = 93). The groupings to examine iron deficiency were ferritin ,15 mg/L (ferr,15, N = 20); ferritin ,20 mg/L
(ferr,20, N = 26); and serum iron ,11 mmol/L (iron ,11, N = 50). BMI, body mass index. MCV, mean corpuscular volume. MCH, mean corpuscular haemoglobin. MCHC,
mean corpuscular haemoglobin concentration. TfSI, transferrin saturation index.
doi:10.1371/journal.pone.0088812.t002
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Paradoxical embolic events
No neurological deficits or myocardial ischaemic symptoms

were reported by the patients following perfusion study quantifica-

tion of the right-to-left shunt. However, larger shunts were

associated with substantial cerebral microvascular impaction, and

this reduced after PAVM embolisation (Figure 1C–F).

Sixty-one individuals (12.3%) experienced at least one clinical

stroke confirmed as ischaemic in aetiology at median age 52 ys

(IQR 41–63 ys). By Oxford/Bamford classification, 43/61 (70.5%)

were partial anterior circulation syndromes, 17/61 (27.9%) were

partial posterior circulation syndromes, and one patient had a

lacunar circulation syndrome (Table 4). There was no difference in

ages between the stroke distribution types (Table 4).

Conventional stroke risk factors
Almost half of the ischaemic strokes (29/61, 47.5%) occurred in

lifelong non smokers without any documented conventional stroke

risk factors (hypertension; hypercholesterolemia, diabetes, or

arrhythmias). Ischaemic strokes were no more frequent in patients

with one or more conventional risk factors (32/231) than

those without any risk factors (29/266, x2 p = 0?42). In age/

gender-adjusted logistic regression, none of the conventional

Table 3. Population Demographics.

No stroke Ischaemic stroke Total Mann Whitney

N median mean N median mean N median mean p value

Ischaemic stroke 436 0 0 61 1 1 497 0 0.12 —

Age (yr) 436 46 46.4 61 51 51.5 497 47 47.0 0.025

Gender (% female) 436 1 0.60 61 1 0.69 497 1 0.61 0.17

Smoking 436 0 0.37 61 0 0.38 497 0 0.37 0.94

Hypertension 434 0 0.14 61 0 0.21 495 0 0.15 0.15

Venous thromboemboli 436 0 0.053 61 0 0.049 497 0 0.052 0.91

Diabetes mellitus 436 0 0.011 61 0 0.033 497 0 0.014 0.19

Atrial fibrillation or arrythmia 436 0 0.014 61 0 0.016 497 0 0.014 0.87

Hypercholesterolemia 435 0 0.016 61 0 0.016 496 0 0.016 0.97

Ischaemic heart disease 436 0 0.0046 61 0 0.049 497 0 0.01 0.0011

Myocardial or valvular disease 436 0 0.0092 61 0 0 497 0 0.008 0.45

High output cardiac failure 436 0 0.0046 61 0 0 497 0 0.004 0.6

Brain abscess 436 0 0.096 61 0 0.098 497 0 0.10 0.96

Migraines 435 0 0.35 61 0 0.33 496 0 0.35 0.74

Ever transfused (%) 430 0 0.081 57 0 0.12 487 0 0.086 0.3

On iron treatment (oral) 431 0 0.27 58 0 0.36 489 0 0.28 0.14

Ever used intravenous iron 425 0 0.033 57 0 0.053 482 0 0.035 0.45

Ever used tranexamic acid 425 0 0.028 57 0 0.035 482 0 0.029 0.77

Ever used hormones 423 0 0.10 57 0 0.16 480 0 0.11 0.22

Oxygen saturation (SaO2, %) 414 95 92.9 57 94 91.8 471 94.8 92.7 0.28

Hemoglobin (g/dl) 404 14.2 15.4 60 13.8 17.5 464 14.1 15.7 0.25

Platelets (x109/dl) 405 267 275.5 60 272.5 284.8 465 268 276.7 0.57

Serum iron (mmol/L) 364 12 13.7 55 9 10.7 419 12 13.3 0.025

Serum transferrin saturation index, TfSI(%) 364 20 21.7 56 15 18.4 420 19 21.2 0.094

Ferritin (mg/L) 214 29.5 49.5 28 34.5 49.8 242 30 49.6 0.55

C-reactive protein, CRP (iu/ml) 275 2 3.49 35 2 7.25 310 2 3.91 0.59

Prothrombin time, PT (s) 385 10.7 10.9 54 10.5 11.2 439 10.7 11.0 0.08

Activated partial thromboplastin time, APTT (s) 381 26 26.1 54 25.65 25.8 435 26 26.1 0.27

Thrombin time, TT (s) 369 14.6 14.6 52 15 15.1 421 15 14.7 0.07

Fibrinogen (g/L) 381 3.03 3.11 58 3.34 3.48 439 3.07 3.16 0.013

Factor VIII:Ag, FVIII (iu/ml) 240 1.50 1.63 40 1.73 1.87 280 1.52 1.66 0.07

Von Willebrand Factor, VWF (iu/ml) 177 1.01 1.25 25 1.1 3.00 202 1.025 1.47 0.36

Pulmonary artery pressure (systolic), PAP, mmHg 217 23 24.1 45 23 24.1 262 23 24.1 0.69

Pulmonary artery pressure (diastolic), PAP, mmHg217 8 8.2 45 7 7.82 262 7 8.16 0.63

Pulmonary artery pressure (mean), PAP, mmHg 214 14 14.5 45 13 14.0 259 14 14.4 0.51

Series Indicator 436 2 1.8 61 1 1.63 497 2 1.75 0.13

Demographics of individual and combined series, with p values calculated by Mann Whitney. N, number of recordings of variable in series.
doi:10.1371/journal.pone.0088812.t003

PAVMs and Strokes

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e88812



neurovascular risk factors were associated with ischaemic stroke

risk (Table 5).

Ischaemic strokes were more common in patients who had

experienced at least one myocardial infarction (Table 5). This

association persisted after adjustment for all other measured

variables, and no other measured variable could replace

myocardial infarction in the model, in keeping with a common

paradoxical embolic aetiology.[68] However, only five patients

had myocardial infarctions, three of whom had also experienced

an ischaemic stroke.

Surprisingly, in crude and age/gender adjusted analyses, there

was no association between ischaemic stroke and VTE (Table 5).

Association between ischaemic stroke and iron
deficiency

Ischaemic strokes were more common in patients with low

serum iron (Table 5). This association was maintained when

adjusted for all other variables. Quadratic regression suggested a

near linear inverse relationship between ischaemic stroke risk and

serum iron (Figure S1a). The age/gender adjusted odds ratio of

0.96 [95%CI 0.92, 1.00], per mmol/L increase in serum iron,

Table 5) implies that a serum iron of 6 mmol/L would be

associated with approximately double the risk of stroke compared

to a serum iron level in mid-normal range. Iron-stratified Kaplan

Meier survival curves are illustrated in Figure 2A.

The study was not powered to evaluate the differences between

the groups with and without conventional risk factors, but

subgroups analysis suggested that stroke associations with low

iron were not confined to patients without known cardiovascular

risk factors: The age/gender adjusted odds ratios odds ratios were

0.95 (95%CI 0.90, 1.01, p = 0.075) for the group with known

ischaemic stroke risk factors, and 0.97 (95% CI 0.93, 1.03,

p = 0.32) for the group without.

Other associations with stroke risk
It is usually considered that larger right-to-left shunts are

associated with an increased risk of neurological complications.

Risk are definitely increased in patients with Grade 3 shunts by

transthoracic contrast echocardiography (TTCE), compared to

shunts of lesser severity.[18] The majority of patients in this study

would be expected to have a grade 3 shunt, because they had

PAVMs which were visible on CT. [13][14][15][16][17][18]

Surprisingly, crude analyses demonstrated no association between

lower SaO2 reflecting larger shunts, and stroke risk (Table 3). In

iron-adjusted analyses, there was a marginal association between

low SaO2 and stroke risk (Table 5): the iron-adjusted odds ratio

(0.96 [95%CI 0.92, 1.000]) implied that the risk of stroke would

increase ,1.4 fold with SaO2 90% and ,2.3 fold with SaO2 80%,

for the same degree of iron deficiency.

ROC analyses suggested that in the subgroup of patients with

pulmonary artery pressure (PAP) measurements, stroke risk was

greater in the setting of lower PAP(mean), supporting our earlier

PAVM stroke studies which identified enhanced stroke risk with

low PAP. [20] In these ROC analyses, stroke risk was also greater

with lower serum iron, lower SaO2, higher fibrinogen (the

predominant plasma protein for platelet adhesion[69]), and in

women (Figure 2B). These associations were evident once adjusted

for the presence of all other variables in the ROC model, and

therefore making independent contributions to stroke risk in the

model.

We concluded that risk factors were pointing away from

conventional neurovascular aetiologies, paradoxical embolism of

venous thrombi, or shunt severity, towards a process influenced by

iron deficiency and paradoxical emboli of platelets.

Platelet aggregation
Given the established efficacy of anti-platelet therapy in

prevention of ischaemic stroke, [70] we hypothesised that iron

deficiency may enhance platelet activity. No relevant articles were

identified through PubMed. From the CIBA Foundation Sympo-

sium back-catalogue, we identified an early report[64] which we

believe may have been hitherto underappreciated. Supporting our

hypothesis, these authors [64] demonstrated enhanced platelet

aggregation responses to 5HT in 19 anaemic iron deficient

patients (Hb 8.7960.24 g/dl; serum iron 3.860.32 mmol/l)

compared to controls. [64] The aggregation response corrected

in all patients retested following treatment of their iron deficiency.

[64] 5HT was examined because iron deficiency impaired the

activity of the iron-containing platelet monoamine oxidase that

metabolises 5HT; resuspension studies confirmed altered aggrega-

tion responses were due to the platelet, not the plasma.[64]

These findings were replicated in a carefully selected subgroup

of patients. Controls displayed secondary aggregation waves to

ADP (Figure 3A), but not 5HT (Figure 3B). In contrast, severely

iron deficient patients displayed delayed secondary aggregation

waves to 5HT, (Figure 3C) partially correcting with improved iron

indices (Figure 3D).

To examine further, participants were assigned to two group-

ings defined by serum ferritin: iron deficient (ferritin 2–17 (median

8)mg/L, n = 7) and controls (ferritin 24–98 (median 38)mg/L,

n = 8). No individual had a ferritin between 17 and 24 mg/L. ADP

induced similar dose-dependent aggregation in iron deficient

patients and controls (Figure 4A, Figure 4B). However, iron

deficient HHT patients displayed enhanced total aggregation to

5HT over a five minute period (Figure 4C). The iron deficient

Table 4. Details of clinical ischaemic strokes.

N Gender (% female) Age at stroke median (range)

Total anterior circulation TACS 0 — ----

Partial anterior circulation PACS 43 65?1 51 (24–77)

Partial posterior circulation POCS 17 53?1 52 (25–89)

Lacunar circulation* LACS 1 100 58

Total ALL 61 51?5 51 (24–89)

*Note that silent lacunar infarcts, or silent infarcts at other sites, were excluded by the study methodology. Data exclude four iatrogenic strokes of known aetiology (one
following thrombus injection through giving set; one at time of cerebral angiography; one at time of pulmonary angiography; and one progressive following
stereotactic radiotherapy), but otherwise include all first clinical strokes of ischaemic aetiology.
doi:10.1371/journal.pone.0088812.t004
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group also displayed faster rates of aggregation in response to 5HT

(Figure 4D).

The variables of 5HT aggregation and aggregation rate were

skewed and normalised by log(ln) transformation (SFigure2). In

univariate and multiple regression, serum iron was inversely

related to (ln)aggregation (Table 6A). Serum iron was also

inversely related to (ln)rate of aggregation. These inverse

associations persisted after adjustment for 5HT dose and ferritin

(Table 6B). Using MANOVA to adjust for participant and 5HT

concentration, either iron or ferritin explained 14% of the total

variance in (ln)5HT aggregation rate (p = 0?039 (iron); p = 0.021

(ferritin)).

Discussion

In this study, paradoxical embolic strokes associated with the

right-to-left shunts of CT-evident PAVMs were shown to be

associated with low serum iron levels which approximately

doubled age-adjusted stroke risks. Although there are multiple

metabolic and physiological associations with iron deficiency, and

the current study does not demonstrate causality, platelet data

presented here and four decades ago, [64] highlight one

consequence of iron deficiency that would be highly relevant to

stroke pathogenesis, namely enhanced platelet aggregation

responses.[71]

Table 5. Adjusted odds ratios for ischaemic stroke risk.

Age and gender-adjusted Serum iron-adjusted

N Odds Ratio p value N Odds Ratio p value

Age — — — 419 1?02 (1?00, 1?03) 0?13

Gender — — — 419 1?40 (0?75, 2?58) 0?29

Smoking 497 1?08 (0?62, 1?91) 0?78 419 0?94 (0?52, 1?70) 0?84

Hypertension 495 1?32 (0?65, 2?67) 0?44 417 1?27(0?60, 2?68) 0?54

Diabetes 497 3?34 (0?61, 18?2) 0?16 419 3?10 (0?54, 17?6) 0?2

AF and other arrythmias 497 1?05 (0?12, 9?21) 0?96 419 1?07 (0?12, 9?56) 0?95

Hypercholesterolemia 496 0?78 (0?09, 6?65) 0?82 418 1?24 (0?14, 10?6) 0?85

Myocardial infarction (MI) 497 8?86 (1?41, 55?5) 0?02 419 22?6 (2?26, 226?7) 0?008

Brain abscess 497 0?98 (0?39, 2?46) 0?97 419 0?88 (0?33, 2?35) 0?02

Migraines 496 0?87 (0.49, 1?56) 0?43 418 0?89 (0?49, 1?62) 0?71

Venous thromboemboli (VTE) 497 0?77 (0?22, 2?67) 0?68 419 0?53 (0?11, 2?34) 0?4

Ever transfused 487 1?28 (0?53, 3?12) 0?58 413 1?46 (0?60, 3?58) 0?41

On iron treatment (oral) 489 1?28 (0?70, 2?34) 0?41 413 1?14 (0?60, 2?15) 0?68

Ever used intravenous iron 482 1?41 (0?39, 5?17) 0?6 407 1?31 (0?35, 4?85) 0?69

Ever used tranexamic acid 482 0?99 (0?21, 4?6) 0?99 407 1?22 (0?25, 5?98) 0?8

Ever used female hormones 480 1?41 (0?64, 3?14) 0?4 405 1?47 (0?64, 3?40) 0?37

Oxygen saturation erect (SaO2){ 471 0?98 (0?93, 1?02) 0?28 398 0?96 (0?92, 1?01) 0?085

Haemoglobin (g/dl) 464 1?00 (0?99, 1?02) 0?38 410 0?98 (0?91, 1?05) 0?62

Platelets 465 1?00 (1?00, 1?00) 0?67 415 1?00 (1.00, 1.00) 0?48

Serum iron { 419 0?96 (0?92, 1?00) 0?036 — — —

Transferrin saturation index (TfSI) 420 0?99 (0?97, 1?01) 0?17 418 1?00 (0?95, 1?06) 0?93

Ferritin 242 1?00 (0?99, 1?01) 0?91 236 1?00 (0?99, 1?01) 0?74

C-reactive protein 310 1?03 (1?00, 1?07) 0?06 292 1?03 (0?99, 1?06) 0?1

Prothrombin time 439 1?08 (0?96, 1?21) 0?2 394 1?02 (0?87, 1?20) 0?83

Activated partial thromboplastin time 435 0?97 (0?87, 1?07) 0?54 391 1?00 (0?90, 1?11) 0?97

Thrombin time 421 1?14 (0?97, 1?38) 0?11 379 1?13 (0?96, 1?34) 0?14

Fibrinogen 439 1?24 (1?00, 1?53) 0?048 393 1?16 (0?91, 1?47) 0?25

Factor VIII 280 1?45 (0?95, 2?30) 0?089 263 1?24 (0?78, 1?96) 0?36

von Willebrand Factor 202 1?09 (0?97, 1?23) 0?14 188 0?99 (0?70, 1?40) 0?95

Pulmonary artery pressure (systolic) 262 0?99 (0?94, 1?04) 0?71 221 0?97 (0?92, 1?03) 0?39

Pulmonary artery pressure (diastolic) 262 0?96 (0?88, 1?06) 0?45 221 0?96 (0?87, 1?06) 0?44

Pulmonary artery pressure (mean) 259 0?96 (0?89, 1?04) 0?3 218 0?94 (0?86, 1?03) 0?17

Series indicator 497 0?79 (0?54, 1?18) 0?23 419 0?73 (0?48, 1?10) 0?13

Full list of age/gender, and serum iron-adjusted odds ratios for ischaemic stroke risk for the specified variable, where an inverse association with stroke risk is indicated
by an odds ratio ,1. N: number of datasets available. CI, confidence intervals, AF, atrial fibrillation. Pseudo r2 indicates the proportion of stroke variance explained by
age, gender, and the specified variable. P values were calculated by the non parametric Wald test which does not assume independence of variables. { Quadratic
regression plots for stroke risk versus serum iron or SaO2 presented in Figure S1. Note p = 0.047 significant at FDR = 0.05 level.
doi:10.1371/journal.pone.0088812.t005
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Figure 2. Stroke incidence. A) Cumulative survival until first stroke: The solid line is modelled from the 129 patients with serum iron ,8 mmol/L;
dotted line from the 161 patients with serum iron .19 mmol/L. Shaded areas indicate 95% confidence intervals. B) Comparison of the stroke risk ROC
models from myocardial infarction and serum iron (base model, black line/symbols), and strongest model generated from captured physiological
variables, excluding the outcome measure of myocardial infarction (red line/symbols). The two models provide equivalent areas under the curve of
0.65 and 0?66 (p = 0.88). In the physiological ROC model, stroke risk was higher not only with lower serum iron (OR 0.95 [95% CI 0.90, 1.01]), but also
with lower PAP(mean) (OR 0.94 [0.86, 1.03]); higher fibrinogen (OR 1.50 [0.95, 2.33]), lower SaO2 (OR 0.98 [95% CI 0.93, 1?03]), and in women (OR 1.57
[0.71, 3.47]).
doi:10.1371/journal.pone.0088812.g002

Figure 3. Representative platelet dose response curves. A) Typical control and iron deficient responses to ADP at 5 (blue), 10 (green), 20 (red)
and 50 (black)mM. B) Typical control dose response curves to 5HT at 20 (blue), 200 (green), 2,000 (red) and 20,000 (black) mM–note the absence of the
secondary wave of aggregation. C) Representative 5HT dose response curves displaying delayed secondary wave of aggregation observed in all
severely iron deficient patients (hemoglobins 5.0–7.5 g/dl). The traces illustrated (5HT at 20 (blue), 200 (green), 2,000 (red) and 20,000 (black)) mM
were from an individual with ferritin 4 mg/L, iron 3 mmol/l, hemoglobin 7.5 g/dl. D) Traces from the same individual as in (C), following a 6 month
course of iron that resulted in improved iron indices (ferritin 31 mg/L, iron 7 mmol/l, hemoglobin 10.5 g/dl). Note that despite further treatments, iron
deficiency persisted due to ongoing hemorrhagic losses. Aggregation curves are displayed for 5HT at 20 (black), 200 (green), 2,000 (red) and 20,000
(blue)mM.
doi:10.1371/journal.pone.0088812.g003
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Strengths of the current study include the lack of confounding

inflammatory diseases, and consistent assessment methodologies

including standardised timings of blood sampling which is

important because iron levels vary during the day. The absence

of arterial blood gas measurements of PaO2 may be considered a

weakness, but the reproducibility of the replicate pulse oximetry

SaO2 measurements (Table 1) render this criticism less important.

The similar haematinics defined by low serum iron, and the

Figure 4. Comparison of platelet dose response curves in response to agonists in iron deficient patients and controls. Solid lines
indicate controls; dotted lines represent the iron deficient group. Error bars represent standard error of the mean. A) Total aggregation in response to
ADP at 5–50 mmol/L. B) Rate of aggregation in response to ADP. Since circulating blood should spend less than two seconds between pulmonary
transits, the rate of aggregation may be particularly relevant. C) Total aggregation in response to 5HT. D) Rate of aggregation in response to 5HT.
doi:10.1371/journal.pone.0088812.g004

Table 6. Multiple regression analyses of 5HT-induced aggregation parameters.

Regression coefficient 95% confidence intervals P value

A) (Ln) total aggregation

5HT (mmol/L) 0.000036 6.861026, 0.000065 0.018

Ferritin (mg/L) 20.027 20.043, 20.011 0.002

Serum iron (mmol/L) 20.082 20.14, 20.028 0.005

Iron*ferritin (mg*mmol/L2): 0.0012 8.761026, 0.0024 0.052

B) (Ln) rate of aggregation

Ferritin (mg/L) 20.0062 20.010, 20.0022 0.004

Serum iron (mmol/L) 20.040 20.061, 20.019 0.001

A) The distribution for aggregation achieved was skewed and normalised by log transformation (Figure S2A). (Ln)aggregation was therefore used as the dependent
variable for regression. A model restricted to first order variables was not as strong as the final model including the iron-ferritin interaction term (iron*ferritin (mg*mmol/
L2)). This model of 24 assays explained 72% of the variance of (ln)aggregation (p = 0.0001). B) The distribution for rate of aggregation was skewed and normalised by log
transformation (Figure S2B). (Ln)rate of aggregation was therefore used as the dependent variable for regression. Final model for (ln)rate of aggregation in all 22
available assays, in a model that explained 77.4% of the variance (p,0.0001).The crude coefficient with iron was similar at 20.036 [95% CI 20.053, 20.0187], p,0.0001.
There was no relationship with 5HT concentration in univariate or iron/ferritin- adjusted regression (data not shown).
doi:10.1371/journal.pone.0088812.t006
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ferritin values conventionally used to define iron deficiency

(Table 2), support the use of both low serum iron and low ferritin

as markers of iron deficiency in the cohort in which ferritin levels

are often difficult to interpret due to concurrent conditions,

[61][62] particularly hepatic AVMs in HHT patients [60].

The data extend the previous studies on stroke risk in PAVM

patients, effectively analysing patients already within the higher

shunt grade shown by Velthius and colleagues to be associated

with enhanced risk of paradoxical embolic events. [18] Echocar-

diographic measurements were not made on the study population,

but the majority of patients in this study would be expected to have

a Grade 3 shunt, because they had PAVMs which were visible on

CT scans. Iron deficiency has not been proposed previously as a

risk factor for paradoxical embolic strokes in PAVM patients.

However, in the general population, the CVDSACTS cohort

study of 1,772 adults over 40 years, [72] NHANES I subgroup of

1,039 white women aged 45–74 ys, [73] and KLoSHA study of

965 Koreans aged over 65 years [74] all support an epidemio-

logical link between iron deficiency and ischaemic stroke risk

operating independently to known ischaemic stroke risk factors,

even if this was not the primary focus of the respective

reports.[72][74]

Iron deficiency in HHT results from under-replacement of iron

losses rather than the severity of haemorrhage per se, [34] but will

be more common in patients with greater haemorrhagic burdens

and therefore vascular damage. There are also innumerable

consequences of iron deficiency including anaemia/reduced blood

oxygen content, [51] high cardiac output with lower systemic

vascular resistance, [75][76][77] and increased blood viscosity.

[78] Additionally, in the HHT population, we recently demon-

strated that iron deficiency was associated with VTE, and elevated

Factor VIII. [60] We cannot exclude a role for these or other

processes in the pathogenesis of paradoxical embolic stroke,

though note there was no increase in VTE in patients with

ischaemic stroke, and no clear associations between ischaemic

stroke and polycythaemia, Factor VIII, or coagulation parameters

that would be shortened in venous prothrombotic states (Table 3,

Table 5). In the current study, there was an unexpected association

between ischaemic stroke and higher concentrations of fibrinogen,

the predominant circulating plasma protein for platelet adhesion.

[69] In general population studies, depletion of fibrinogen is

‘‘promising’’ in the treatment of acute ischaemic stroke. [79] In the

current study, the strokes resulted in only partial anterior or

posterior circulation syndromes. Taken together with the known

efficacy of anti-platelet agents in stroke prevention, [70] the

findings point towards a process influenced by paradoxical emboli

of small platelet aggregates in circulating blood.

There are few relevant data on circulating platelet aggregates,

[80] but platelet studies in the general population have demon-

strated higher spontaneous platelet aggregation in ischaemic stroke

patients. [81] The original association between iron deficiency and

enhanced aggregation to 5HT [64] has however, escaped notice:

PubMed searches in November 2013 for ‘‘iron,’’ ‘‘platelet(s),’’ and

{‘‘5HT’’ or ‘‘serotonin’’} retrieved no relevant results. 5HT is

usually studied with respect to neurotransmission, following release

from nerve tissue but is also released from the dense granules of

platelets and intestinal enterochromaffin cells. [69][71] 5HT

plasma concentrations increase after platelet activation, intestinal

ischaemia/reperfusion, drug administration, and in a number of

disease states including atherosclerosis. [69][71][80][82][83] The

importance of 5HT-platelet interactions remains controversial as

in the West, 5HT is considered a minor platelet agonist. However,

evidence particularly from Japan suggests greater importance:

Antagonists to the receptor 5HT2A result in dose-dependent

inhibition of platelet aggregation in ischaemic stroke patients, [80]

and achieved therapeutic equivalence with aspirin in secondary

prevention of ischaemic stroke. [83] Conversely, cardiovascular

side effects are recognised for drugs that increase extracellular

5HT/serotonin.[84]

The presented and published [64] data support a model in

which iron deficiency enhances platelet aggregation. We cannot

confirm a causal role to stroke pathogenesis- for example, it is

conceivable that iron deficiency is a marker of more severe

vascular damage that could be promoting platelet aggregation in

vivo, in addition to the vessel-independent effects observed with

iron deficient platelets ex vivo. Nevertheless, irrespective of the

precise mechanisms of formation, a proportion of platelet

aggregates which should lodge safely in pulmonary capillaries/

arterioles after forming or entering the venous circulation, would

escape pulmonary capillary filtration via the right-to-left shunts

provided by PAVMs, and instead occlude systemic arterioles/

capillaries including those of eloquent regions of the brain

(Figure 1C–F). The final outcome following impaction will depend

on local responses including orchestration of thrombo-inflamma-

tory cascades, [69] but during any thrombus resolution, systemic

tissues do not benefit from a separate arterial supply of oxygenated

blood, as in the lung.[1][3]

Our data do not allow us to say whether the stroke risk findings

would be more important than grading with contrast echocardio-

graphy - further studies could be conducted to assess if the iron

deficiency risk is greater in echo- stratified patients. However, for

patients with CT-proven PAVMs, the key biomarker for ischaemic

stroke risk appears to be iron deficiency, and not the severity of

right-to-left shunt. Iron deficiency is potentially reversible if iron

intake can be increased to meet demands,[34] and reassuringly, in

the current study, use of iron tablets to treat iron deficiency due to

HHT-related bleeding [34] was not associated with enhanced

stroke risk (Table 3, Table 5). Correction of iron deficiency is

however often difficult in HHT patients, due to ongoing

haemorrhagic blood losses. [22][23][24][34] The additional data,

albeit weak, that higher SaO2 is associated with a lower stroke risk

further supports the need for therapeutic embolisation to reduce

shunt size, while providing some reassurance to individuals with

smaller, untreatable, but CT-detectable PAVMs.

In summary, the data indicate that iron deficiency and

circulating platelets provide potentially novel opportunities for

targeted stroke reduction strategies that could be examined in

future clinical trials, particularly in the setting of compromised

pulmonary capillary filtration.

Supporting Information

Figure S1 Quadratic regression plots for continuous
variables associated with stroke risk. Quadratic regression

plots (with shaded intervals representing the 95% confidence

intervals) for continuous patient variables versus ischaemic stroke

risk for A) Serum iron; B) SaO2. Note the near-linear regression

lines, particularly for serum iron.

(TIF)

Figure S2 Normal quantile plots for platelet aggrega-
tion parameters used as dependent variables in regres-
sion analyses. A) Total aggregation across all concentrations of

5HT. Note skewed distribution. B) Rate of aggregation across all

concentrations of 5HT. Note skewed distribution. C) Log-

transformed total aggregation. D) Log-transformed rate of

aggregation.

(TIF)
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and specificity of radioisotope right-left shunt measurements and pulse oximetry
for the early detection of pulmonary arteriovenous malformations. Chest 115:

109–13.

11. Mager JJ, Zanen P, Verzijlbergen F, Westermann CJ, Haitjema T, et al. (2002)

Quantification of right-to-left shunt with (99 m) Tc-labelled albumin macro-
aggregates and 100% oxygen in patients with hereditary haemorrhagic

telangiectasia. Clin Sci (Lond) 102: 127–34.

12. Feinstein J, Moore P, Rosenthal D, Puchalski M, Brook M (2002) Comparison of

contrast echocardiography versus cardiac catheterisation for detection of
pulmonary arteriovenous malformations. Am J Cardiol 89: 281–5.

13. Gazzaniga P, Buscarini E, Leandro G, Reduzzi L, Grosso M, et al. (2008)

Contrast echocardiography for pulmonary arteriovenous malformations
(PAVMs) screening: Does any bubble matter? Eur J Echocardiogr 10: 513–8.

14. Barzilai B, Waggoner A, Spessert C, Picus D, Goodenberger D (1991) Two-

dimensional contrast echocardiography in the detection and follow-up of

congenital pulmonary arteriovenous malformations. Am J Cardiol 68: 1507–1.

15. van Gent MW, Post MC, Snijder RJ, Swaans MJ, Plokker HW, et al. (2009)

Grading of pulmonary right-to-left shunt with transthoracic contrast echocar-

diography: does it predict the indication for embolotherapy? Chest. 2009
May;135 (5):1288–92.
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