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ABSTRACT We report here a draft genome sequence of Azospira sp. strain I13 in
the class Betaproteobacteria, a facultative anaerobic bacterium responsible for nitrous
oxide (N2O) reduction. Deciphering this genome would pave the way for the use of
Azospira sp. strain I13 to facilitate N2O consumption in a nitrogen-removing bioreac-
tor emitting N2O.

Nitrous oxide (N2O), a highly potent greenhouse gas causing ozone depletion, is
utilized by microorganisms as an electron accepter in natural ecosystems and

engineered systems, serving as a N2O sink (1, 2). It was recently reported that N2O-
reducing bacteria are classified into two clade types based on sequences of a functional
gene (nosZ) encoding N2O reductase (3, 4). Furthermore, distinct nos gene clusters with
the two clades display divergent traits in terms of the gene expression, electron
transfer, and N2O-reducing activity (4–6). The complete genome of Azospira suillum
strain PS, a perchlorate-reducing bacterium, was previously reported (7, 8). Neverthe-
less, genome and physiological data about members of the genus Azospira remain
scarce, especially regarding their role in nitrogen transformations. Recently, we isolated
three strains of N2O-reducing bacteria by inoculating activated sludge in a municipal
wastewater treatment plant with an enrichment reactor fed with sodium acetate and
N2O as an electron donor and acceptor, respectively (T. Suenaga, T. Hori, S. Riya, M.
Hosomi, B. F. Smets, and A. Terada, unpublished data). One of the isolates, Azospira sp.
strain I13, has a high affinity for N2O and exhibits rapid recovery of N2O reduction
activity from oxygen exposure-derived deterioration (9). The physiological traits are of
promise for engineering applications in mitigating N2O emissions (9). We present here
the draft genome sequence of Azospira sp. strain I13.

Azospira sp. strain I13 was aerobically grown using sodium acetate as a sole electron
donor. Total nucleic acids were extracted by a phenol extraction method with chemical
cell lysis and subsequently purified with cetyltrimethylammonium bromide. Then, DNA
was purified by RNA decomposition with RNaseA (TaKaRa Bio, Inc., Japan). A paired-end
DNA library (insert size, 250 to 500 bp) was prepared as previously reported (10). The
library was sequenced using a MiSeq platform (Illumina, USA) and read with 700-fold
genome coverage (10,672,103 250-bp paired-end reads). The acquired sequence, con-
sisting of 26 scaffolds in total, was assembled using SOAPdenovo version 2.04 (11). The
draft genome size of strain I13 was 3.79 Mb with a G�C content of 64.0%. The largest
scaffold was 557 kb.

Fifty of the tRNA-encoding genes and three of the rRNA-encoding genes were
identified by tRNAscan-SE version 1.3.1 (12) and RNAmmer version 1.2 (13), respectively.
The draft genome sequence was annotated using the DDBJ Fast Annotation and
Submission Tool (DFAST) (14), which yielded a total of 3,413 protein-coding DNA
sequences. Azospira sp. strain I13 codes a clade II type nosZ gene. In addition, the strain
possesses nitrogen metabolism-related genes for nitrate (dissimilatory NapAB), nitrite
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(cd1-containing NirS), nitric oxide, dissimilatory nitrite reduction, and nitrogen fixation.
The draft genome sequence of Azospira sp. strain I13 will contribute to a comprehen-
sive understanding of nitrogen metabolisms in natural environments and engineered
systems.

Accession number(s). The draft genome of Azospira sp. strain I13 has been deposited
as 26 scaffolds in DDBJ/EMBL/GenBank under the accession number BFBP00000000
(BFBP01000001 to BFBP01000026). The version described in this paper is the first
version.
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