syduosnuelA Joyiny siapun4 DA @doing ¢

syduasnue|A Joyiny siapund JIAd adoin3 ¢

Europe PMC Funders Group
Author Manuscript
Nat Struct Mol Biol. Author manuscript; available in PMC 2013 November 01.

Published in final edited form as:
Nat Struct Mol Biol. 2013 May ; 20(5): 641-643. doi:10.1038/nsmb.2545.

The structural basis for specific decoding of AUA by isoleucine
tRNA on the ribosome

Rebecca M. Voorhees?!, Debabrata Mandal?, Cajetan Neubauer?!, Caroline Kéhrer2, Uttam L.
RajBhandary?T, and V. Ramakrishnan®:t

IMedical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom

2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA

Summary

Decoding of the AUA isoleucine codon in bacteria and archaea requires modification of a
cytidine in the anticodon wobble position of the isoleucine tRNA. Here, we report the
crystal structure of the archaeal tRNA,''®, which contains the novel modification agmatidine
in its anticodon, in complex with the AUA codon on the 70S ribosome. The structure
illustrates how agmatidine confers codon specificity for AUA over AUG.

The ribosome is the macromolecular enzyme that converts genetic information into protein
using a messenger RNA (mRNA) template and transfer RNA (tRNA) substrates. Accurate
protein synthesis depends on the ability of the ribosome to faithfully select cognate tRNA by
the complementarity of its anticodon to the mRNA codon, while rejecting near and non-
cognate tRNA. Interactions with the ribosome ensure strict Watson-Crick base pairing at the
first and second positions of the codon-anticodon helix, but allow a variety of non-canonical
interactions at the third, or wobble, position (tRNA residue 34). This ‘wobble recognition’
is essential to allow a single tRNA anticodon to bind the multiple codons that represent a
single amino acid. As many as 40% of all codons are decoded using this type of wobble
recognition 2, making it a fundamental principle for synthesis of all proteins across biology.

It is increasingly clear however, that tRNA sequence alone is insufficient for accurate and
efficient decoding at the wobble position. Post-transcriptional modifications in and around
the tRNA anticodon are ubiquitous in all organisms, and are essential for binding of the
tRNA to the ribosome, for maintaining protein reading frame /n vivo, and ensuring fidelity
in protein synthesis (reviewed in 34). The physiologic relevance of these modifications is
evidenced by the fact that defects in modification of the wobble base in mitochondrial
tRNAs are associated with human disease °.

Modifications at residue 34 can both expand and restrict the ability of a tRNA to recognize
multiple codons 8. For example, inosine allows decoding of three codons (i.e. NNU, NNC,
and NNA) by a single tRNA 78, Conversely, certain modified uridines at the wobble
position restrict tRNA recognition to codons ending in a purine residue (i.e. NNR) °. In the
late 1980s, a third type of wobble modification called lysidine (k2C), which consists of the
amino acid lysine linked to C2 of cytidine, was identified in £ colitRNA,'¢, a minor
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although essential tRNA!"® species 10. Accurate decoding of the AUA lle codon by this
tRNA requires tRNA, !¢ to discriminate between two purines (AUA vs AUG) in the wobble
position, a phenomenon observed in the decoding of only one other amino acid, Trp, for
which tRNAT™ must discriminate between the UGG Trp codon and the UGA stop codon.
UGA stop codons, however, have unusually high inherent rates of readthrough 11, and only
subtle changes in the tRNA structure are required for their suppression 12, indicative of the
inherent difficulty of accurate discrimination between purines at this position.

Genetically, tRNA,!"® contains a CAU anticodon, which alone, is perfectly complementary
to the AUG Met codon. However, modification of C34 to k2C34 in bacteria switches both
the amino acid and codon specificity of the tRNA; the k2C34-modified tRNA is acylated by
Ile-tRNA synthetase and decodes the minor AUA lle codon, while simultaneously rejecting
the AUG Met codon 13 (Fig. 1a,b). The enzymes responsible for introducing this
modification were later shown to be highly conserved and essential in bacteria 14. Recently,
it was found that archaea use an analogous modification, known as agmatidine (agm?C), in
the wobble position of tRNA,'€ (refs. 15-17), suggesting that the requirement for a post-
transcriptional modification to discriminate between AUA and AUG codons is conserved
across all kingdoms of biology 8. In order to understand how lysidine and agmatidine,
which are derived from cytidine, can base pair specifically with A of the AUA lle codon but
not with G of the AUG Met codon is, we decided to study the interaction of tRNA,''€ with
its cognate codon on the 70S ribosome.

Here we report the crystal structure, solved to 3.2 A resolution, of the archaeal tRNA,''€,
bound to an AUA codon in both the A and P site on the 70S ribosome (Supplementary Table
1). The structure illustrates how the modification allows binding to the cognate AUA codon,
and suggests a mechanism for discrimination against the near-cognate AUG. Due to the
chemical similarities between the agmatidine and lysidine modifications, these insights will
likely apply more generally across both the bacterial and archaeal kingdoms.

As canonical Watson-Crick interactions are present at both the first and second position of
the codon-anticodon helix, the ribosome is, as expected, in its “‘closed conformation’ and the
conserved interactions between A1492, A1493, and G530 to monitor the geometry at these
positions are observed as previously reported 119, In the wobble position, the A3sagm2C34
adopts a non-standard geometry that would allow a single hydrogen bond to form between
the exocyclic amine of agm2C34 and N1 of A3 (Fig. 1c). This is unexpected, as two of the
three predicted tautomeric forms of lysidine and agmatidine 1317 could theoretically form
two hydrogen bonds with adenosine. The long chain modification at C2 appears to sterically
prevent adoption of the canonical Watson-Crick geometry that would be required for this
more stable interaction.

Instead, the configuration at the wobble position is more similar to the A3+C34 mismatch
observed for binding of the tRNAT™-derived Hirsh suppressor tRNA to the UGA stop codon
than to a canonical wobble or Watson-Crick interaction 12 (Fig. 2a). Interestingly, a similar
geometry of the A3+agm?2C34 base pair is maintained in the P site of the ribosome as well.
Formation of this interaction requires a shift in both the mRNA and tRNA, which is in
contrast to previous studies where the mRNA remained stationary while interacting with
several modified cognate anticodons 20. The Watson-Crick interactions at the first and
second positions of the codon-anticodon helix appear unaffected by this distorted geometry
in the wobble position.

The presence of only a single hydrogen bond between A3 and agm2C34 in the wobble
position raises the question of how and why this is thermodynamically sufficient to stabilize
productive binding of tRNA,!!€ to the ribosome. Indeed an unmodified C34+A3 mismatch,
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which can also form a single hydrogen bond at the wobble position, is normally disallowed.
Based on the structure, it appears that the long agmatine side chain interacts with the
backbone of a downstream mRNA residue, as the terminal amine of the agmatine side chain
in the A site is within hydrogen bonding distance of an mRNA ribose (04”) (Fig. 2b). An
interaction of this terminal amine with a crystallographic water molecule may also be
possible. A similar interaction may also be maintained in the P site, as the terminal amine of
the agmatine side chain is within hydrogen bonding distance of the phosphate oxygen of A3
of the P-site codon. Similar hydrogen bonding would also be chemically possible with the
terminal amine of the lysidine modification, and therefore may represent a conserved
mechanism for stabilizing binding of tRNA,"€ to the AUA codon (Fig. 3a). These
downstream interactions appear to be sufficient to compensate for the weaker interaction at
the wobble position, consistent with the observation that only a small perturbation to the
energetic balance of the Hirsh suppressor tRNAT™ is required to allow productive
recognition of a CeA mismatch at the wobble position 12,

Finally, the structure also suggests a mechanism by which the agmatidine and lysidine
modifications could prevent binding of tRNA,'€ to the near-cognate AUG codon. Modeling
a guanosine residue at the third position of the mRNA codon suggests that the agmatidine
modification would clash with the exocyclic amine (N2) of the guanosine residue (Fig. 3b).
This steric clash would prevent interaction of agm2C or k2Cwith G in a canonical Watson-
Crick geometry. Furthermore, while it may be sterically possible for the agm2C or kC+G3
pair to adopt a distorted geometry similar to that observed for agm2CA3 in this
configuration no hydrogen bonding interactions at the wobble position would be possible
(Fig. 3b). These combined effects would therefore lead to rejection of modified tRNA,'® at
the near-cognate AUG codon, explaining how the modification specifically results in
accurate decoding on the ribosome.

The role of the agmatidine and lysidine modifications in Ile decoding is a striking example
of the essential function of modifications in tRNA and, more generally, RNA biology. It is
increasingly evident that while the genetic code was first elucidated over forty years ago, we
are just beginning to appreciate the sheer complexity of ensuring accuracy in protein
synthesis on the ribosome.

Online Methods
Ribosomes, mRNA, and tRNAs

Thermus thermophilus HB8 70S ribosomes were purified as previously described 21 from
cells grown at the Bioexpression and Fermentation Facility at the University of Georgia.
mRNAs were purchased from Dharmacon (Thermo Scientific) with sequence:
5'GGCAAGGAGGUAAAA AUA AUA AAA 3’ (tRNA,!'® codons in A and P sites are
underlined).

tRNA,'® from Haloarcula marismortuiwas purified in several batches by hybrid selection
with a biotinylated DNA oligonucleotide bound to streptavidin sepharose as described
previously 1722 The tRNA,'le retained on the column was eluted and further purified by
electrophoresis on an 8% native polyacrylamide gel. The yield of purified tRNA,'"® from 60
L of culture of H. marismortuiwas 11.8 Aygp units. The purity of the tRNA used in this
study was confirmed by /n vitro aminoacylation with isoleucine and RNA sequencing. The
codon specificity of tRNA binding to H. marismortui ribosomes has been described
previously 17: the purified tRNA was also shown to bind well to AUA on bacterial
ribosomes.
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Complex formation and crystallization

Complexes were formed as previously described 21 in buffer G (50 mM KCI, 10 mM
NH4CI, 10 mM MgOAc,, 5 mM K-HEPES (pH 7.5), 6 mM B-mercaptoethanol). 70S
ribosomes, at a concentration of 4.4 M, were incubated with 3-fold excess mRNA for 6
minutes, followed by a 4-fold excess tRNA,'!€ for 30 min at 55°C. Paromomycin was added
to a final concentration of 100 uM and complexes were incubated at room temperature.
After addition of Deoxy Big Chaps (Hampton) to a concentration of 2.8 mM, crystals were
grown via vapor diffusion in sitting drop trays using reservoir solutions containing 0.1 M
Tris-acetate pH 7, 0.2 M KSCN, 3.5-5.5% (w/v) PEG 20K, and 3.5-5.5% (w/v) PEG 550
monomethyl ether (PEG 550 MME). Crystals were cryoprotected stepwise to a final solution
containing 30% (w/v) PEG 550 MME and buffer G. Crystals were harvested and frozen by
plunging into liquid nitrogen, and data were collected at 100 K.

Data collection and refinement

Data was collected at beamline ID 14-4 of the European Synchrotron Light Source 23, and
processed using XDS 24. Iterative rounds of model building and refinement were carried out
in coot 25 and CNS 26, All figures were produced in Pymol 27,

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Decoding of the Ile AUA codon in prokaryotes. A) Post-transcriptional modification of C34
with either lysine or agmatine switches the amino acid and codon specificity of tRNA,'le
from Met to lle. B) Chemically, the bacterial and archaeal agmatidine and lysidine
modifications are very similar, suggesting they play similar roles in decoding of the AUA
codon. C) The crystal structure of the archaeal tRNA,!'€ bound to its cognate AUA codon on
the ribosome, demonstrates that a single hydrogen bonding interaction between A3 (red) and

agm?C (purple) forms in the wobble position.
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Figure 2.

The role of the agmatidine modification in decoding. A) Comparison of the A3sagm?2C
wobble pair with a canonical G3-C34 Watson-Crick base pair (grey) and an A3+C34
mismatch (cyan), both observed in the wobble position 12. B) Interaction of the terminal
amine of the agmatidine modification on the A-site tRNA with the backbone of a
downstream mRNA residue important for stabilizing the codon-anticodon interaction.
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Predicted implications of this structure. A) Model of how the lysidine modification could
allow a similar interaction with A3 as observed for agmatidine. B) Model of how the
agmatidine modification could lead to discrimination against the near-cognhate AUG codon
either by a steric clash with the exocyclic amine of G3 if it were to adopt a Watson-Crick
geometry12, or by its inability to form hydrogen bonding interactions in the mismatch
geometry observed in this structure.
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