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Abstract: Telomerase, an enzyme responsible for the synthesis of telomeres, is activated in many
cancer cells and is involved in the maintenance of telomeres. The activity of telomerase allows cancer
cells to replicate and proliferate in an uncontrolled manner, to infiltrate tissue, and to metastasize to
distant organs. Studies to date have examined the mechanisms involved in the survival of cancer
cells as targets for cancer therapeutics. These efforts led to the development of telomerase inhibitors
as anticancer drugs, drugs targeting telomere DNA, viral vectors carrying a promoter for human
telomerase reverse transcriptase (hTERT) genome, and immunotherapy targeting hTERT. Among
these novel therapeutics, this review focuses on immunotherapy targeting hTERT and discusses the
current evidence and future perspectives.
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1. Introduction

For the survival of multicellular organisms, such as humans, the homeostasis and function of
the cellular network that forms different organs needs to be maintained. Cancer is an aggregate of
abnormal cells that arise from mutations. These cells impair the normal cellular network by replicating
and proliferating in an uncontrolled manner, infiltrating into tissues, and metastasizing to distant
organs, eventually leading to the death of the organism. One of the mechanisms that enables cancer
cells to behave in such a manner is controlled by telomeres and telomerases [1,2].

DNA replication is required for cells to divide and proliferate. During a normal cycle mediated by
DNA polymerase, sections of telomeres found on both ends of a DNA strand are not fully replicated.
As a result, telomeres are gradually lost with each cycle. Telomeres protect the ends of chromosomes,
and the shortening of telomeres results in the exposure of the ends of DNA strands. As a result,
DNA replication no longer occurs, and the cell stops replicating and eventually dies. In our body,
this mechanism prevents cells with an abnormal proliferative capacity to become cancerous. On the
other hand, many cancer cells are able to maintain telomeres because they have an activated form of
telomerase that is involved in the synthesis of telomeres. Thus, as discussed above, telomerases help
cancer cells to divide infinitely and to act in an uncontrolled manner [3].

Studies to date examined the mechanisms underlying the survival of cancer cells as targets for
cancer therapeutics [4–7]. These efforts led to the development of telomerase inhibitors as anticancer
drugs, as well as drugs that target telomere DNA, viral vectors that carry a promoter for the human
telomerase reverse transcriptase (hTERT) genome, and immunotherapy strategies that target hTERT. In
addition, recent studies have shown that mutations exist frequently in the promoter region of the hTERT
gene and increase the activity of telomerase to play a major role in tumorigenesis [8,9]. These findings
have triggered researchers to reconsider the usefulness of treatments targeting hTERT [10]. This review
focuses on immunotherapy targeting hTERT and discusses the current evidence and future perspectives.
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2. Recent Advancements in Cancer Immunotherapy

Cancer immunotherapy is considered the fourth pillar of cancer treatment after surgery,
chemotherapy, and radiation therapy and includes the use of cytokines, antibodies, checkpoint
inhibitors, and immune cells such as dendritic cells (DCs) and T cells. Among the different types of
cancer immunotherapy, checkpoint inhibitors and chimeric antigen receptor T-cell (CAR-T) therapy
have been used successfully for the treatment of cancer in clinical settings [11–14]. Unlike conventional
methods that target cancer cells, these types of cancer immunotherapy strategies are novel as they
target the host immune system and may bring a paradigm shift in the treatment of cancer. Based on
the success of these cancer immunotherapy strategies in the clinical setting, cancer and immunology
studies have reemphasized the importance of the role of T cells to recognize tumor antigens and to
subsequently eliminate cancer cells [15,16].

3. Expression of hTERT as a Target Antigen in Cancer Immunotherapy

The first step in the development of cancer immunotherapy targeting tumor-specific immune
responses is to identify target tumor-associated antigens (TAAs). To date, several TAAs including
cancer/testis antigen and carcinoembryonic antigen (CEA) have been identified and targeted in
immunotherapy [17,18]. Once a cancer cell dies by mechanisms such as apoptosis, a part of the cell
is excreted into its surroundings and is internalized by endosomes of dendritic cells (DCs). Upon
internalization, TAAs are degraded and form long peptides composed of 10–20 amino acids, which then
bind to the major histocompatibility complex (MHC) class II molecule to be expressed on the cell
surface. A recognition of these peptides by the T-cell receptor (TCR) of CD4+ helper T (Th) cells results
in the activation of Th cells. DCs also export TAAs to the cytoplasm where the antigens are degraded
by proteasomes to form short peptides composed of 9–11 amino acids. Once these peptides bind to
MHC class I molecules and are expressed on the cell surface, they are recognized by the TCR of CD8+

cytotoxic T lymphocytes (CTLs) to activate CTLs [19]. CTLs are important effector cells that kill cancer
cells (Figure 1).
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Figure 1. The human telomerase reverse transcriptase (hTERT)-specific cancer immune cycle and
telomerase-targeted cancer immunotherapy: The hTERT protein produced in a cancer cell is cut to
small peptides. The peptides are complexed with major histocompatibility complex (MHC) class I
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molecules and are presented on the cell surface for cytotoxic T lymphocytes (CTLs). Apoptotic cancer
cells or proteins produced by cancer cells are phagocytosed by immature dendritic cell (DC), and the
DCs present immunogenic hTERT-derived peptides to CTLs in a lymph node. The CTLs are recruited
to a tumor site and kill cancer cells through the recognition of immunogenic peptides presented
by cancer cells. Helper T (Th) cells stimulate CTLs and enhance their ability to kill cancer cells.
ER means endoplasmic reticulum. The red arrows and boxes show the telomerase-targeted cancer
immunotherapies. These therapies accelerate the cancer immune cycle.

Techniques for identifying novel TAAs include serological analysis of expression cDNA libraries
(SEREX) and cDNA microarrays. After the amino acid sequences of TAAs are identified, numerous
short peptides that induce MHC class I-restricted CTLs can be identified using algorithm analyses and
transgenic mouse models expressing human leukocyte antigen (HLA) [20,21].

hTERT is one such TAA and is overexpressed in over 85% of tumors, including tumors of
hematopoietic tissues and solid tumors [22]. Its expression in normal cells is limited to testicular cells,
hematopoietic stem cells, basal keratinocytes, and activated lymphocytes [23,24]. It is also overexpressed
in cancer stem cells, in which hTERT plays a role in the replicative features and immortality of the
cells [25,26]. hTERT is, therefore, an attractive target for cancer immunotherapy, including as a method
to target cancer stem cells. Studies to date demonstrated that short and long peptides originating from
hTERT form complexes with MHC class I and class II molecules; these complexes are then expressed
on the cell surface to elicit CTL and Th cell responses in vitro [27–29]. As hTERT is immunogenic, it is
considered a universal TAA that can be used as a target to elicit antitumor immunity. Indeed, several
hTERT-derived peptides have been identified as targets for cancer immunotherapy (Table 1) [29–44].

Table 1. hTERT-derived immunogenic peptides.

Sequence * Position HLA
Restriction

Immune
Response for

CD4/CD8
Year of Report Refs.

MPRAPRCRA 1–9 HLA-B7 −/+ 2006 [36]
RLGPQGWR 30–37 HLA-A2 −/+ 2007 [33]
RLGPQGWRV 30–38 HLA-A2 −/+ 2007 [33]
APSFRQVSCL 68–77 HLA-B7 −/+ 2001 [41]
APSFRQVSCLKELVA 68–82 HLA-DR +/− 2018 [29]
AYQVCGPPL 167–175 HLA-A24 −/+ 2006 [35]
RPAEEATSL 277–285 HLA-B7 −/+ 2006 [36]
VYAETKHFL 324–332 HLA-A24 −/+ 2006 [35]
YLEPACAKY 325–333 HLA-A1 −/+ 2005 [34]
RPSFLLSSL 342–350 HLA-B7 −/+ 2006 [36]
RPSLTGARRL 351–360 HLA-B7 −/+ 2006 [36]
YWQMRPLFLELLGNH 386–400 HLA-DP +/− 2011 [39]
DPRRLVQLL 444–452 HLA-B7 −/+ 2006 [37]
VYGFVRACL 461–469 HLA-A24 −/+ 2006 [35]
FVRACLRRL 464–472 HLA-B7 −/+ 2006 [37]
ILAKFLHWL 540–548 HLA-A2 −/+ 2000 [30]
LAKFLHWLMSVYVVE 541–555 HLA-DP +/− 2011 [38]
LLRSFFYN 555–563 HLA-A2 −/+ 2007 [40]
RLFFYRKSV 572–580 HLA-A2 −/+ 2002 [31]
YLFFYRKSV 572–580 HLA-A2 −/+ 2002 [32]
LFFYRKSVWSKLQSI 573–584 HLA-DP +/− 2011 [38]
EARPALLTSRLRFIPK 611–626 HLA-DR,DQ,DP +/− 2011 [38]
RPALLTSRLRFIPKP 613–627 HLA-DP +/− 2011 [38]
DYVVGARTF 637–645 HLA-A24 −/+ 2006 [35]
ALFSVLNYERARRPGLLGASVLGLDDIHRA 660–689 HLA-A2,DR +/+ 2011 [39]
SVLNYERARRPGLLG 663–677 HLA-DR +/− 2011 [39]
RPGLLGASVLGLDDI 672–686 HLA-DR1,7,15 +/− 2002 [43]
PGLLGASVLGLDDIH 673–687 HLA-A2,DR +/+ 2011 [39]
GLLGASVLGL 674–683 HLA-A2 −/+ 2011 [39]
LLGASVLGL 675–683 HLA-A2 −/+ 2012 [44]
LTDLQPYMRQFVAHL 766–780 HLA-DR1,7,15 +/− 2003 [42]
CYGDMENKL 845–853 HLA-A24 −/+ 2006 [35]
RLVDDFLLV 865–873 HLA-A2 −/+ 2000 [30]
KLFGVLRLK 973–981 HLA-A2,A3 −/+ 2001 [41]
DLQVNSLQTV 988–997 HLA-A2 −/+ 2002 [32]
YLQVNSLQTV 988–997 HLA-A2 −/+ 2002 [32]
TYVPLLGSL 1088–1096 HLA-A24 −/+ 2006 [35]
LPGTTLTAL 1107–1115 HLA-B7 −/+ 2006 [37]
LPSDFKTIL 1123–1131 HLA-B7 −/+ 2006 [37]

* The amino acids in italics and with an underline are mutated.
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4. Development of Peptide Vaccines That Target hTERT

The safety profile, immune response, and antitumor effects of several vaccines using hTERT-derived
peptides have been evaluated for a number of cancer types. The majority of these vaccines are
highly specific to tumors [45] and possess both MHC I and MHC II epitopes within their amino
acid sequences [46]. Currently, over 30 hTERT peptides are being used as mimotopes, which
mimic the structure of epitopes. Although many of them are expressed on MHC class I molecules
and play a role in enhancing CTL response, some are expressed on MHC class II molecules and
function in inducing Th cell responses [29,42]. Vaccines based on hTERT-derived epitopes that
have been described to date are listed in Table 2. They include several drugs, such as GV1001
(used in combination with the granulocyte-macrophage colony-stimulating factor (GM-CSF)), GX301,
GRNVAC1, and VX-001 [6,47–51], which are described in the following sections.
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Table 2. The reported clinical trials of telomerase-targeted cancer vaccines.

Name Clinical Trial Phase Cancer Targeted Clinical Response Adverse Events Year of Report Ref.

GV1001 Phase II
(combined with
cyclophosphamide)

Hepatocellular carcinoma (HCC) No clear GV1001-specific
immune responses
17/40 SD

Well-tolerated 2010 [52]

Phase I/II
(combined with temozilomide)

Melanoma Immune responses
5/25 PR, 6/25 SD

Well-tolerated 2011 [53]

Phase I/II Lung and colon cancer and
melanoma

Immune responses Well-tolerated 2012 [54]

Phase I/II
(combined with or without
GM-CSF or gemcitabine)

Pancreatic cancer Immune responses Mild vaccination-related adverse
events

2014 [55]

Phase III
(GV1001 with or without
gemcitabine and capecitabine)

Pancreatic cancer Adding GV1001 to
chemotherapy did not improve
the overall survival of patients.

No additional adverse events 2014 [56]

Phase I/II
(combined with hTERT540
peptides)

Non-small cell lung cancer
(NSCLC)

Immune responses
7/26 SD (1/26CR after clinical
trial)

Well-tolerated 2006 [57]

Phase I Melanoma Immune responses Well-tolerated 2011 [58]

UV1 Phase I/IIa Prostate cancer Immune responses
17/22 SD

Injection site pruritus 2017 [59]

Vx-001 Phase I/II NSCLC Immune responses
8/22 SD

Well-tolerated; Local skin
reactions

2007 [49]

Phase I/II
(optimized Vx-001)

Breast cancer, colorectal cancer,
head and neck cancer, HCC,
melanoma, prostate cancer,
kidney cancer, pancreatic cancer,
cholangiocarcinoma, and others
with advanced solid tumors,
other than NSCLC

Immune responses
1/55 CR, 1/55 PR, 18/55 SD

Well-tolerated 2012 [50]

Phase I/II
(optimized Vx-001-TERT(572Y))

Chemo-resistant advanced solid
tumors

Immune responses
Better clinical outcome in
responders than nonresponders

Well-tolerated 2012 [51]

Phase II NSCLC Immune responses
3/46 PR, 13/46 SD

Well-tolerated 2014 [60]

Gx-301 Phase I/II Prostate and renal cancer Immune responses Well-tolerated 2013 [61]

hTERT461 Phase I HCC Immune responses No significant adverse events 2015 [62]

Dendritic cell
vaccines

Phase I
(Pulsed with hTERT540 peptide)

Breast and prostate cancer Immune responses
4/7 SD

No significant adverse events 2004 [63]

Phase I/II
(Transfected with hTERT mRNA)

Prostate cancer Immune responses; a reduction
of PSA and molecular clearance
of circulating micrometastases

Well-tolerated 2005 [64]

Phase I/II
(Pulsed with TERT540 peptide)

Prostate, breast, lung, colorectal,
renal, head and neck cancer, and
melanoma

Immune responses
4/16 PR

Well-tolerated; mild flu-like
symptoms and fever

2009 [65]

Phase I/II
(GRNVAC1)

Acute myeloid leukemia Immune responses
Favorable disease-free survival

Well-tolerated; local transient
erythema

2010 [66]

Phase I/II
(TAPCells vaccine)

Melanoma and prostate cancer Immune responses Well-tolerated 2013 [67]

Phase I (DC pulsed with
hTERT572, CEA and
survivin-derived peptides.

Pancreatic cancer Immune responses
4/8 SD

Well-tolerated
Fatigue and self-limiting flu-like
symptoms

2017 [68]

CEA, carcinoembryonic antigen; NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; PR, partial response; SD, stable disease; CR, complete response; PSA, prostate
specific antigen.
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4.1. GV1001

GV1001 is an MHC class II-restricted peptide vaccine composed of 16 amino acids from the active
site of hTERT (611–626, EARPALLTSRLRFIPK) [69]. It requires GM-CSF or toll-like receptor 7 (TLR-7)
as an adjuvant and elicits potent CD4+ and CD8+ T-cell responses, as well as CTL activation [57].
In addition to the immunological mechanisms, previous studies demonstrated that GV1001 acts on
cells directly. Specifically, GV1001 penetrates through the cell membrane and localizes in the cytoplasm,
where it reduces the level of heat shock protein (HSP) inside the cell and on the cell surface. Furthermore,
it reduces the expression of HSP90, HSP70, hypoxia-inducible factor (HIF)-1α, and vascular endothelial
growth factor (VEGF) in tumors under hypoxic conditions. GV1001 was suggested to have high
antitumor effects because it is a cell-penetrating peptide [70,71]. In renal cell carcinoma, GV1001
effectively induced the apoptosis of cancer cells by reducing angiogenesis [72]. Moreover, GV1001 was
demonstrated to have anti-inflammatory effects [73–75] and antiviral activity [76,77], in addition to
protective effects from β-amyloid-induced neurotoxicity in the central nervous system [78].

GV1001 is the most advanced vaccine among all vaccines that target hTERT and was the first
vaccine to be examined in non-randomized clinical trials. It has been tested as a vaccine to treat
different types of cancers such as advanced pancreatic cancer, non-small cell lung cancer (NSCLC),
and melanoma [55]. Clinical trials to date reported the following. First, a phase I/II study demonstrated
that GV1001 induced specific T-cell responses in 50–80% of advanced pancreatic cancer and lung
cancer patients with no clinical toxicity [79]. A study with lung cancer patients further found that the
administration of GV1001 resulted in both CTL and CD4+ T-cell responses [54]. One of the advantages
of this vaccine is that it can be administered without the HLA-typing of patients; thus, it is optimal as a
universal cancer vaccine.

The efficacy of GV1001 has also been confirmed when used in combination with other peptide
vaccines. A phase I/II study demonstrated that the combination of GV1001 with the HLA-A2-restricted
CTL epitope for telomerase (HR2822; hTERT540–548) elicited an immune response with an excellent
safety profile in patients with NSCLC [57]. In this trial, an immune response was induced in 86% of
the patients (12/14), with one patient achieving a complete response (CR). The study also examined its
mechanism of action and revealed that GV1001-specific Th cells recognized antigen-presenting cells
(APCs) that had internalized cancer cells in the tumor and lymph nodes. Furthermore, the vaccine
did not affect bone marrow cells. Other clinical trials examined the combinations of GV1001 with
GM-CSF, temozolomide, and p540 peptide [52,53,55,56,58]. A study on patients with pancreatic ductal
carcinoma reported that the combination of GV1001 with gemcitabine led to tumor cell death and a
significant loss of fibrous tissue within tumors [80]. However, in a phase III trial for patients with
metastatic pancreatic cancer, the addition of GV1001 to chemotherapy (gemcitabine and capecitabine)
did not improve the overall survival [56,81].

4.2. GX301

GX301 is a vaccine consisting of 4 hTERT-derived peptides (hTERT540–548, hTERT611–626,
hTERT672–686, and hTERT766–780). It is able to bind to both MHC class I and II molecules and
contains montanide ISA-51 and imiquimod as adjuvants [61]. In a phase I study on patients with stage
IV prostate cancer and kidney cancer, all patients exhibited immune responses to at least one of the
peptides. This study suggested that multi-peptide vaccines are more effective as they enhance the
immune response in a greater number of responders than single-peptide vaccines [82].

4.3. UV1

UV1 is a second-generation telomerase peptide vaccine that was described recently. It consists of
the 3 most common hTERT-derived peptides that are found in long-term cancer survivors, namely
hTERT691–705 (RTFVLRVRAQDPPPE), hTERT660–689 (ALFSVLNYERARRPGLLGASVLGLDDIHRA),
and hTERT652–665 (AERLTSRVKALFSVL). The vaccine was tested in a phase I/IIa trial for patients
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with metastatic hormone-naïve prostate cancer and was administered as an immunomodulator with
GM-CSF for 6 months. The vaccine elicited an immune response in 85.7% of the patients (17/21) and
reduced the level of prostate-specific antigen (PSA) in 64% of the patients. Magnetic resonance imaging
(MRI) further demonstrated the disappearance of tumors in the prostate in 45% of the patients after
vaccination. Most adverse events associated with the vaccine were classified as grade I [59].

4.4. Vx-001

Vx-001 is a vaccine consisting of 2 peptides: hTERT-derived low-affinity cryptic hTERT peptide
(RLFFYRKSV) and its optimized mutant hTERT peptide (YLFFYRKSV). The latter has an enhanced
affinity to MHC class I molecules because the first amino acid was replaced with a tyrosine residue [83,84].
The antitumor efficacy of Vx-001 has been demonstrated in phase I/II clinical trials for different types
of cancers such as NSCLC, melanoma, breast cancer, and bile duct cancer. Furthermore, in these trials,
the vaccine elicited a strong hTERT-specific immune response, had a good tolerance profile, induced
only mild side effects, and improved clinical outcomes [60,84].

5. Immunotherapy Using hTERT-Targeting Dendritic Cells (DCs)

DCs are the most potent antigen-presenting cells in the body and play an important role in inducing
adaptive immunity and supporting the innate immune response. Over the past decade, DCs have been
used as a tool to induce potent antitumor immune responses in cancer immunotherapy [85]. In the
United States, a DC vaccine called sipuleucel-T was approved by the Food and Drug Administration
(FDA) to be used for patients with metastatic prostate cancer. Sipuleucel-T is a cell product that was
developed by culturing DCs with a tumor antigen (prostatic acid phosphatase (PAP) fusion protein)
and was found to prolong survival by approximately 4 months in a phase III trial [86]. The use of DCs
has also been investigated to develop hTERT-targeted immunotherapy (Table 2) [63,65].

5.1. GRNVAC1

GRNVAC1 is a DC-based cancer vaccine produced by transducing mature DCs from patients with
mRNA encoding hTERT and lysosomal associated membrane protein (LAMP) 1 [64]. LAMP1 brings
hTERT into lysosomes where it is degraded into small peptides. Antigen epitopes that are presented
by DCs after the administration of the vaccine represent different sections of the hTERT peptide to
elicit polyclonal immune responses [69,87]. Clinical studies to date have reported that GRNVAC1 is
safe and well-tolerated [79]. A study on metastatic prostate cancer patients examined the effects of
DCs that were transfected with mRNA encoding chimera LAMP1 and hTERT. GRNVAC1 did not elicit
autoimmune responses, and multiple administrations of the vaccine were well-tolerated by patients.
In addition, the vaccine induced immune responses via antigen-specific CD8+ and CD4+ T cells in the
patient population [64]. A long-term administration of the vaccine has also been reported to be effective
for patients with acute myeloid leukemia [66]. GRNVAC2, another DC-based vaccine, is produced
in the same way as GRNVAC1, except that it originates from human embryonic stem cells instead
of leukapheresis. GRNVAC2 may be a better option in terms of the delivery system [79,83]. These
vaccines may be more advantageous than peptide vaccines as they are not restricted by HLA and may
be effective against tumors with unknown T-cell epitopes.

Additional studies examined varying methods to administer DC-based hTERT vaccines.
For example, one study examined the effects of an indoleamine 2,3-dioxygenase (IDO)-silenced
DC vaccine that was simultaneously transfected with mRNA encoding survivin and the hTERT tumor
antigen. In this study, the vaccine induced T-cell responses to survivin and hTERT in patients with
metastatic melanoma who were pretreated with ipilimumab. Furthermore, T-cell responses against
the melanoma-associated antigen recognized by T cells (MART-1) and NY-ESO-1 were detected in
the peripheral blood. Patients who underwent the treatment had fewer metastases to the lung, liver,
and skin and had an improved overall performance status [88]. Another study examined a technique
to use a recombinant adenovirus encoding hTERT cDNA to transfect DCs. DCs produced by this
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method were used to give rise to hTERT-specific CTLs from autologous T cells in vitro. This technique
resulted in the expression of the antigen and improved CTL response [89].

5.2. TAPCells

Another approach using DCs is the production of therapeutic dendritic-like cells called tumor
antigen presenting cells (TAPCells). The TAPCell-based vaccine was evaluated for over 120 patients
with stage III and IV melanoma and for 20 patients with castration-resistant prostate cancer in
phase I and phase I/II studies. In these studies, the vaccine increased the survival rate of melanoma
patients, prolonged the doubling time of PSA, and elicited T-cell responses in prostate cancer patients.
Furthermore, over 60% of the patients had delayed-type hypersensitivity (DTH) reactions against the
lysates. This suggested that the treatment promoted antitumor immune memory, which is associated
with the clinical efficacy. The study also demonstrated that the TAPCell-based vaccine increased the
number of Th1 and Th17 cells and that the addition of Concholepas concholepas hemocyanin (CCH)
as an adjuvant was safe and further enhanced the immune response [67].

5.3. Other DC-Based Approaches

Mehrotra et al. recently performed a phase I trial to examine the use of DCs that had been pulsed
with 3 different A2-restricted peptides. A pulsed DC vaccine was generated by hTERT (TERT572Y),
CEA (Cap1-6D), and survivin and was evaluated for the treatment of pancreatic cancer. The treatment
elicited specific T-cell responses, and stable disease (SD) was achieved in 50% of the patients. The medial
overall survival was 7.7 months. The vaccine was well-tolerated, with the most common side effects
being transient fatigue and flu-like symptoms [68].

As mentioned above, severe adverse events have not been observed in hTERT-targeted
immunotherapy. However, in this immunotherapy, it might be necessary to be careful about
abnormalities in the host’s immune system. Hematopoietic progenitor cells and both B and
T lymphocytes have a high telomerase activity. This means that hTERT-based anticancer immunotherapy
not only kill cancer cells but also these lymphocytes with a high telomerase activity. In previous
studies with hTERT-derived peptide vaccine and dendritic cells, no serious adverse events regarding
lymphopenia have been reported (Table 2). However, it should be carefully observed in future studies
using new treatment strategies described later.

6. DNA Vaccines

6.1. phTERT

Recombinant DNA techniques can be used with genomes encoding the hTERT peptide to
improve the efficacy of epitope presentation to T cells. Plasmids containing these genomes can be
delivered to antigen-presenting cells by a gene gun or electroporation. Compared with peptide-based
vaccines, DNA-based vaccines are more cost-effective. phTERT is a full-length vaccine optimized
and synthesized as a DNA vaccine that encodes hTERT. When administered to mice and nonhuman
primates by electroporation, phTERT induces potent and broad hTERT-specific CD8+ T-cell responses,
including T cells expressing CD107a, IFN-γ, and TNF-α. Moreover, significant IFN-γ responses and a
release of antigen-specific perforin were observed in immunized monkeys, suggesting that phTERT
overcomes immune tolerance and elicits a potent cell cytotoxicity in the in vivo model of human
immunology. Furthermore, one previous study used an HPV-related tumor model to examine the
preventive and therapeutic potential of the phTERT vaccine and found that the vaccine slowed the
tumor proliferation rate and improved survival [90].

6.2. INVAC-1

INVAC-1 is an optimized plasmid encoding an inactive form of hTERT that can be administered
via electroporation-based intradermal injection. In a mouse model, INVAC-1 induced hTERT-specific
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T-cell responses, including CD4+ Th1 effector and memory CD8+ T cells. In the melanoma model,
INVAC-1 resulted in a survival rate of 50%, as well as a significant tumor growth delay compared with
the control group [91].

7. Cell-Based Immunological Approaches

Cell-based approaches include the use of human umbilical vein endothelial cells (HUVECs)
immortalized with hTERT genes by lentiviral infection. Cells produced by this technique have a
high telomere activity and express CD31, VEGF receptor-2 (VEGFR-2), and integrin α5. In one
previous study, these cells were irradiated to terminate cell proliferation and injected subcutaneously
as a vaccine into mouse models of lung cancer and colorectal cancer. The vaccine elicited both
humoral and cell-mediated immune responses, suggesting that it has both protective and therapeutic
antitumor effects [92].

Another approach demonstrated the use of adenovirus as a vector. With this technique, a mixed
vaccine was developed using a mannan-modified adenovirus that expressed hTERT and VEGFR-2.
The vaccine elicited potent antitumor immune responses and inhibited intertumoral angiogenesis by
activating CTLs reactive to hTERT and VEGFR-2 [93].

8. Gene-Modified T-Cell Therapy

Gene-modified T-cell therapy has been developed as a method to deliver T cells that are specific
for different types of cancers. It uses T cells that are genetically engineered to produce TCRs that
recognize tumor antigens and their epitopes [94,95]. Currently, there are two methods for developing
gene-modified T cells; one is based on the use of tumor antigen-specific TCRs originating from
tumor-specific T cells or their clones [96,97], and the other is based on the use of a chimeric antigen
receptor (CAR) [13,98,99]. The extracellular portion of the CAR is a single-chain antigen recognition
receptor composed of the variable regions of heavy and light chains of a monoclonal antibody specific
to the tumor surface antigen, and the intracellular portion of the CAR is created by a binding of
co-stimulatory molecules to the intracellular portion of the TCR.

TCR-engineered T (TCR-T) cells are produced by modifying T cells with the genome of TCRs that
specifically recognize the complex of tumor-surface antigen peptides and major histocompatibility
complex (MHC) molecules. Thus, TCR-T therapy is only effective if tumor cells express the target
antigen epitopes and MHC molecules. As discussed above, previous studies demonstrated that many
cancer cells express epitopes originating from hTERT. Thus, TCR-T-cell-based immunotherapy targeting
these epitopes may be effective against tumor cells expressing hTERT. Studies to date identified TCRs
for hTERT and have suggested their use for immunotherapy [62,100–102].

9. hTERT-Targeted Cancer Immunotherapy: Future Perspectives

Many immunotherapies using hTERT-derived peptides, DNAs, and DCs have been developed,
but their effects so far are modest. The reason is that hTERT is a self-antigen, and T cells exerting
an effect against such self-antigens are hard to induce in vivo. In addition, the TCR affinities of the
induced T cells are low, and therefore, the antitumor effect of these T cells might be weak. Furthermore,
the expression of antitumor effects by these vaccines usually need some time, and such an antitelomerase
therapy may favor the emergence of adaptive responses, such as the activation of the alternative
lengthening of telomeres mechanism reported by Hu et al. [103]. In order to overcome such a point,
it is important to administer a large amount of T cells having a TCR capable of exerting a certain
antitumor effect.

As described above, in the field of cancer immunotherapy, treatment with TCR gene-modified
T cells has been attempted in many cancer types. In immunotherapy targeting hTERT developed so far,
this therapeutic method using genetically modified T cells is a mechanism to administer T cells with
TCRs that can reliably exert antitumor effects in vivo and it is the most promising treatment in that a
reliable antitumor effect can be obtained in a short time. On the other hand, since it is thought that an
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immunosuppression mechanism via immune checkpoint molecules such as PD-1 is considered to be
working at the tumor locality, a combined therapy with immune checkpoint inhibitors will be further
promoted and seems to be effective.

As research on cancer immunotherapy resulted in the wide use of checkpoint inhibitors in clinical
practice, several important factors have been reemphasized. First, the importance of the role of a host
immune system, particularly of T cells, to recognize tumor antigens and to subsequently eliminate
cancer cells was suggested. Second, checkpoint inhibitors may not be as effective for patients who
lack T cells that are able to recognize tumor antigens because the cells have not been induced or
have not infiltrated the tumors. These patients will require an induction or direct administration
of tumor-specific T cells in order for the cells to reach the tumors [104]. Recent studies suggested
that neoantigens, which arise as a result of genetic mutations in the tumor, can effectively eliminate
tumor cells [105,106]. However, neoantigens are not suited for use as universal antigens because
they differ among patients and cancer types. On the other hand, hTERT is expressed in most
cancer cells and may, therefore, be more advantageous as a target antigen for cancer immunotherapy.
Furthermore, one type of immunotherapy alone (e.g., anti-PD-1 antibody or anti-CTLA-1 antibody) is
not effective for the treatment of solid tumors [107–109]. As such, recent studies have focused on the
development of combination treatments such as those with checkpoint inhibitors and molecular-targeted
agents [12,110–112]. The efficacy of treatments that induce hTERT-specific responses may also improve
if they are combined with checkpoint inhibitors, molecular-targeted agents, and/or other types of
immunotherapy. Therefore, future investigations should focus on the development of complex
strategies incorporating hTERT-specific immunotherapy.

10. Conclusions

Among numerous tumor antigens, telomerase is an attractive target for cancer immunotherapy
because hTERT is a universal antigen and its expression is specific to cancer cells. As such, many
studies to date focused on the development of telomerase-targeted strategies. Studies on antitumor
immunity have advanced rapidly in recent years, and many of the findings are currently being applied
clinically. However, recent evidence also suggests that a single type of immunotherapy is insufficient
to eliminate solid tumors. Thus, there is a need to develop novel strategies that combine different types
of immunotherapy, molecular-targeted agents, and chemotherapy in order to improve the prognosis
of cancer patients. hTERT-targeted immunotherapy is no exception in the development of multiplex
immunotherapy strategies, and these efforts should advance the future of cancer treatment.
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