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Abstract: The therapeutic potential of venom-derived peptides, such as bioactive peptides (BAPs), is
determined by specificity, stability, and pharmacokinetics properties. BAPs, including anti-infective
or antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs), share several physicochem-
ical characteristics and are potential alternatives to antibiotic-based therapies and drug delivery
systems, respectively. This study used in silico methods to predict AMPs and CPPs derived from
natterins from the venomous fish Thalassophryne nattereri. Fifty-seven BAPs (19 AMPs, 8 CPPs, and
30 AMPs/CPPs) were identified using the web servers CAMP, AMPA, AmpGram, C2Pred, and
CellPPD. The physicochemical properties were analyzed using ProtParam, PepCalc, and DispHred
tools. The membrane-binding potential and cellular location of each peptide were analyzed using
the Boman index by APD3, and TMHMM web servers. All CPPs and two AMPs showed high
membrane-binding potential. Fifty-four peptides were located in the plasma membrane. Peptide
immunogenicity, toxicity, allergenicity, and ADMET parameters were evaluated using several web
servers. Sixteen antiviral peptides and 37 anticancer peptides were predicted using the web servers
Meta-iAVP and ACPred. Secondary structures and helical wheel projections were predicted using
the PEP-FOLD3 and Heliquest web servers. Fifteen peptides are potential lead compounds and
were selected to be further synthesized and tested experimentally in vitro to validate the in silico
screening. The use of computer-aided design for predicting peptide structure and activity is fast and
cost-effective and facilitates the design of potent therapeutic peptides. The results demonstrate that
toxins form a natural biotechnological platform in drug discovery, and the presence of CPP and AMP
sequences in toxin families opens new possibilities in toxin biochemistry research.

Keywords: bioactive peptides; antimicrobial peptides; cell-penetrating peptides; in silico prediction;
ADMET; hydrophobicity

1. Introduction

Animal venoms contain a diverse and complex mixture of bioactive compounds that
target various receptors to support the survival of venomous animals [1]. Several drugs
derived from animal venoms have been approved by the FDA for human use, while
other drugs are in clinical trials [2,3]. Recent advances in genomics and proteomics have
improved the biochemical analysis of venoms [4]. The ability to rapidly screen venom
compounds using high-throughput technologies and the prediction of new molecules
encoded in toxins allows for harnessing the therapeutic potential of animal venoms.

Peptides are key role molecules found in all organisms and play a crucial role in
many biological processes [5–8]. The large distribution and functional diversity of peptides
increase their therapeutic potential [9–11]. Venom-derived peptides involved in defense
and predation have long been exploited for medicinal, agricultural, and biotechnological
applications [1,12]. Most of these peptides originate from a limited number of taxa of
venomous terrestrial animals. However, several bioactive compounds from fish venoms
have been isolated and characterized [13]. Prediction of new bioactive peptides (BAPs)
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derived from natterins from the venomous fish Thalassophryne nattereri by in silico analysis
is the aim of this study.

T. nattereri is responsible for cases of envenomation of fishermen and bathers in the
north and northeast of Brazil [14,15]. The most common sites of envenomation are the palm
of the hands or soles of the feet [16]. The natterin family of toxins contains five orthologs:
natterin 1–4 and -P [17]. Natterins are tissue-kallikrein-like enzymes and aerolysin-like
pore-forming toxins responsible for the main toxic effects of T. nattereri venom: local edema,
excruciating pain, and necrosis [18–20]. The degree of amino acid homology between
natterin 1 and 2 is 84%, and these orthologs have 40% identity with natterin 3 and 4
(Figure S1). Natterin P is the shortest ortholog (71 amino acids) and shows 84% identity
with the first 55 amino acid residues in the N-terminus of natterin 4 [17,20]. We hypothesize
that natterins should be a source of BAPs with antimicrobial and cell-penetrating activity
based on their pharmacological profile.

The therapeutic potential of venom-derived BAPs is determined by specificity, stability,
and pharmacokinetic properties [21]. Two classes of BAPs—anti-infective or antimicrobial
peptides (AMPs) and cell-penetrating peptides (CPPs)—share several physicochemical
characteristics and are potential alternatives to antibiotic-based therapies and drug delivery
systems, respectively. Since the plasma membrane selectively controls the transport of
bioactive substances across cells, there is increased interest in developing novel strategies to
overcome this barrier and increase bioavailability. In this context, peptide-based transport
systems, such as CPPs, have come into focus, and their efficiency has been demonstrated in
multiple applications [22–25].

AMPs are a large class of naturally occurring peptides with antibacterial and/or
antifungal activity and can help overcome microbial resistance to conventional antibi-
otics [26–28]. Fusion of CPPs and AMPs produces multifunctional peptides capable of
treating infections, cancer, obesity, and other diseases [29–32]. Thus, concerted efforts
are being made to design new AMPs or CPPs [33–37]. Nonetheless, these BAPs have
failed clinical trials, underscoring the need to optimize these peptides. In this context, the
computer-aided design of BAPs has generated crucial information on the physicochemical
characteristics and biological activities of BAPs, allowing analyzing these proprieties and
activities before peptide synthesis. Several methods have been developed to predict AMPs
and CPPs and evaluate physicochemical properties [38,39].

AMPs and CPPs can be derived from known protein sequences. However, analyzing
the physicochemical properties of proteins using experimental techniques is expensive
and laborious. In silico approaches are faster, cheaper, and less laborious, enabling the
large-scale screening and identification of BAPs with application in biomedicine and
pharmacology [40].

Several BAP prediction tools have been developed using different data features and
machine learning methods [34,40,41], and the performance of these tools varies depending
on these features and the nature of the training technique. Most prediction methods use
single classifier models such as support vector machine (SVM), discriminant analysis, fuzzy
k-nearest neighbor, and deep learning. Other methods use decision tree classifiers such as
ensemble models and random forests [42].

In silico approaches have facilitated the design of highly effective engineered peptides
with cell-penetrating, antimicrobial, and anticancer activity [43–48]. However, as peptides
gain ground over small molecule drugs [2,49], some disadvantages must be overcome,
including chemical and physical instability [50], high susceptibility to proteolytic degra-
dation [51], short half-life and high clearance [52], slow tissue penetration [53], and high
cytotoxicity [53]. In this context, machine learning techniques have been used to screen
peptide template libraries based on physicochemical properties and absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET) parameters. This study evaluated the
physicochemical and ADMET profiles of newly predicted peptides derived from natterins.



Pharmaceuticals 2022, 15, 1141 3 of 24

2. Results and Discussion

There has been an increased interest in therapeutic peptides as potential drug can-
didates [54]. Several studies identified and characterized a wide range of therapeutic
peptides, including tumor-homing peptides [55], CPPs [56], AMPs [57], and anticancer
peptides (ACPs) [58–60], and used these peptides for treating cancer, diabetes, and car-
diovascular diseases. As a result of these efforts, several peptides have entered clinical
trials over the past two decades [54]. Nonetheless, only a few peptide-based drugs are
used clinically. Therefore, many research groups have focused on computational design
based on physicochemical and structural features to produce potent and broad-spectrum
peptides [9]. Several computational tools have been used to design peptide-based drug
candidates [41]. This study predicted and characterized novel and potent BAPs derived
from T. nattereri natterins by in silico analysis.

2.1. Identification of Potential Natterin-Derived AMPs and CPPs

Fifty-seven natterin-derived BAPs were identified using the web servers AMPA,
CAMP, AmpGram, C2Pred, and CellPPD. These peptides were named according to the
original sequence (natterin 1, 2, 3, 4, or P) and the order in which they were identified. For
instance, the first peptide derived from natterin 1 was named NATT1_1, the second was
named NATT1_2, etc. Some peptide sequences were homologous to more than one natterin.
In these cases, the numbering of the source natterin was added to the nomenclature. For
instance, the peptide RTYRGGKKTQTTTKGVYRTTQV was the first to be identified as
belonging to natterin 1 and 2 and thus was named NATT1.2_1.

All predicted AMPs and CPPs and their respective scores (SVM, RF, or artificial neural
networks (ANNs)) and probability scores are listed in Table 1. Nineteen peptides were
classified as AMPs, of which seven, three, six, and three belonged to natterin 1, 2, 3, and 4,
respectively. Eight CPPs were found, of which one and seven belonged to natterin 2 and 4,
respectively. Thirty sequences shared AMP and CPP characteristics, of which five, eleven,
four, five, and five sequences belonged to natterin 1, 2, 3, 4, and P, respectively. In the
C2Pred web server, peptides with scores of <0.5 and ≥0.5 are classified as non-CPPs and
CPPs, respectively. Although some peptides were predicted to be CPPs by CellPPD, C2Pred
classified them as non-CPPs. For instance, the natterin 3-derived peptide NATT3_10 was
classified as CPP and non-CPP using CellPPD (SVM score of 0.1) and C2Pred (score of
0.48551), respectively.

Table 1. Predicted antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) and their
uptake efficiency.

Peptides AMP Prediction CPP Prediction

Name Sequence AA
(n)

CAMP AMPA AmpGram
C2Pred CELL PPD

Prediction Probability Prediction SVM
Score

NATT1_01 TCKTNRIYVGKGAY 14 0 AMP 0.750 Non-CPP 0.836 Non-CPP −0.380
NATT1_02 MRKSTVNNKQCKEVTK 16 0 AMP 0.492 CPP 0.530 Non-CPP −0.250
NATT1_03 VNKDVIEQTM 10 0.501 - 0.047 Non-CPP 0.942 Non-CPP −0.780
NATT1_04 DVIEQTMKDV 10 0.549 - 0.005 Non-CPP 0.912 Non-CPP −0.640
NATT1_05 TESQSYMVTV 10 0.547 - 0.000 CPP 0.756 Non-CPP −0.820

NATT1.2_01 RTYRGGKKTQTTTKGVYRTTQV 22 0 AMP 0.531 Non-CPP 0.524 Non-CPP −0.350
NATT1.2_02 STNDETNLHW 10 0.524 - 0.000 Non-CPP 0.732 Non-CPP −0.780
NATT1.2_03 CKTNRIYVGK 10 0.603 - 0.921 Non-CPP 0.657 Non-CPP −0.100
NATT1.2_04 KTNRIYVGKG 10 0.544 - 0.561 Non-CPP 0.784 Non-CPP −0.120
NATT1.2_05 LIRTYRGGKK 10 0.699 - 0.544 CPP 0.882 CPP 0.300
NATT1.2_06 IRTYRGGKKT 10 0.613 - 0.541 CPP 0.864 CPP 0.010
NATT1.2_07 RTYRGGKKTQ 10 0.526 - 0.413 CPP 0.537 CPP 0.000
NATT2_01 TCKTNKIYVGKGAY 14 0 AMP 0.996 Non-CPP 0.835 Non-CPP −0.460
NATT2_02 RTYRGGKKTQTTTKGVYRTIQV 22 0 AMP 0.530 CPP 0.655 Non-CPP −0.340
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Table 1. Cont.

Peptides AMP Prediction CPP Prediction

Name Sequence AA
(n)

CAMP AMPA AmpGram
C2Pred CELL PPD

Prediction Probability Prediction SVM
Score

NATT2_03 TLRPKLKSKKPAK 13 0 AMP 1000 CPP 0.947 CPP 0.630
NATT2_04 TETQSYMVTV 10 0.684 - 0.000 Non-CPP 0.238 Non-CPP −0.810
NATT2_05 ETQSYMVTVS 10 0.542 - 0.000 Non-CPP 0.238 Non-CPP −0.710
NATT2_06 TTLRPKLKSK 10 0.505 - 0.945 CPP 0.978 CPP 0.300
NATT2_07 TLRPKLKSKK 10 0.602 - 0.991 CPP 0.952 CPP 0.540
NATT2_08 LRPKLKSKKP 10 0.565 - 0.987 CPP 0.952 CPP 0.460
NATT2_09 RPKLKSKKPA 10 0.533 - 0.975 CPP 0.929 CPP 0.290
NATT2_10 PKLKSKKPAK 10 0.638 - 1000 CPP 0.929 CPP 0.510
NATT2_11 KLKSKKPAKP 10 0.627 - 1000 CPP 0.929 CPP 0.510
NATT2_12 LKSKKPAKPA 10 0.573 - 1000 CPP 0.908 CPP 0.100
NATT2_13 KSKKPAKPAG 10 0.529 - 1000 CPP 0.682 CPP 0.200
NATT2_14 SKKPAKPAGK 10 0.556 - 1000 CPP 0.682 CPP 0.150
NATT2_15 LRPKLKSKKPAKPAGK 16 0 - 1000 CPP 0.878 CPP 0.180
NATT3_01 VYVGKNKYGLGKVHTKHE 18 0 AMP 0.996 Non-CPP 0.186 Non-CPP −0.520
NATT3_02 MTRTYRNGQKRTTSITGTYRAIQ 23 0 AMP 0.015 CPP 0.838 Non-CPP −0.220
NATT3_03 YVCSCGCSSG 10 0.574 - 0.577 Non-CPP 0.184 Non-CPP −0.680
NATT3_04 CSCGCSSGFY 10 0.548 - 0.406 Non-CPP 0.204 Non-CPP −0.650
NATT3_05 HYAYGETEKT 10 0.501 - 0.001 CPP 0.508 Non-CPP −0.510
NATT3_06 KYGLGKVHTK 10 0.546 - 0.993 Non-CPP 0.294 Non-CPP −0.120
NATT3_07 PPNHYCPVTM 10 0.582 - 0.949 Non-CPP 0.198 Non-CPP −0.550
NATT3_08 PNHYCPVTMV 10 0.538 - 0.885 Non-CPP 0.246 Non-CPP −0.410
NATT3_09 TRTYRNGQKR 10 0.531 - 0.168 CPP 0.843 CPP 0.190
NATT3_10 RTYRNGQKRT 10 0.528 - 0.166 Non-CPP 0.486 CPP 0.100
NATT4_01 LYVAKNKYGLGKL 13 0.772 - 0.989 Non-CPP 0.089 Non-CPP −0.270
NATT4_02 KACRDLYVAK 10 0 - 0.443 Non-CPP 0.144 CPP 0.030
NATT4_03 KITNVRYNMK 10 0 - 0.045 Non-CPP 0.406 CPP 0.070
NATT4_04 IPFTGRLTRK 10 0 - 0.418 Non-CPP 0.494 CPP 0.140
NATT4_05 PFTGRLTRKY 10 0 - 0.442 CPP 0.751 CPP 0.750
NATT4_06 FTGRLTRKYS 10 0 - 0.358 CPP 0.751 CPP 0.010
NATT4_07 TGRLTRKYSN 10 0 - 0.361 CPP 0.524 CPP 0.030
NATT4_08 GRLTRKYSNG 10 0.519 - 0.406 CPP 0.746 CPP 0.040
NATT4_09 RLTRKYSNGK 10 0 - 0.412 CPP 0.830 CPP 0.160
NATT4_10 KNKYGLGKLHQS 12 0 AMP 0.989 CPP 0.604 Non-CPP −0.160
NATT4_11 KANIPFTGRLTRK 13 0.516 - 0.449 CPP 0.702 CPP 0.050
NATT4_12 GRLTRKYSNGKVT 13 0.519 - 0.432 CPP 0.804 Non-CPP −0.110
NATT4_13 KVTSSSVKGIYKK 13 0.601 - 0.908 Non-CPP 0.231 Non-CPP −0.050
NATT4_14 VTSSSVKGIYKKV 13 0.508 - 0.971 Non-CPP 0.231 Non-CPP −0.430
NATT4_15 VKGIYKKVQVGEI 13 0.746 - 0.919 Non-CPP 0.186 Non-CPP −0.620
NATTP_01 LGQALIPRCRKMP 13 0.609 - 0.986 Non-CPP 0.468 CPP 0.150
NATTP_02 RCRKMPGVKM 10 0 - 0.634 CPP 0.767 CPP 0.010
NATTP_03 QALIPRCRKMPGV 13 0.526 - 0.990 CPP 0.547 Non-CPP −0.090
NATTP_04 ALIPRCRKMPGVK 13 0.771 - 0.990 CPP 0.547 CPP 0.280
NATTP_05 LIPRCRKMPGVKM 13 0.645 AMP 0.893 CPP 0.563 CPP 0.050

Inference/Reference range
>0.5:
AMP -

>0.5:
AMP >0.5: CPP SVM score >0: CPP

<0.5:
non-AMP

<0.5:
non-AMP <0.5: non-CPP SVM score <0:

non-CPP

The length of the predicted peptides varied from 10 to 23 amino acid residues. In
the 1980s, most peptides entering clinical development were less than 10 amino acids
long. However, the length of engineered peptides increased over the years due to im-
provements in chemical synthesis and manufacturing technologies [61,62]. In the current
decade, candidate peptides have up to 40 amino acids, suggesting that length is no longer
a limitation. Nonetheless, most drug candidates have 10 amino acid residues are still
the majority for peptide drug development. In the present study, 63.8% of the peptides
presented 10 amino acids.
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2.2. Physicochemical Properties and Membrane-Binding Potential

The following physicochemical characteristics were analyzed: net charge, pI, molecular
weight (MW), amphipathicity, water solubility, hydrophobicity, hydrophobicity ratio, and
charge. CPPs and AMPs are rich in particular amino acids, such as Arg, Trp, Pro, Gly, Cys,
and His. The hallmark of these two classes of peptides is an abundance of basic (Arg and
Lys) residues and/or Trp. The charge and pI values are shown in Figure 1. Forty-six (81%)
peptides were cationic, nine (16%) were anionic, and two (3%) were neutral. The modes of
action are determined by the physicochemical features of amino acid residues [63]. The
net positive charge and amphipathicity significantly influence the bioactivity of AMPs and
most CPPs [27]. The net positive charge affects initial electrostatic interactions with anionic
phospholipids and lipopolysaccharides in the plasma membranes of certain pathogens [64].
In turn, mammalian cells, such as red blood cells, are composed primarily of zwitterionic
phospholipids in the outer leaflet of their membranes, which are more strongly affected by
peptide hydrophobicity than by positive charges [65]. Highly hemolytic peptides interact
with phosphatidylcholine, an abundant component of zwitterionic membranes [66]. In
contrast, cholesterol inhibits peptide binding in mammalian cell membranes [67].
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Figure 1. Graphical representation of the physicochemical properties of 57 peptides: (A) total net
charge at pH 7.0 and (B) isoelectric point.

In vitro and in vivo studies need controlled and accurate peptide concentration; hence,
peptide solubilization is a critical step for successful assays. Consequently, poor peptide
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solubilization can introduce experimental errors and lead to experimental failure [21]. In
this respect, the solubility of bioactive peptides depends on the molecular length and the
number of hydrophobic amino acids (Table 2) [68]. Peptides with a high percentage (≥50%)
of hydrophobic amino acids are generally partially soluble in aqueous solutions [20,69].
Our results showed that 22% of the peptides were stable (Table S1). The stability of
drug candidates is critical for manufacturing the active pharmaceutical ingredient and for
enabling formulation of a stable compound. Further, these properties enable producing
peptides with different routes of administration, including topical, subcutaneous, and fast
intravenous push preparations [70].

Table 2. Amino acid characteristics of predicted bioactive peptides.

Peptides MW
(g/mol)

Polar Residues
+ GLY (n/%)

Uncharged Residues + GLY Charged Residues Non-Polar
Residues (n/%)Name Sequence

NATT1_01 TCKTNRIYVGKGAY 1573.83 8/57.14 THR 2, ASN 1, GLY 2 LYS 2, ARG 1, 6/42.86

NATT1_02 MRKSTVNNKQCKEVTK 1894.24 12/75.00 GLN 1, SER 1, THR 2, ASN 2,
GLY 0 LYS 4, ARG 1, GLU 1 4/25.00

NATT1_03 VNKDVIEQTM 1176.35 6/60.00 GLN 1, THR 1, ASN 1, GLY 0 LYS 1, GLU 1, ASP 1, 4/40.00
NATT1_04 DVIEQTMKDV 1177.34 6/60.00 GLN 1, THR 1, GLY 0 LYS 1, GLU 1, ASP 2, 4/40.00
NATT1_05 TESQSYMVTV 1144.26 6/60.00 GLN 1, SER 2, THR 2, GLY 0 GLU 1, 4/40.00

NATT1.2_01 RTYRGGKKTQTTTKGVYRTTQV 2530.87 18/81.82 GLN 2, THR 7, GLY 3 LYS 3, ARG 3, 4/18.18

NATT1.2_02 STNDETNLHW 1216.23 8/80.00 HIS 1, SER 1, THR 2, ASN 2,
GLY 0 GLU 1, ASP 1, 2/20.00

NATT1.2_03 CKTNRIYVGK 1181.42 6/60.00 THR 1, ASN 1, GLY 1 LYS 2, ARG 1, 4/40.00
NATT1.2_04 KTNRIYVGKG 1135.33 7/70.00 THR 1, ASN 1, GLY 2 LYS 2, ARG 1, 3/30.00
NATT1.2_05 LIRTYRGGKK 1191.44 7/70.00 THR 1, GLY 2 LYS 2, ARG 2, 3/30.00
NATT1.2_06 IRTYRGGKKT 1179.39 8/80.00 THR 2, GLY 2 LYS 2, ARG 2, 2/20.00
NATT1.2_07 RTYRGGKKTQ 1194.36 9/90.00 GLN 1, THR 2, GLY 2 LYS 2, ARG 2, 1/10.00
NATT2_01 TCKTNKIYVGKGAY 1545.82 8/57.14 THR 2, ASN 1, GLY 2 LYS 3, 6/42.86
NATT2_02 RTYRGGKKTQTTTKGVYRTIQV 2542.92 17/77.27 GLN 2, THR 6, GLY 3 LYS 3, ARG 3, 5/22.73
NATT2_03 TLRPKLKSKKPAK 1494.89 8/61.54 SER 1, THR 1, GLY 0 LYS 5, ARG 1, 5/38.46
NATT2_04 TETQSYMVTV 1158.29 6/60.00 GLN 1, SER 1, THR 3, GLY 0 GLU 1, 4/40.00
NATT2_05 ETQSYMVTVS 1144.26 6/60.00 GLN 1, SER 2, THR 2, GLY 0 GLU 1, 4/40.00
NATT2_06 TTLRPKLKSK 1171.45 7/70.00 SER 1, THR 2, GLY 0 LYS 3, ARG 1, 3/30.00
NATT2_07 TLRPKLKSKK 1198.52 7/70.00 SER 1, THR 1, GLY 0 LYS 4, ARG 1, 3/30.00
NATT2_08 LRPKLKSKKP 1194.53 6/60.00 SER 1, GLY 0 LYS 4, ARG 1, 4/40.00
NATT2_09 RPKLKSKKPA 1152.45 6/60.00 SER 1, GLY 0 LYS 4, ARG 1, 4/40.00
NATT2_10 PKLKSKKPAK 1124.44 6/60.00 SER 1, GLY 0 LYS 5, 4/40.00
NATT2_11 KLKSKKPAKP 1124.44 6/60.00 SER 1, GLY 0 LYS 5, 4/40.00
NATT2_12 LKSKKPAKPA 1067.34 5/50.00 SER 1, GLY 0 LYS 4, 5/50.00
NATT2_13 KSKKPAKPAG 1011.23 6/60.00 SER 1, GLY 1 LYS 4, 4/40.00
NATT2_14 SKKPAKPAGK 1011.23 6/60.00 SER 1, GLY 1 LYS 4, 4/40.00
NATT2_15 LRPKLKSKKPAKPAGK 1747.20 9/56.25 SER 1, GLY 1 LYS 6, ARG 1, 7/43.75
NATT3_01 VYVGKNKYGLGKVHTKHE 2057.38 12/66.67 HIS 2, THR 1, ASN 1, GLY 3 LYS 4, GLU 1, 6/33.33

NATT3_02 MTRTYRNGQKRTTSITGTYRAIQ 2704.06 17/73.91 GLN 2, SER 1, THR 6, ASN 1,
GLY 2 LYS 1, ARG 4, 6/26.09

NATT3_03 YVCSCGCSSG 965.08 5/50.00 SER 3, GLY 2 - 5/50.00
NATT3_04 CSCGCSSGFY 1013.12 5/50.00 SER 3, GLY 2 - 5/50.00
NATT3_05 HYAYGETEKT 1198.25 7/70.00 HIS 1, THR 2, GLY 1 LYS 1, GLU 2, 3/30.00
NATT3_06 KYGLGKVHTK 1130.36 7/70.00 HIS 1, THR 1, GLY 2 LYS 3, 3/30.00
NATT3_07 PPNHYCPVTM 1158.36 3/30.00 HIS 1, THR 1, ASN 1, GLY 0 - 7/70.00
NATT3_08 PNHYCPVTMV 1160.37 3/30.00 HIS 1, THR 1, ASN 1, GLY 0 - 7/70.00
NATT3_09 TRTYRNGQKR 1279.42 9/90.00 GLN 1, THR 2, ASN 1, GLY 1 LYS 1, ARG 3, 1/10.00
NATT3_10 RTYRNGQKRT 1279.42 9/90.00 GLN 1, THR 2, ASN 1, GLY 1 LYS 1, ARG 3, 1/10.00
NATT4_01 LYVAKNKYGLGKL 1466.79 6/46.15 ASN 1, GLY 2 LYS 3, 7/53.85
NATT4_02 KACRDLYVAK 1166.4 4/40.00 GLY 0 LYS 2, ARG 1, ASP 1, 6/60.00
NATT4_03 KITNVRYNMK 1233.25 6/60.00 THR 1, ASN 2, GLY 0 LYS 2, ARG 1, 4/40.00
NATT4_04 IPFTGRLTRK 1188.44 6/60.00 THR 2, GLY 1 LYS 1, ARG 2, 4/40.00
NATT4_05 PFTGRLTRKY 1238.46 6/60.00 THR 2, GLY 1 LYS 1, ARG 2, 4/40.00
NATT4_06 FTGRLTRKYS 1228.42 7/70.00 SER 1, THR 2, GLY 1 LYS 1, ARG 2, 3/30.00
NATT4_07 TGRLTRKYSN 1195.34 8/80.00 SER 1, THR 2, ASN 1, GLY 1 LYS 1, ARG 2, 2/20.00
NATT4_08 GRLTRKYSNG 1151.29 8/80.00 SER 1, THR 1, ASN 1, GLY 2 LYS 1, ARG 2, 2/20.00
NATT4_09 RLTRKYSNGK 1222.41 8/80.00 SER 1, THR 1, ASN 1, GLY 1 LYS 2, ARG 2, 2/20.00

NATT4_10 KNKYGLGKLHQS 1372.59 9/75.00 GLN 1, HIS 1, SER 1, ASN 1,
GLY 2 LYS 3, 3/25.00

NATT4_11 KANIPFTGRLTRK 1501.8 8/61.54 THR 2, ASN 1, GLY 1 LYS 2, ARG 2, 5/38.46
NATT4_12 GRLTRKYSNGKVT 1479.7 10/76.92 SER 1, THR 2, ASN 1, GLY 2 LYS 2, ARG 2, 3/23.08
NATT4_13 KVTSSSVKGIYKK 1424.7 9/69.23 SER 3, THR 1, GLY 1 LYS 4, 4/30.77
NATT4_14 VTSSSVKGIYKKV 1395.66 8/61.54 SER 3, THR 1, GLY 1 LYS 3, 5/38.46
NATT4_15 VKGIYKKVQVGEI 1460.78 7/53.85 GLN 1, GLY 2 LYS 3, GLU 1, 6/46.15
NATTP_01 LGQALIPRCRKMP 1482.87 5/38.46 GLN 1, GLY 1 LYS 1, ARG 2, 8/61.54
NATTP_02 RCRKMPGVKM 1205.56 5/50.00 GLY 1 LYS 2, ARG 2, 5/50.00
NATTP_03 QALIPRCRKMPGV 1468.84 5/38.46 GLN 1, GLY 1 LYS 1, ARG 2, 8/61.54
NATTP_04 ALIPRCRKMPGVK 1468.89 5/38.46 GLY 1 LYS 2, ARG 2, 8/61.54
NATTP_05 LIPRCRKMPGVKM 1259.0 5/38.46 GLY 1 LYS 2, ARG 2, 8/61.54
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The hydrophobic properties for all peptides were calculated, and a plot representing
hydrophobicity vs. hydrophobic moment vs. GRAVY of peptides allowed us to visualize the
differences in terms of hydrophobicity between each peptide (Figure 2). The hydrophobic
plot can indicate that diminution of hydrophobicity and amphipathicity of the natterin
peptides decreases their cellular uptake and that the substantial increase in these parameters
can lead to an increase in their cytotoxicity. This suggests that carefully controlling these
parameters can enhance peptide internalization and that above this threshold value it is
expected that unwanted toxicity starts to appear. The nature of hydrophobic residues,
positioning, and aromaticity are harmful mainly to CPPs’ fate in terms of the reversibility
of the membrane interaction and final membrane crossing. Studies with Trp-rich peptides
revealed that less hydrophobic residues and more interfacial ones can contribute to the
peptides establishing more transitory interactions with the membrane in part due to a
less deep membrane insertion. This type of flexible membrane interaction is important to
prevent the peptide from being locked in the membrane interior and to trigger translocation
into membranes [71].
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Figure 2. Hydrophobic plot and hydropathicity (GRAVY) of predicted natterin-derived antimicrobial
and cell-penetrating peptides. The X-axis represents the helical hydrophobic moment (µH), and the
Y-axis represents the corresponding hydrophobicity (H). The peptides in blue and red are the most
and least internalized, respectively. NATT1_04 (green) had high cell internalization and cytotoxicity.

The Boman index estimates protein-binding potential and is calculated on the basis
of the cyclohexane-to-water partition coefficient of the respective amino acid side chains
divided by the total number of amino acid residues within the peptide [72]. A high index
(>2.48) indicates high binding potential (e.g., hormones), whereas a low index (≤1) indicates
fewer side effects (e.g., lower toxicity to mammalian cells) [72]. Seven (12%) sequences
had a Boman index below 1 (Figure 3). The sequences YVCSCGCSSG (NATT3_03) and
LYVAKNKYGLGKL (NATT4_01) presented the best index (0.05 and 0.08, respectively)
and will be further chemically synthesized and assayed in vitro and in vivo. These Boman
values were expected as AMPs typically do not bind to other proteins but penetrate and
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disrupt the plasma membrane. Given the amphiphilic nature of CPPs, ACPs, and antiviral
peptides (AVPs), strong interaction with and deep penetration into the anionic lipid bilayers
are expected for BAPs, making the plasma membranes prone to disruption, endocytosis,
and/or direct translocation [73,74]. The Boman index of our peptides ranged from 4.0 to
6.7, which is higher than the range reported previously (∼1.0–3.5) [73].
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Figure 3. Boman indexes of predicted antimicrobial and cell-penetrating peptides.

The cellular localization of each peptide was evaluated using the TMHMM server to es-
timate the probability of peptide translocation across lipid membranes. The results showed
that 90% of the predicted peptides were located in the cell membrane. The membrane-
binding potential and cellular localization of CPPs are shown in Figure 4 and Table S2.

2.3. Prediction of Biological Activities
2.3.1. Immunogenicity, Allergenicity, and Toxicity

Immunogenicity assessment is a crucial step in the drug development process. The
complexity of the immune system demands the use of multiple approaches to predict the
immunogenicity of biopharmaceuticals. Experimental studies are straightforward, such as
in vitro, in vivo, and ex vivo, but are sometimes expensive and time-consuming, and their
results need to be confirmed [75]. Immunogenicity was analyzed using the Immune Epitope
Database (IEDB), a database of epitopes and immune receptors [76] (Table 3). Higher scores
indicated a higher probability of triggering an immune response. The immunogenicity of
all predicted peptides was lower than 0.7, demonstrating that they did not cause immune
responses [77,78].
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Figure 4. Cellular localization of predicted antimicrobial and cell-penetrating peptides using the
TMHMM web server.

Given the risk of inducing an immediate type I (IgE-mediated) allergic response, the
allergenic potential of druggable proteins and peptides should be determined before they
are marketed. The allergenic potential was evaluated using the AllerTOP web server
by applying auto-cross covariance transformation to build a dataset of known allergens
and developing alignment-independent models for allergen recognition based on the
physicochemical properties of proteins [79]. The tool uses five machine learning methods
for protein classification, including partial least squares discriminant analysis, logistic
regression, decision tree, naïve Bayes, and k-nearest neighbors. In addition, AllerTOP
attempts to identify the most likely route of exposure. AllerTOP outperforms other allergen
prediction models, with a sensitivity of 94% [79]. Of the 57 predicted sequences, 35 were
classified as non-allergenic (Table 3).

Toxicity was assessed using ToxinPred software [80,81], which uses the following
datasets to train and test SVM models: (1) a main dataset (1805 toxin sequences from exper-
imentally validated peptides/proteins (positive examples) and 3593 non-toxin sequences
from SwissProt (negative examples)), (2) a main independent dataset (303 toxin sequences
and 300 SwissProt non-toxin sequences), (3) an alternative dataset (1805 toxin sequences
(positive examples) and 12,541 non-toxin sequences from TrEMBL (negative examples)),
(4) and an alternative independent dataset (303 toxin sequences from SwissProt and 1000
non-toxin sequences from TrEMBL). All identified peptide sequences were classified as
non-toxic (data not shown).
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Table 3. Biological activities of predicted antimicrobial and cell-penetrating peptides.

Peptides
Immunogenicity Allergenicity Hemolysis

(%)

T1/2
Escherichia

coli

T1/2 in
Mammalian

(in hours)

Antiviral Anticancer

Name Sequence Prediction Probability Prediction Probability

NATT1_01 TCKTNRIYVGKGAY 6082 Non-allergen 0.48 >10 h 7.2 Non-AVP 0.344 ACP 0.982
NATT1_02 MRKSTVNNKQCKEVTK −6046 Allergen 0.49 >10 h 30 Non-AVP 0 Non-ACP 0.414
NATT1_03 VNKDVIEQTM 14,129 Non-allergen 0.49 >10 h 100 Non-AVP 0.31 ACP 0.692
NATT1_04 DVIEQTMKDV −26,539 Allergen 0.49 >10 h 1.1 Non-AVP 0.282 ACP 0.695
NATT1_05 TESQSYMVTV −44,274 Allergen 0.49 >10 h 7.2 Non-AVP 0.112 Non-ACP 0.639

NATT1.2_01 RTYRGGKKTQTTTKGVYRTTQV −3531 Allergen 0.49 2 min 1 Non-AVP 0.004 ACP 0.933
NATT1.2_02 STNDETNLHW 15,897 Non-allergen 0.49 >10 h 1.9 Non-AVP 0.068 Non-ACP 0.837
NATT1.2_03 CKTNRIYVGK 23,725 Non-allergen 0.48 >10 h 1.2 Non-AVP 0.008 ACP 0.983
NATT1.2_04 KTNRIYVGKG 11,744 Non-allergen 0.48 3 min 1.3 Non-AVP 0 ACP 0.947
NATT1.2_05 LIRTYRGGKK 3716 Non-allergen 0.46 2 min 5.5 AVP 0.964 ACP 0.911
NATT1.2_06 IRTYRGGKKT −18,382 Non-allergen 0.49 >10 h 20 AVP 0.962 ACP 0.906
NATT1.2_07 RTYRGGKKTQ −24,544 Non-allergen 0.49 2 min 1 AVP 0.668 ACP 0.686
NATT2_01 TCKTNKIYVGKGAY −19,958 Non-allergen 0.49 >10 h 7.2 Non-AVP 0 ACP 0.994
NATT2_02 RTYRGGKKTQTTTKGVYRTIQV −27,354 Allergen 0.49 2 min 1 Non-AVP 0.068 ACP 0.944
NATT2_03 TLRPKLKSKKPAK −98,576 Non-allergen 0.48 >10 h 7.2 Non-AVP 0.008 ACP 0.67
NATT2_04 TETQSYMVTV −37,644 Allergen 0.49 >10 h 7.2 Non-AVP 0.068 Non-ACP 0.5
NATT2_05 ETQSYMVTVS −28,293 Allergen 0.49 >10 h 1 Non-AVP 0.112 Non-ACP 0.653
NATT2_06 TTLRPKLKSK −46,142 Non-allergen 0.49 >10 h 7.2 AVP 0.524 ACP 0.836
NATT2_07 TLRPKLKSKK −68,378 Non-allergen 0.48 >10 h 7.2 AVP 0.616 ACP 0.703
NATT2_08 LRPKLKSKKP −90,513 Non-allergen 0.49 2 min 5.5 AVP 0.696 Non-ACP 0.345
NATT2_09 RPKLKSKKPA −84,374 Non-allergen 0.49 2 min 1 Non-AVP 0 Non-ACP 0.445
NATT2_10 PKLKSKKPAK −7812 Non-allergen 0.49 ND >20 Non-AVP 0 ACP 0.895
NATT2_11 KLKSKKPAKP −75,989 Non-allergen 0.49 3 min 1.3 Non-AVP 0 ACP 0.894
NATT2_12 LKSKKPAKPA −64,315 Allergen 0.49 2 min 5.5 Non-AVP 0.318 ACP 0.757
NATT2_13 KSKKPAKPAG −4492 Allergen 0.49 3 min 1.3 AVP 0.654 ACP 0.919
NATT2_14 SKKPAKPAGK −21,068 Allergen 0.49 10 h 1.9 AVP 0.654 ACP 0.992
NATT2_15 LRPKLKSKKPAKPAGK −0.91 Non-allergen 0.48 2 min 5.5 Non-AVP 0 ACP 0.848
NATT3_01 VYVGKNKYGLGKVHTKHE −59,206 Allergen 0.48 >10 h 100 Non-AVP 0.332 ACP 0.957
NATT3_02 MTRTYRNGQKRTTSITGTYRAIQ 16,556 Non-allergen 0.49 >10 h 30 Non-AVP 0.44 Non-ACP 0.444
NATT3_03 YVCSCGCSSG −4905 Allergen 0.49 2 min 2.8 Non-AVP 0.398 ACP 0.996
NATT3_04 CSCGCSSGFY −25,573 Non-allergen 0.49 >10 h 1.2 Non-AVP 0.104 ACP 0.998
NATT3_05 HYAYGETEKT 13,452 Allergen 0.49 >10 h 3.5 Non-AVP 0.006 ACP 0.918
NATT3_06 KYGLGKVHTK −8.832 Allergen 0.48 3 min 1.3 Non-AVP 0.218 ACP 0.99
NATT3_07 PPNHYCPVTM 2.143 Non-allergen 0.49 ND >20 Non-AVP 0 Non-ACP 0.873
NATT3_08 PNHYCPVTMV 875.0 Allergen 0.49 ND >20 Non-AVP 0.126 Non-ACP 0.757
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Table 3. Cont.

Peptides
Immunogenicity Allergenicity Hemolysis

(%)

T1/2
Escherichia

coli

T1/2 in
Mammalian

(in hours)

Antiviral Anticancer

Name Sequence Prediction Probability Prediction Probability

NATT3_09 TRTYRNGQKR −13.888 Non-allergen 0.48 >10 h 7.2 Non-AVP 0.46 Non-ACP 0.672
NATT3_10 RTYRNGQKRT −18.322 Non-allergen 0.48 2 min 1 Non-AVP 0.46 Non-ACP 0.666
NATT4_01 LYVAKNKYGLGKL −0.45197 Allergen 0.47 2 min 5.5 AVP 0.998 ACP 0.838
NATT4_02 KACRDLYVAK 996.0 Non-allergen 0.49 3 min 1.3 AVP 0.678 ACP 0.725
NATT4_03 KITNVRYNMK −1.485 Non-allergen 0.49 3 min 1.3 Non-AVP 0.154 ACP 0.674
NATT4_04 IPFTGRLTRK 21.302 Allergen 0.49 >10 h 20 Non-AVP 0.044 ACP 0.787
NATT4_05 PFTGRLTRKY 0.4052 Non-allergen 0.50 ND >20 Non-AVP 0.004 ACP 0.787
NATT4_06 FTGRLTRKYS −4.536 Non-allergen 0.49 2 min 1.1 AVP 0.542 ACP 0.9
NATT4_07 TGRLTRKYSN −0.20894 Non-allergen 0.49 >10 h 7.2 Non-AVP 0.028 Non-ACP 0.375
NATT4_08 GRLTRKYSNG −0.27102 Allergen 0.49 >10 h 30 AVP 0.876 ACP 0.702
NATT4_09 RLTRKYSNGK −0.29031 Non-allergen 0.49 2 min 1 Non-AVP 0.412 ACP 0.747
NATT4_10 KNKYGLGKLHQS −0.27934 Non-allergen 0.49 3 min 1.3 AVP 0.998 ACP 0.703
NATT4_11 KANIPFTGRLTRK 0.40878 Non-allergen 0.48 3 min 1.3 AVP 0.696 Non-ACP 0.493
NATT4_12 GRLTRKYSNGKVT −0.42112 Non-allergen 0.49 >10 h 30 Non-AVP 0.126 Non-ACP 0.387
NATT4_13 KVTSSSVKGIYKK −0.61671 Allergen 0.51 3 min 1.3 Non-AVP 0 ACP 0.999
NATT4_14 VTSSSVKGIYKKV −0.69995 Allergen 0.49 >10 h 100 Non-AVP 0 ACP 0.999
NATT4_15 VKGIYKKVQVGEI −0.22532 Allergen 0.49 >10 h 100 AVP 1 ACP 0.997
NATTP_01 LGQALIPRCRKMP −0.012821 Allergen 0.48 2 min 5.5 Non-AVP 0 Non-ACP 0.005
NATTP_02 RCRKMPGVKM −0.44126 Non-allergen 0.49 2 min 1 Non-AVP 0.07 Non-ACP 0.434
NATTP_03 QALIPRCRKMPGV −0.19704 Non-allergen 0.46 10 h 0.8 Non-AVP 0.268 Non-ACP 0.015
NATTP_04 ALIPRCRKMPGVK −0.25838 Non-allergen 0.46 >10 h 4.4 Non-AVP 0.282 Non-ACP 0.098
NATTP_05 LIPRCRKMPGVKM −0.40468 Non-allergen 0.47 2 min 5.5 AVP 0.506 Non-ACP 0.241

Inference/Reference Range - SVM method

>0.5: likely
hemolytic

<0.5: unlikely
hemolytic

ND: not determined <0.5: low probability >0.5:
high probability

<0.5: low probability >0.5:
high probability
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2.3.2. Antiviral and Anticancer Potential

The control of viral diseases is challenging because of increased resistance to antiviral
drugs and the emergence of new viral pathogens. AVPs, a subset of AMPs, are a potential
source of therapeutics useful for preventing and treating viral infections [82]. The ability
of AVPs to target various stages of the viral lifecycle, ranging from their attachment to
host cells to their ability to impair viral replication within the cells, has been the subject of
multiple studies [83–85]. Sixteen sequences were predicted to be AVPs, of which four had a
score above 90%. NATT1.2_05 and NATT1.2_06 presented the highest scores (0.964 and
0.962, respectively). AVPpred predicts AVPs based on experimentally validated positive
and negative datasets.

Cell membrane properties differ between cancer cells and healthy cells [86]. For
instance, the membrane fluidity of cancer cells is higher than that of healthy cells [87]. In
addition, the membrane of cancer cells has a higher negative charge, larger surface area due
to the higher number of microvilli, and higher fluidity than that of healthy cells. ACPs, a
subset of AMPs, are toxic to cancer cells [86]. ACPs have 5–30 cationic amino acid residues
that adopt an α-helical or β-sheet structure but can assume a linear structure [88,89]. In the
present study, 37 peptides were predicted to be ACPs. The physicochemical properties of
ACPs determine electrostatic interactions with the anionic cell membrane of cancer cells
and thus allow the selective killing of these cells [90]. ACPs have several advantages over
small molecule cancer drugs. For instance, the shorter half-life decreases the probability of
resistance. Moreover, ACPs have low toxicity, high specificity, high solubility, and good
tumor penetration ability, demonstrating their great potential in cancer therapy [88–91].
The half-life of the predicted ACPs in mammalian cells varied from 1 to 100 h (Table 3).
Compared to biologics, peptides have a much shorter circulatory half-life (days vs. weeks),
resulting in the need for sub-optimal frequent drug administration [92].

2.3.3. Prediction of ADMET Properties

The analysis of biochemical processes from drug administration to elimination plays a
crucial role in lead optimization. An ideal peptide drug should be quickly absorbed into
the systemic circulation and eliminated without affecting pharmacological activity. Further,
ideal candidates should be non-toxic. The analysis of ADMET parameters is essential in
drug discovery. ADMET properties were predicted using the web server ADMETlab ver-
sion 2.0 [93] (Table 4). The parameters analyzed were blood–brain barrier (BBB) penetration,
Caco-2 permeability, volume of distribution (VD), plasma protein binding (PPB), human in-
testinal absorption (HIA), clearance (CL), half-life (T1/2), skin sensitization, AMES toxicity,
carcinogenicity, and synthetic accessibility (SA) score (Table 4). All compounds had positive
HIA, indicating the high ability to cross the intestinal barrier. Higher BBB penetration
is associated with higher lipophilicity profiles and higher uptake. The calculated value
for the BBB was shown to have a high likelihood of being negative. PPB is an important
parameter in drug safety assessments since compounds with high PPB (>90%) have a
narrow therapeutic index, whereas compounds with low PPB are considerably safer. All
analyzed peptides had low PPB, indicating a good therapeutic index. Caco-2 cells, derived
from human colon adenocarcinoma cells, have permeability functions similar to those
of intestinal enterocytes and are used to predict intestinal drug absorption in vivo. All
analyzed compounds had the best scores (greater than −6.47) in Caco-2 cell permeability
assays. Regarding carcinogenicity, none of the analyzed peptides showed potential to cause
cancer. The results of the AMES test showed that none of the peptides were genotoxic.
The analysis of other toxicity parameters, such as hERG inhibition, hepatotoxicity, and
skin sensitization, revealed that all peptides were safe. The SA score estimates the ease of
synthesis (Table S3). Approximately 38.5% of the peptides had an SA score of up to 6.0,
indicating the feasibility of synthesis. All compounds had good ADMET properties.
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Table 4. Selected ADMET properties of predicted antimicrobial and cell-penetrating peptides.

Peptides Absorption Distribution Metabolism Excretion Toxicity

Name Sequence HIA (%)
Caco-2

Permeability
(cm/s)

VD
(L/Kg)

BBB Penetration
(%) PPB(%) CYP1A2-(I) CYP1A2-(S) CYP3A4-(I) CYP3A4-(S) CL

(mL/min/Kg) Half-Life hERG
Blockers

DILI
Liver

Injury
AMES Carcinogenicity Skin

Sensitization

NATT1_01 TCKTNRIYVGKGAY 0.996 −7.19 0.46 0.038 22.19 0 0 0.004 0.007 0.645 0.718 0.012 0.001 0.007 0.029 0.058
NATT1_02 MRKSTVNNKQCKEVTK 0.997 −7.377 0.106 0.025 17.92 0 0 0 0.002 −0.487 0.799 0.001 0 0.043 0.041 0.06
NATT1_03 VNKDVIEQTM 0.986 −7.908 0.601 0.029 10.42 0 0 0.006 0.007 0.976 0.833 0 0.004 0.008 0.43 0.07
NATT1_04 DVIEQTMKDV 0.998 −8.074 0.657 0.018 9.97 0 0 0.006 0.007 1.171 0.914 0 0.005 0.006 0.406 0.092
NATT1_05 TESQSYMVTV 0.979 −8.024 0.428 0.042 18.47 0 0 0.008 0.009 0.919 0.88 0.001 0.02 0.005 0.074 0.035
NATT1.2_01 RTYRGGKKTQTTTKGVYRTTQV 1 −7.369 0.058 0.013 28.70 0 0 0.001 0.001 −1.957 0.892 0 0 0.001 0.005 0.005
NATT1.2_02 STNDETNLHW 0.486 −7.794 0.499 0.068 16 0 0 0.011 0.006 0.821 0.904 0.001 0.012 0.011 0.095 0.06
NATT1.2_03 CKTNRIYVGK 0.976 −7.067 0.557 0.035 9.146 0 0 0.006 0.012 1.101 0.694 0.033 0.001 0.008 0.106 0.085
NATT1.2_04 KTNRIYVGKG 0.977 −6.821 0.538 0.058 11.64 0 0 0.007 0.013 1.012 0.757 0.033 0.001 0.008 0.072 0.087
NATT1.2_05 LIRTYRGGKK 0.991 −6.768 0.569 0.048 14.74 0 0 0.012 0.013 1.067 0.782 0.036 0.001 0.007 0.079 0.116
NATT1.2_06 IRTYRGGKKT 0.997 −7.141 0.526 0.056 19.12 0 0 0.009 0.012 0.749 0.807 0.031 0.001 0.005 0.04 0.109
NATT1.2_07 RTYRGGKKTQ 0.987 −6.754 0.501 0.071 22.28 0 0 0.005 0.008 0.387 0.752 0.02 0 0.01 0.065 0.098
NATT2_01 TCKTNKIYVGKGAY 0.999 −7.282 0.475 0.027 22.20 0 0 0.006 0.007 0.745 0.812 0.004 0 0.01 0.039 0.069
NATT2_02 RTYRGGKKTQTTTKGVYRTIQV 1 −7.271 0.085 0.011 31.57 0 0 0.001 0.001 −1.65 0.887 0 0 0.001 0.008 0.006
NATT2_03 TLRPKLKSKKPAK 1 −7.301 0.232 0.014 24.84 0 0 0.001 0.005 −0.097 0.857 0.006 0 0.008 0.009 0.211
NATT2_04 TETQSYMVTV 0.99 −7.989 0.41 0.041 20.64 0 0 0.01 0.01 0.971 0.89 0 0.018 0.003 0.049 0.021
NATT2_05 ETQSYMVTVS 0.967 −7.952 0.442 0.043 18.39 0 0 0.008 0.01 0.83 0.906 0.001 0.016 0.004 0.069 0.028
NATT2_06 TTLRPKLKSK 0.991 −7.053 0.416 0.026 18.04 0 0 0.006 0.015 0.834 0.757 0.023 0.002 0.009 0.033 0.165
NATT2_07 TLRPKLKSKK 0.987 −7.063 0.349 0.043 18.41 0 0 0.005 0.013 0.956 0.742 0.029 0.002 0.047 0.031 0.244
NATT2_08 LRPKLKSKKP 0.988 −7.162 0.397 0.078 17.95 0 0.001 0.005 0.014 1.05 0.705 0.038 0.003 0.014 0.038 0.295
NATT2_09 RPKLKSKKPA 0.995 −6.974 0.403 0.069 19.56 0 0.001 0.004 0.013 0.871 0.704 0.031 0.004 0.016 0.042 0.274
NATT2_10 PKLKSKKPAK 0.999 −7.045 0.352 0.037 25.27 0 0.001 0.005 0.015 1.085 0.85 0.006 0.002 0.765 0.032 0.281
NATT2_11 KLKSKKPAKP 0.998 −7.195 0.382 0.054 20.29 0 0.001 0.005 0.016 0.761 0.833 0.008 0.003 0.214 0.054 0.341
NATT2_12 LKSKKPAKPA 0.995 −7.388 0.455 0.038 17.91 0 0.001 0.006 0.017 0.951 0.857 0.003 0.003 0.065 0.05 0.304
NATT2_13 KSKKPAKPAG 0.998 −7.252 0.480 0.038 22.41 0 0.001 0.005 0.016 0.658 0.864 0.005 0.003 0.053 0.047 0.308
NATT2_14 SKKPAKPAGK 0.998 −7.272 0.504 0.04 22.67 0 0.001 0.005 0.016 0.797 0.835 0.003 0.002 0.031 0.085 0.333
NATT2_15 LRPKLKSKKPAKPAGK 1 −7.451 0.168 0.024 23.02 0 0 0.005 0 0.248 0.821 0.006 0 0.015 0.015 0.305
NATT3_01 VYVGKNKYGLGKVHTKHE 0.999 −7.324 0.516 0.021 28.76 0 0 0.004 0.003 0.237 0.954 0.006 0.001 0.004 0.003 0.072
NATT3_02 MTRTYRNGQKRTTSITGTYRAIQ 1 −7.698 0.009 0.009 31.78 0 0 0 0.001 −2.266 0.871 0 0 0.001 0.017 0.004
NATT3_03 YVCSCGCSSG 0.727 −7.33 0.308 0.006 21.88 0 0 0.008 0.012 0.939 0.825 0.005 0.006 0.941 0.008 0.236
NATT3_04 CSCGCSSGFY 0.8 −8.059 0.391 0.009 21.41 0 0 0.01 0.011 1.039 0.821 0.011 0.007 0.84 0.03 0.289
NATT3_05 HYAYGETEKT 0.993 −7.512 0.589 0.031 36.88 0 0 0.015 0.008 1.16 0.956 0.006 0.007 0.002 0.038 0.053
NATT3_06 KYGLGKVHTK 0.994 −6.868 0.571 0.062 17.77 0 0.003 0.015 0.016 1.256 0.928 0.044 0.002 0.008 0.007 0.136
NATT3_07 PPNHYCPVTM 0.995 −6.867 0.475 0.029 30.59 0 0.006 0.009 0.018 1.412 0.853 0.006 0.833 0.006 0.033 0.077
NATT3_08 PNHYCPVTMV 0.983 −6.877 0.458 0.033 29.24 0 0.005 0.01 0.017 1.429 0.844 0.006 0.899 0.763 0.025 0.05
NATT3_09 TRTYRNGQKR 0.889 −6.91 0.447 0.078 19.44 0 0 0.003 0.005 0.195 0.685 0.011 0 0.016 0.125 0.088
NATT3_10 RTYRNGQKRT 0.91 −6.544 0.439 0.075 19.89 0 0 0.003 0.005 0.128 0.688 0.011 0 0.012 0.122 0.076
NATT4_01 LYVAKNKYGLGKL 0.989 −7.356 0.623 0.024 18.21 0 0 0.056 0.001 0.578 0.864 0.022 0.001 0.007 0.08 0.132
NATT4_02 KACRDLYVAK 0.986 −7.455 0.584 0.039 9.261 0 0 0.003 0 1.107 0.79 0.031 0.008 0.064 0.069 0.162
NATT4_03 KITNVRYNMK 0.95 −6.477 0.549 0.04 11.28 0 0 0.002 0 0.986 0.643 0.017 0.002 0.007 0.261 0.069
NATT4_04 IPFTGRLTRK 0.998 −7.063 0.47 0.028 16.47 0 0 0.006 0 1.218 0.747 0.03 0.004 0.004 0.4 0.088
NATT4_05 PFTGRLTRKY 0.998 −6.943 0.488 0.024 26.01 0 0 0.003 0 1.152 0.761 0.041 0.003 0.005 0.027 0.055
NATT4_06 FTGRLTRKYS 0.984 −7.18 0.426 0.042 16.19 0 0 0.004 0 0.879 0.782 0.029 0.002 0.006 0.028 0.058
NATT4_07 TGRLTRKYSN 0.923 −7.407 0.452 0.069 16.24 0 0 0 0 0.624 0.698 0.017 0.001 0.011 0.054 0.097
NATT4_08 GRLTRKYSNG 0.877 −7.430 0.5 0.056 18.76 0 0 0 0 0.6 0.766 0.022 0.001 0.018 0.048 0.109
NATT4_09 RLTRKYSNGK 0.921 −7.018 0.482 0.055 17.18 0 0 0 0 0.638 0.722 0.022 0.001 0.017 0.104 0.124
NATT4_10 KNKYGLGKLHQS 0.832 −6.901 0.517 0.056 20.70 0 0 0.012 0 0.830 0.873 0.022 0 0.033 0.027 0.213
NATT4_11 KANIPFTGRLTRK 0.999 −6.613 0.425 0.026 20.34 0 0 0.001 0 0.557 0.727 0.009 0.001 0.004 0.058 0.066
NATT4_12 GRLTRKYSNGKVT 0.991 −7.574 0.384 0.041 22.11 0 0 0 0 0.113 0.798 0.008 0 0.006 0.036 0.068
NATT4_13 KVTSSSVKGIYKK 1 −7.250 0.363 0.02 18.23 0 0 0.003 0 0.463 0.918 0.002 0.001 0.009 0.042 0.103
NATT4_14 VTSSSVKGIYKKV 1 −7.499 0.417 0.025 16.82 0 0 0.005 0.001 0.544 0.912 0.002 0.002 0.004 0.038 0.065
NATT4_15 VKGIYKKVQVGEI 0.999 −7.261 0.592 0.019 20.76 0 0 0.008 0.001 0.712 0.912 0.003 0.001 0.003 0.097 0.085
NATTP_01 LGQALIPRCRKMP 0.987 −6.502 0.49 0.013 19.82 0 0 0.002 0 1.006 0.578 0.012 0.003 0.01 0.037 0.162
NATTP_02 RCRKMPGVKM 0.985 −6.729 0.483 0.036 15.67 0 0.001 0.001 0 1.084 0.773 0.033 0.003 0.036 0.036 0.178
NATTP_03 QALIPRCRKMPGV 0.993 −6.490 0.483 0.014 19.08 0 0 0.001 0 0.974 0.606 0.01 0.005 0.009 0.034 0.156
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Table 4. Cont.

Peptides Absorption Distribution Metabolism Excretion Toxicity

Name Sequence HIA (%)
Caco-2

Permeability
(cm/s)

VD
(L/Kg)

BBB Penetration
(%) PPB(%) CYP1A2-(I) CYP1A2-(S) CYP3A4-(I) CYP3A4-(S) CL

(mL/min/Kg) Half-Life hERG
Blockers

DILI
Liver

Injury
AMES Carcinogenicity Skin

Sensitization

NATTP_04 ALIPRCRKMPGVK 0.995 −6.759 0.488 0.011 20.18 0 0 0.002 0 1.078 0.7 0.015 0.004 0.011 0.033 0.159
NATTP_05 LIPRCRKMPGVKM 0.995 −6.721 0.467 0.009 22.53 0 0 0.004 0 1.119 0.742 0.014 0.003 0.013 0.038 0.153

Inference/Reference Range

HIA >
0.3: HIA
positive
HIA <

0.3: HIA
negative

Optimal:
higher than

−5.15

Optimal:
0.04–20
L/Kg

≥0.1: BBB positive
and <0.1: BBB

negative

PPB < 90%:
optimal PPB
> 90%: low
therapeutic

index

>0.5:
inhibitor
<0.5: non
inhibitor

>0.5:
substrate
<0.5: non
substrate

>0.5:
inhibitor <0.5:
non-inhibitor

>0.5:
substrate

<0.5:
non-substrate

High: >15
mL/min/kg
Moderate:

5–5
mL/min/kg

Low: <5
mL/min/kg

Long
half-life:

>3 h Short
half-life:

<3 h

>0.5:
blocker

<0.5: non-
blocker

>0.5: hepa-
totoxic

<0.5: non-
hepatotoxic

>0.5:
positive

<0.5:
negative

>0.5: carcinogen
<0.5:

non-carcinogen

>0.5:
sensitizer
<0.5: non-
sensitizer
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2.4. Medicinal Chemistry Studies

Small molecules defined as “drug-like” need to satisfy Lipinski’s rule of five (Ro5):
MW <500 Da, ≤5 H-bond donors, ≤10 H-bond acceptors, and 1−octanol/water partition
coefficient (LogP) <5. Molecules that satisfy these criteria are likely to be orally bioavailable.
Several studies have demonstrated that the physicochemical and structural properties of
peptides are outside the traditional chemical space of approved drugs [94–96] based on Ro5
criteria [97]. Medicinal chemistry parameters such as MW, topological polar surface area
(tPSA), LogP, fraction of sp3-hybridized carbon atoms (Fsp3), number of rotatable bonds
(NRB), number of hydrogen bond acceptors (HBAs), number of hydrogen bond donors
(HBDs), and number of aromatic rings (NARs) were evaluated (Table 5).

Table 5. Chemical spaces of predicted peptides and marketed drugs (modified from Oliveira
et al., 2021).

Oral Drugs Peptides

Molecular
Properties

Lipinski, 2001
and Veber, 2002

Doak et al.,
2014

Santos et al.,
2016 * Diaz-Eufracio et al., 2018 ** De Oliveira et al., 2021 # Our Study

MW ≤500 ≤1.000 ≤700 27.03 ≤ MW ≤ 5036.65 331.48 ≤ MW ≤ 3750.51 965.08 ≤ MW ≤ 2704.06

LogP ≤5 −2 ≤ LogP
≤ 10 ≤7.5 −17.87 ≤ LogP ≤39.89 −42.12 ≤ LogP ≤ 2.97 −7.387 ≤ LogP ≤ 0.562

tPSA ≤140 ≤250 ≤200 ≤2064.83 101.29 ≤ tPSA ≤1782.83 405.88 ≤ tPSA ≤ 1288.48
Fsp3 − − ≤0.55 − 0.37 ≤ Fsp3 ≤ 0.84 0.45 ≤ Fsp3 ≤ 0.80
NRB ≤10 ≤20 ≤20 ≤209 9 ≤ NRB ≤ 137 37 ≤ NRB ≤ 117
HBA ≤10 ≤15 ≤10 ≤71 5 ≤ HBA ≤ 55 25 ≤ HBA ≤ 75
NAR − − − − ≤10 ≤5

Notes: * Investigated orally active peptides; ** investigated linear and cyclic pentapeptides; # investigated
cell-penetrating peptides.

Santos et al. analyzed peptides approved by the FDA between 2012 and 2016 to allow
comparison to the Ro5 [96]. The peptides with the highest oral availability had an MW of
1200 Da and a LogP of 5–8. Furthermore, these peptides had five times more H-bond donors
and acceptors than what was considered acceptable by Ro5 for small molecules [96]. High
MW, tPSA, and NRB limit passive transport across cell membranes because of increased
molecular size and complexation with water molecules [98,99]. HBAs and HBDs are
relevant factors for cell permeability by Ro5 [100]. Our results agreed with the number
of HBAs and HBDs for linear and cyclic pentapeptides and two CPP libraries [44,95].
However, the number of HBAs and HBDs in predicted peptides differed from those of
clinically approved drugs [100]. The NRB and Fsp3 are used to assess molecular flexibility
and complexity. The NRBs of the predicted peptides (37 to 117) exceed the maximum value
for oral drugs and peptides [95,96]. The Fsp3 correlates with solubility in the aqueous
phase and melting point [101]. The Fsp3 of the predicted peptides was 0.45–0.80, similar to
values of orally available peptides (90th percentile = 0.79). Lipophilicity was investigated
using LogP and NAR. LogP values are positively correlated with lipophilicity and thus
membrane penetration. The LogP of the evaluated peptides varied from −7.387 to 0.562,
consistent with values for approved peptide drugs and small molecule drugs [96,100]. The
addition of an aromatic ring can significantly increase LogP [102]. Our study found that
the NAR varied from 2 to 5.

2.5. Prediction of Peptide Structures

After analyzing the physicochemical properties of the peptides, hydrophobicity, hy-
drophobic moment, GRAVY, Boman index, and ADMET parameters, fifteen BAP sequences
of AMPs and CPPs with characteristics considered promising were selected for further
studies. Among the 3D structures obtained, it was possible to observe the presence of a
random coil, alpha helix, and a peptide sequence (NATT1.2_07) with a beta sheet structure.

The 3D structures were predicted using the PEP-FOLD3 web server. PEP-FOLD
models for the peptides NATT1_04, NATT1.2_05, NATT1.2_06, NATT1.2_07, NATT2_06,
NATT2_07, NATT2_13, NATT2_14, NATT3_03, NATT3_04, NATT4_01, NATT4_02,
NATT4_06, NATT4_15, and NATTP_05 were recognized as the best with the lowest opti-
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mized potential for efficient structure prediction (sOPEP) energy (−15.1734 to −1.97158).
The models with sOPEP energy of −15.1734 and −14.3622 were considered the best and
are presented in Figure 5. Ramachandran plot analysis indicated that these two models
had 77.8% and 87.5% of the residues in the most favorable region and 0% and 22.2% of the
residues in the favorable region, respectively. In addition, the helical wheel projection of
these short peptides was obtained using the Heliquest web server (Figure 5). A hydropho-
bic face on a helical wheel is characterized by at least five adjacent hydrophobic residues
(Leu, Ile, Ala, Val, Pro, Met, Phe, Trp, or Tyr) [103].

The pH-dependent conformational equilibrium of the peptides was predicted using
DispHred [104]. Khandogin [105] showed that increasing pH increased the length of
the helical segments of C peptide from ribonuclease, where the difference in the relative
populations of unfolded states gave rise to the pH-dependent total helix content. Our
results showed that at pH 1.5 and 7.0, 75% of the peptides are in the unfolded state, with
data indicating the presence of partial helices. The results provided information on the
pH-dependent distribution of folded and unfolded states of the peptides. However, further
in vitro studies are necessary to corroborate these data.
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Figure 5. Selected PEP FOLD predicted 3D structure homology models, Ramachandran validation
plots, and helical wheel projections. (A) NATT4_15 motif, (B) Ramachandran plot for the NATT4_15
motif, (C) NATT4_15 helical wheel projection, (D) NATT4_02 motif, (E) Ramachandran plot for
the NATT4_02 motif, and (F) NATT4_02 helical wheel projection. NATT4_15 had nine amino acid
sequences in the allowed region, whereas NATT4_02 had eight amino acids in the favorable region.
These two peptides had no amino acid sequence in the unfavorable region. The graphical representa-
tions were rendered using USCF Chimera [106]. Arrows indicate the direction of the hydrophobic
moment (µH).

3. Materials and Methods
3.1. Study Design

The current study used several in silico approaches to find and design novel and
potent AMPs and CPPs as a drug delivery system. The flowchart of peptide prediction and
analysis is illustrated in Figure 6.
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3.2. Prediction of BAPs

BAPs from natterin 1 (UniProt Q66S25), natterin 2 (UniProt Q66S21), natterin 3
(UniProt Q66S17), natterin 4 (UniProt Q66S13), and natterin P (UniProt Q66S08) were
predicted using bioinformatics tools. AMPs were predicted using AMPA (http://tcoffee.
crg.cat/apps/ampa/do, accessed on 5 January 2022), CAMP algorithm (http://www.camp.
bicnirrh.res.in, accessed on 5 January 2022) (based on primary amino acid sequences),
and AmpGram (http://biongram.biotech.uni.wroc.pl/AmpGram, accessed on 5 August
2022) [107], which employs n-grams (amino acid motifs) and random forests for prediction.
All sequences were in FASTA format, and antimicrobial domains were detected for the
design of AMPs [108,109]. CPPs were predicted using the SVM-based web server CellPPD
(https://webs.iiitd.edu.in/raghava/cellppd/index.html) and C2Pred (http://lin-group.
cn/server/C2Pred, accessed both on 10 January 2022) [54–56]. The sequences were sub-
mitted to a protein scanning tool with the default threshold of the SVM-based prediction
method [110].

http://tcoffee.crg.cat/apps/ampa/do
http://tcoffee.crg.cat/apps/ampa/do
http://www.camp.bicnirrh.res.in
http://www.camp.bicnirrh.res.in
http://biongram.biotech.uni.wroc.pl/AmpGram
https://webs.iiitd.edu.in/raghava/cellppd/index.html
http://lin-group.cn/server/C2Pred
http://lin-group.cn/server/C2Pred
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3.3. Physicochemical Properties

The physicochemical parameters of peptide sequences were evaluated using different
tools. MW, net charge, theoretical isoelectric point (pI), instability index, and GRAVY were
estimated using ProtParam, available on the bioinformatics resource portal ExPASy of the
Swiss Institute of Bioinformatics website (http://web.expasy.org/protparam, accessed
on 19 October 2021). Peptide solubility and net charge at pH 7.0 were evaluated using
PepCalc (https://pepcalc.com/, accessed on 24 January 2022). Hydrophobic moment
(µH), hydrophobicity (H), and amino acid charge were estimated using Heliquest (https:
//heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py, accessed on 24 January 2022) and
the Antimicrobial Peptide Database (APD3) (https://aps.unmc.edu/prediction/predict,
accessed on 25 January 2022).

3.4. Evaluation of the Membrane-Binding Ability of BAPs

The Boman index and protein-binding potential were evaluated using APD3 (http:
//aps.unmc.edu/AP/prediction/prediction_main.php, accessed on 5 February 2022). The
Boman index is the sum of solubility values for all amino acids in a peptide sequence
and indicates the ability to bind to the cell membrane or other proteins [72]. The cellular
localization of BAPs was assessed using the TMHMM web server (http://www.cbs.dtu.
dk/services/TMHMM, accessed on 8 February 2022). TMHMM analyzes the probability of
a peptide to bind to the negatively charged bacterial cell membranes.

3.5. Assessment of Immunogenicity, Toxicity, Allergenicity, and Anticancer and Antiviral
Properties

Peptides can induce immune responses in vivo, resulting in allergic reactions. Neutral-
izing antibodies bind to proteins, reducing the therapeutic efficacy of these proteins [77,78].
Immunogenicity was evaluated using IEDB Immunogenicity Predictor (http://tools.iedb.
org/immunogenicity, accessed on 9 February 2022) [57]. Toxicity and allergenicity were
analyzed using ToxinPred (https://webs.iiitd.edu.in/raghava/toxinpred/algo.php, ac-
cessed on 10 February 2022) and AllerTop (https://www.ddg-pharmfac.net/AllerTOP,
accessed on 10 February 2022) (http://ddg-pharmfac.net/AllergenFP, accessed on 11
February 2022) [61,62]. Antiviral and anticancer peptides were predicted using Meta-
iAVP (http://codes.bio/meta-iavp, accessed on 12 February 2022) and ACPred (http:
//codes.bio/acpred, accessed on 12 February 2022), respectively [111,112].

3.6. Hemolytic Activity and Half-Life

Hemolytic activity was predicted using the SVM-based HemoPI (https://webs.iiitd.
edu.in/raghava/hemopi/design.php, accessed on 12 February 2022). Peptide half-life in
E. coli and mammalian cells was calculated using ProtParam (https://web.expasy.org/
protparam, accessed on 12 February 2022).

3.7. Prediction of ADMET and Medicinal Chemistry Parameters

The Simplified Molecular Input Line Entry System (SMILES) structural format of
58 peptides was obtained using PepSMI (https://www.novoprolabs.com/tools/convert-
peptide-to-smiles-string, accessed on 2 April 2022). PepSMI runs an algorithm that converts
raw sequences into a string of texts and unambiguously describes each atom and molecular
bond in a manner amenable to machine processing. ADMET parameters, including human
intestinal absorption (HIA), mutagenicity, carcinogenicity, central nervous system penetra-
tion, drug-induced liver injury (DILI), cytochrome P450 enzyme inhibition, carcinogenicity,
mutagenicity, clearance, half-life, and skin sensitization, were assessed using version 420
(released on July 2021) of the ADMETlab 2.0 platform (https://admetmesh.scbdd.com/,
accessed on 4 April 2022) and a comprehensive database composed of 0.25 million en-
tries from PubChem, Online Chemical Modeling Environment (OCHEM), DrugBank,
ChEMBL, Toxicity Estimation Software Tools (developed by the U.S. Environmental Pro-
tection Agency), and peer−reviewed literature [93]. Pan-assay interference compounds

http://web.expasy.org/protparam
https://pepcalc.com/
https://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py
https://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py
https://aps.unmc.edu/prediction/predict
http://aps.unmc.edu/AP/prediction/prediction_main.php
http://aps.unmc.edu/AP/prediction/prediction_main.php
http://www.cbs.dtu.dk/services/TMHMM
http://www.cbs.dtu.dk/services/TMHMM
http://tools.iedb.org/immunogenicity
http://tools.iedb.org/immunogenicity
https://webs.iiitd.edu.in/raghava/toxinpred/algo.php
https://www.ddg-pharmfac.net/AllerTOP
http://ddg-pharmfac.net/AllergenFP
http://codes.bio/meta-iavp
http://codes.bio/acpred
http://codes.bio/acpred
https://webs.iiitd.edu.in/raghava/hemopi/design.php
https://webs.iiitd.edu.in/raghava/hemopi/design.php
https://web.expasy.org/protparam
https://web.expasy.org/protparam
https://www.novoprolabs.com/tools/convert-peptide-to-smiles-string
https://www.novoprolabs.com/tools/convert-peptide-to-smiles-string
https://admetmesh.scbdd.com/
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(PAINS) and undesirable reactive compounds were analyzed using the PAINS and Pfizer
rules [113]. The ADMETlab 2.0 platform predicts the pharmacokinetic parameters based
on basic information and experimental values of the respective entries.

3.8. Prediction of Peptide Structure

The three-dimensional (3D) structures of predicted BAPs were analyzed using PEP-
FOLD3 (https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/, accessed on
3 April 2022), which predicts peptide structures de novo based on primary amino acid
sequences. Peptides are described as a series of fragments of four amino acids, overlapping
by three, and each fragment is associated with a geometric descriptor [114]. The quality
of the best models was assessed. Peptide structures were validated using PROCHECK to
measure the stereochemical properties of the modeled peptide motifs [115]. Furthermore,
the helical wheel diagram of peptides was defined by Schiffer Edmundson wheel modeling
using Heliquest (https://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py, accessed on 5
April 2022) [103]. pH-dependent folded and unfolded states were predicted using SVM-
based DispHred (https://ppmclab.pythonanywhere.com/DispHred, accessed on 5 August
2022) [104].

4. Conclusions

Fifty-seven novel and potent AMPs and CPPs derived from natterins were predicted
in silico from natterin toxins. Moreover, we predicted novel peptides that had high binding
membrane indexes and localization inside cells. These peptide sequences can be further
evaluated for antimicrobial, cell penetration, and anticancer activity in vitro and in vivo
in advance. Generally, the predicted and engineered toxin-derived AMPs and CPPs with
different properties can be applied to deliver different cargoes and drug development.
Overall, the present study showed that using machine learning tools in peptide research
can streamline the development of targeted peptide therapies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15091141/s1, Supplementary Figure S1. Multiple sequence
alignment analysis. Natterins from Thalassophryne nattereri venom were aligned using ClustalW
(UNIT 2.3 Multiple Sequence Alignment Using ClustalW and ClustalX, 2003). Accession numbers:
SP|Q66S25| Natterin 1; SP|Q66S21| Natterin 2; SP|Q66S17| Natterin 3; SP|Q66S13| Natterin 4;
SP|Q66S08| Natterin P. *Fully conserved residues; conservation of strongly similar groups (>0.5 in
the Gonnet PAM 250 matrix); conservation of weakly similar groups (≤0.5 in the Gonnet PAM 250
matrix) [116]. Table S1. Physicochemical proprieties of predicted antimicrobial and cell-penetrating
peptides. Table S2. Membrane-binding potential and cellular localization of predicted antimicrobial
and cell-penetrating peptides. Table S3. Prediction of medicinal chemistry proprieties of peptides.
Reference [116] are cited in the Supplementary Materials.
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