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Background.  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic control will require widespread access 
to accurate diagnostics. Salivary sampling circumvents swab supply chain bottlenecks, is amenable to self-collection, and is less likely 
to create an aerosol during collection compared with the nasopharyngeal swab. 

Methods.  We compared real-time reverse-transcription polymerase chain reaction Abbott m2000 results from matched sali-
vary oral fluid (gingival crevicular fluid collected in an Oracol device) and nasal-oropharyngeal (OP) self-collected specimens in 
viral transport media from a nonhospitalized, ambulatory cohort of coronavirus disease 2019 (COVID-19) patients at multiple time 
points. These 2 sentences should be at the beginning of the results. 

Results.  There were 171 matched specimen pairs. Compared with nasal-OP swabs, 41.6% of the oral fluid samples were posi-
tive. Adding spit to the oral fluid percent collection device increased the percent positive agreement from 37.2% (16 of 43) to 44.6% 
(29 of 65). The positive percent agreement was highest in the first 5 days after symptoms and decreased thereafter. All of the infec-
tious nasal-OP samples (culture positive on VeroE6 TMPRSS2 cells) had a matched SARS-CoV-2 positive oral fluid sample. 

Conclusions.  In this study of nonhospitalized SARS-CoV-2-infected persons, we demonstrate lower diagnostic sensitivity of 
self-collected oral fluid compared with nasal-OP specimens, a difference that was especially prominent more than 5  days from 
symptom onset. These data do not justify the routine use of oral fluid collection for diagnosis of SARS-CoV-2 despite the greater 
ease of collection. It also underscores the importance of considering the method of saliva specimen collection and the time from 
symptom onset especially in outpatient populations.

Keywords.   coronavirus; COVID-19; outpatient; saliva; SARS-CoV-2.

The coronavirus disease 2019 (COVID-19) pandemic caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
virus has rapidly spread globally and resulted in significant mor-
bidity and mortality [1]. The rapid transmission of SARS-CoV-2 
has focused unprecedented attention on the importance of diag-
nostics that are both accurate and widely available for pandemic 

control [2, 3]. Although attention is often given to the diagnostic 
platform, the specimen collection methods are also important 
determinants of accuracy and availability. For molecular ampli-
fication assays, nasopharyngeal (NP) specimen collection using 
flocked swabs has the highest sensitivity [4]. However, there is an 
urgent need to replace the NP specimen type because swab supplies 
are limited, and the procedure is uncomfortable. Alternate sample 
types [5] including saliva have been used to detect SARS-CoV-2 
[6–8]. More importantly, there are multiple sample types that may 
be called “saliva” in the literature; spit and passive drool (no mate-
rial from the posterior pharynx is included), oral crevicular fluid (a 
sponge rubbed against the gingival crevice releasing oral fluid rich 
in antibodies), and expectorated spit/sputum. A review of the liter-
ature of these sample types compared against an NP molecular test 
qualitative gold standard is presented in Table 1 with a Forest plot 
of the positive percent agreement Figure 1. In many studies, saliva 
specimens have lower positive percent agreement, but, conversely, 
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saliva often detected SARS-CoV-2 when the NP swab was negative 
in a proportion of the samples thereby decreasing negative per-
cent agreement as well. Salivary sampling circumvents swab supply 
chain bottlenecks, simplifies self-collection even by children, and 
reduces aerosolization during collection. A few studies have also 
suggested salivary sampling has high diagnostic sensitivity [6]. 
In one hospitalized cohort of matched NP swab and saliva speci-
mens, saliva specimens had higher mean log copies per milliliter 
of SARS-CoV-2 ribonucleic acid (RNA) than NP swab specimens 
[9]. However, the advantage of salivary collection is even greater 
in outpatient settings. Thus, in a cohort of ambulatory COVID-19 
adults, we compared SARS-CoV-2 RNA detection and abundance 
in a longitudinal series of self-collected and matched oral fluid sa-
liva and upper respiratory (nasal-oropharyngeal) specimens util-
izing the Abbott Molecular RealTime SARS-CoV-2 assay followed 
by cell culture of RNA-positive samples. We sought to understand 
the sensitivity of the oral fluid saliva sample type over time in am-
bulatory COVID-19 patients.

MATERIALS AND METHODS

Patient Consent Statement

Due to the contagious nature of COVID-19 being studied under 
this protocol, obtaining signed informed consent form for subjects 
enrolled in this study was not feasible or safe initially for study staff. 
Instead, the study staff obtained a verbal consent using consent 
waiver with an alteration of the informed consent. All participants 
provided verbal consent after documentation of understanding as 
they were self-isolating at home due to COVID-19 according to 
a consent script that was provided in either English or Spanish. 
A copy of the informed consent was sent to the participants. This 
protocol and verbal consent were approved by the Johns Hopkins 
University School of Medicine Institutional Review Board (IRB). 
All procedures were in accordance with the ethical standards of 
the Helsinki Declaration of the World Medical Association.

Study Cohort

From April 21 to July 16, 2020, nonhospitalized adults 
who were self-isolating after receiving a positive NP SARS-
CoV-2 real-time reverse-transcription polymerase chain re-
action (rRT-PCR) result from the Johns Hopkins Medical 
Microbiology laboratory were approached for participation by 
telephone using a verbal consent script. Inclusion criteria were 
age ≥18 years, able to receive study materials while remaining 
in isolation, and able and willing to perform self-collection of 
specimens. Participants who were able to give an oral informed 
consent after documentation of understanding were enrolled in 
the study [10]. This study was approved by the IRB of the Johns 
Hopkins University School of Medicine.

Specimen Collection

Participants were mailed a sample collection kit that included 
an international air transport association (IATA)-approved 

biologic sample container as well as sample collection ma-
terials and written instructions for sample collection. In ad-
dition, study coordinators provided verbal sample collection 
instructions and observed participants by video call when 
possible. The study coordinators recorded their assessment of 
the quality of self-collection. Participants self-collected mid-
turbinate nasal and oropharyngeal (nasal-OP) swabs; both 
swabs were placed in 3 mLs viral transport medium ([VTM] 
[11]). Self-collected samples have been previously validated 
and published [11–13]. By placing them in the same media, 
this combination aimed to optimize detection and approxi-
mated the NP clinician-collected sample [14]. Participants 
also collected oral crevicular saliva fluid via the Oracol saliva 
collection system (oral fluid) (Malvern Medical Developments 
Ltd., Worchestershire, UK), a transport buffer-free sample 
collection system. All samples were immediately placed in 
the IATA container and stored in the participant’s freezer be-
fore shipping. Participants self-collected samples on the day 
they received the collection materials (day 0)  and then sub-
sequently on study days 3, 7, 14. On day 14, the participant 
shipped the collected samples on ice-cold packs to Johns 
Hopkins University for analysis using an overnight courier 
service. A final in-person collection occurred between day 28 
and 60 when a clinician-collected NP swab and a self-collected 
Oracol was performed. Participants were instructed to open 
and remove the saliva collection sponge from the device con-
tainer, rub their gums for 1–2 minutes with the sponge, then 
reinsert the swab back into the device container and closes the 
container. This collection method targets gingival crevicular 
fluid, which leaks from the space between the gums and teeth 
and is enriched with immunoglobulin G antibodies derived 
from blood. Based on publication of the spit saliva sample 
type [9], participants were instructed to spit one time into 
the Oracol after gum collection from June 1, 2020 onward. 
Clinical information was collected using a standardized Flu-
PRO [15] instrument on the same days as sample collection, in 
addition to patient history in a predesigned database.

Specimen Testing

The nasal-OP swab VTM was aliquoted into multi-Collect 
tubes (Abbott Molecular, Des Plaines, IL) in 600-µL volumes 
before testing with the Abbott Molecular RealTime SARS-
CoV-2 assay. Nucleic acid was extracted from the multi-Collect 
tubes utilizing the Abbott Molecular m2000sp, followed by am-
plification and analysis on the Abbott m2000rt; both extraction 
and amplification were performed per the manufacturer’s in-
structions. A positive reaction was defined as a reaction having 
a cycle number (CN ) <31.5 based on the manufacturer’s defini-
tion of a positive result. Oracol collection devices were centri-
fuged upon receipt at 1500 ×g for 10 minutes. The majority of 
the participants (60 of 71) were able to produce Oracol volumes 
between 500 µL and 1 mL; 200-µL undiluted volumes of oral 
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fluid were aliquoted into Abbott multi-Collect tubes and were 
tested on the Abbott Moelcular m2000 platform.

Cell Culture

VeroE6-TMPRSS2 [16] cell culture model was used to assess vi-
able virus when incubated with VTM (nasal-OP samples only). 
The SARS-CoV-2-specific growth was verified by indirect im-
munofluorescence for SARS-CoV-2 antigen (nucleocapsid and 
spike proteins) [17].

Statistical Analysis

Median CN value and corresponding interquartile range 
(IQR) for concordantly positive pairs were calculated for both 
nasal-OP and oral fluid samples. Difference of CN value be-
tween nasal-OP and oral fluid samples in matched pairs were 
tested using Wilcoxon signed-rank test in all samples, prespit 
samples, and postspit samples. The 0.05 significance level 

was used. Analyses were performed using R 3.6.2 statistical 
software.

RESULTS

Of the 118 participants enrolled that were previously described 
[9], 71 participants had at least 1 sample that was rRT-PCR pos-
itive; 60 had matched saliva and nasal-OP specimens and were 
included in this analysis (Supplemental Figure 1). The median 
age was 59 (IQR, 51–66) years, 53% were women (32 of 60). 
From these 60 persons, there were 342 matched self-collected 
nasal-OP swabs and oral fluid samples (171 pairs). Of the 
matched samples, 60 were concordantly negative, 45 concord-
antly positive, and 66 discordant (63 nasal-OP pos/oral neg and 
3 nasal-OP neg/oral pos). The SARS-CoV-2 RNA estimates 
were generally higher in nasal-OP samples. For example, among 
the 45 samples that were concurrently positive, the median 
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cycle threshold (Ct) of nasal-OP swab samples was 15.98 (IQR, 
13.96–21.21) versus 21.81 (IQR, 17.35–25.27) for oral fluid 
(P < .001). (Figure 2A) Likewise, of 111 samples when at least 

1 of the tests was positive, only 14 (12.6%) had higher RNA 
abundance in oral fluid compared with nasal-OP swab samples. 
Considering nasal-OP as a reference, the sensitivity of the first 
oral fluid specimen from each participant was 62.1% (18 of 29), 
with a specificity of 80% (8 of 10) (Supplemental Figure 2).

Midway through enrollment, participants were asked to add 
spit into the Oracol collection tube to evaluate whether that 
might enhance sensitivity. Of the matched samples in which 
the oral fluid was supplemented with spit (n  =  104), 38 were 
concordantly negative, 29 concordantly positive, and 38 dis-
cordant (36 nasal-OP pos/oral neg and 2 nasal-OP neg/oral 
pos). (Figure 2B and C) Oral fluid sample sensitivity increased 
from 37.2% “prespit” (n = 67) to 44.6% “postspit” (n = 104). It is 
interesting to note that, of the 44 prespit samples, 4 (9.1%) had 
lower Ct values than nasal-OP, and, in the postspit samples, this 
percentage increased to 14.9% (10 of the 67 samples).

As expected, SARS-CoV-2 detection declined during fol-
low-up (Figure  3). For samples collected more than 6  days 
after symptom onset, the greater SARS-CoV-2 recovery from 
nasal-OP compared with oral fluid was especially evident. 
Among 26 specimens collected 6–10 days from symptom onset, 
SARS-CoV-2 was detected in 25 (96.1%) by nasal-OP but in 
only 16 (58.3%) by oral fluid. Likewise, the SARS-CoV-2 RNA 
abundance in those specimens was higher in nasal-OP than oral 
fluid (Figure 4, Supplemental Table 1).

We cultured all rRT-PCR-positive nasal-OP specimens on 
VeroE6 TMPRSS2 cells. All culture-positive samples (n = 16) 
were obtained within 11 days of symptom onset. In all matched 
samples in which SARS-CoV-2 was culture positive (n  =  9), 
SARS-CoV-2 RNA was detected by rRT-PCR in both nasal-OP 
and oral fluid samples.

DISCUSSION

In this investigation of nonhospitalized SARS-CoV-2-infected 
persons, we demonstrate lower diagnostic sensitivity of 
self-collected oral fluid compared with nasal-OP specimens, a 
difference that was especially prominent more than 5 days from 
symptom onset. These data do not justify the routine use of oral 
fluid collection for diagnosis of SARS-CoV-2 despite the greater 
ease of collection.

Our findings are consistent with what most (but not all) other 
investigators have found particularly in the outpatient setting 
(Table 1, Figure 1) [18–23]. Studies differ in (1) whether they 
involve hospitalized patients, (2) the methods used to collect 
saliva, as well as (3) the duration after infection onset, and these 
factors might contribute to the discordance in results. For ex-
ample, Wyllie et al [9] found even greater detection of SARS-
CoV-2 in oral fluid compared with nasal-OP but collected spit 
in the morning in hospitalized patients. Expectorated “spit” 
samples collected in the morning (possible for hospitalized pa-
tients) might increase viral abundance by enrichment of deeper 
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plus the addition of spit. Samples that were negative in both sample types are not 
shown.
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samples and has been used to increase yield in hospitalized pa-
tients with pneumonia [24]. That difference would be expected 
to be greatest when SARS-CoV-2 is replicating in lower airways 
such as in hospitalized patients with pneumonia. In contrast 
in the present study, participants self-collected oral fluid, op-
timized for the detection of oral crevicular fluid antibodies. 
Although this sample type may dilute the salivary sample and 
decrease its sensitivity for viral RNA detection, Gupta et al [25] 
showed no difference in a comparison of oral crevicular fluid 
with spit. In our study, we found that spit added to the oral fluid 
did increase sensitivity. Taken together, spit/drool sample type 
is better than oral fluid from the gumline. These differences 
are important because many in vitro devices that are currently 
being tested for the direct detection of SARS-CoV-2 use dif-
ferent salivary sample types including passive drool, spit, oral 
fluid collected with a sponge, and sputum from clearing the 
throat. Future studies for home collection should consider the 
added sensitivity of a first morning sputum compared with rou-
tine oral fluid collection [26].

Differences in the stage of infection may also factor into net 
sensitivity. Small differences in the sensitivity of tests can be 
inapparent in the early stages of infection when SARS-CoV-2 
RNA levels are highest. Indeed, in the present study, both 
methods performed well in the first 5 days after symptom onset. 
Others have similarly suggested salivary tests have higher sen-
sitivity in the first week of symptoms in outpatients [9, 27] and 
may have longer duration of positivity in inpatients [9, 28]. It 
remains unclear whether differences in diagnostic yield for sa-
liva versus nasal-OP reflect shifts in SARS-CoV-2 replication 
from upper to lower respiratory tissues. Nonetheless, the timing 

of collection, time after onset of symptoms, hospitalized versus 
outpatient populations, and the volume of saliva/spit may all 
be important for optimizing diagnostic sensitivity, and device 
manufacturers will need to consider these factors when consid-
ering what sample types to test and when assessing assay per-
formance. Overall, most studies of spit or passive drool reveal 
a lower sensitivity compared with NP but identify cases missed 
by the NP sample type.

Although SARS-CoV-2 testing is chiefly used for diagnos-
tics, it has also been used to assess infectivity. In our experience 
using culture as a gold standard for infectivity, both collection 
methods were equivalent in their ability to identify patients 
with infectious virus; all those whose nasal-OP sample was cul-
tured were rRT-PCR positive in both sample types.

Our paper has some important limitations. Because all par-
ticipants were enrolled on the basis of a clinician-collected 
NP swab, this may bias against saliva sample types; if saliva is 
more sensitive early in infection, any participant who was in-
itially saliva positive and NP negative would not have had the 
opportunity to enroll. In addition, 200  µL of neat saliva was 
assayed compared with 600 µL of nasal-OP swab VTM (from 
a total volume of 3  mL). It is possible that if a concentration 
capture method were applied to saliva, yields for this sample 
type may improve sensitivity. Based on the enrollment strategy 
to follow ambulatory participants, we collected specimens from 
when participants were enrolled. Therefore, the number of days 
after symptoms varied; those that were within the first 5 days of 
symptoms, when oral fluid with spit was most sensitive, were 
limited. Finally, although self-collected samples have been 
shown by others to be equally sensitive, Kojima et al [13] found 
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that unsupervised self-collected oral fluid had lower sensitivity. 
In our study, participants were coached by phone or facetime, 
and the presence of human deoxyribonucleic acid in the sample 
was verified. Nonetheless, self-collection may have contributed 
to variability.

CONCLUSIONS

In summary, in what we believe may be the largest ambulatory 
study of its kind, we detected (1) lower SARS-CoV-2 yield in 
oral fluid compared with nasal-OP specimens and (2) improve-
ments in oral fluid enriched with spit. Differences in net diag-
nostic sensitivity were especially notable more than 5 days after 
symptom onset. These results are significant because more than 
80% of COVID-19 and almost all the initial diagnostics are in 
ambulatory persons. Thus, although our data and others dem-
onstrate the potential pragmatic use of salivary samples to de-
tect SARS-CoV-2 [29], they also underscore the importance of 

carefully considering the source of specimens and possibly time 
from symptom onset, especially for home detection systems.
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