
Metabolite profiling of antidepressant drug action
reveals novel drug targets beyond monoamine
elevation
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Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not
the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating
symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake
inhibition by interrogating metabolomic profiles in DBA/2Ola mice after chronic paroxetine treatment. Metabolomic changes
were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate
and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid
metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent
targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations
identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment
effects in the periphery.
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Introduction

Major depression is a severe and life-threatening disease with
a population prevalence of 17%1 and is projected to be the
second leading contributor to the global burden of disease
(DALYs) by the year 2020.2 At present, selective serotonin
reuptake inhibitors, selective noradrenaline reuptake inhibi-
tors and monoamine oxidase inhibitors are the most com-
monly prescribed antidepressants.3,4 Shortcomings of current
antidepressant treatments include a delayed onset of thera-
peutic action, adverse side effects and response in only
a subset of patients.4,5

The elevation of serotonin or noradrenaline levels by tricyclic
and currently used antidepressants had led to the monoamine
deficiency hypothesis of depression6,7 with clinical research
over the past 40 years suggesting that increased monoami-
nergic neurotransmission is essential for antidepressant
efficiency.6 However, contrary to this hypothesis, monoamine
depletion does not induce depression in healthy humans.8

Moreover, a study by Nickel et al.9 found that paroxetine, a
serotonin reuptake inhibitor and tianeptine, a serotonin
reuptake enhancer are both effective antidepressants. A
common downstream effect of both drugs was to normalize
hypothalamic-pituitary-adrenal (HPA) axis reactivity. These
findings indicate that opposite effects on the serotonin system
may lead to common downstream pathway alterations. The
most parsimonious explanation is that monoamine elevation
per se is not the only source for antidepressant activity but
secondary downstream effects may also be involved in the

alleviation of depressive symptoms.10–12 Therefore, it is
tempting to speculate that for improved antidepressant treat-
ment it would be beneficial to pharmacologically interfere with
these downstream mechanisms directly. Proposed antide-
pressant downstream effects include neurogenesis,13,14

strengthened neuronal plasticity15 and attenuation of HPA
axis reactivity.10,16 Despite several suggested modes for anti-
depressant action beyond monoamine elevation, the precise
mechanisms at the cellular metabolism and pathway levels
remain elusive. Activation of postsynaptic monoamine recep-
tors in response to antidepressant treatment triggers intracel-
lular signaling cascades relayed by G proteins that are coupled
to several effector systems including adenylate cyclase,
phospholipase C, phospholipase A2 and ion channels.17,18

Second messengers like cyclic AMP and diacylglycerol induce
intracellular protein phosphorylation events mediated by
protein kinase A and protein kinase C, respectively. Phos-
phorylation events cause gene expression alterations through
transcription factors like cyclic AMP response element-binding
protein resulting in further downstream alterations.19–22

Several studies have investigated the effects of antidepres-
sants in unbiased transcriptomic or proteomic studies. Sillaber
et al.23 identified a number of paroxetine-induced changes on
the transcriptome of DBA/2 mice, including alterations in glial
fibrillary acidic protein and brain-derived neurotrophic factor
(BDNF) mRNA expression. Proteomic studies include parox-
etine treatment effects on embryonic stem cell-derived neural
cells24 and fluoxetine and venlafaxine effects on the rat
hippocampus and frontal cortex25,26 protein expression.
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Metabolites reflect the ultimate response of an organism
to any biological effect27 as they are the final products of
interactions between gene expression, protein expression
and the cellular environment.28 Therefore, metabolite profiling
holds great promise for the identification of affected pathways
in depression, and for the study of antidepressant drug
treatment.

Recent studies have used metabolomic methods to
interrogate psychiatric drug treatment effects. Atypical
antipsychotic treatment influenced metabolism of specific
lipid classes in patients with schizophrenia.29 Metabolomic
studies on treatment effects of traditional Chinese medicine
in rats identified potential biomarker candidates.30,31 Ji et al.32

applied a pharmacometabolomic approach to guide targeted
pharmacogenomic analyses in antidepressant responders
versus non-responders. A pilot study in depressed patients
of old age revealed alterations in plasma metabolite levels
of GABA, glycerol and several fatty acids compared with
controls.33 Most importantly, many of these alterations
normalized after remission. Unfortunately, in this study,
metabolomic changes could not be unambiguously attributed
to depression or antidepressant treatment-related alterations.

In this study, we have for the first time analyzed meta-
bolomic changes after chronic paroxetine treatment in
DBA/2Ola mice. Using multivariate and univariate statistics,
we have identified affected biochemical pathways down-
stream of serotonin reuptake inhibition and potential anti-
depressant drug targets in the hippocampus. Alterations in
the plasma as the preferred specimen in a clinical setting
represent a starting point for the implementation of a clinical
biomarker assay for an early assessment of antidepressant
treatment response.

Materials and methods

Antidepressant treatment of DBA/2Ola mice and organ
sampling. Eight-week-old DBA/2OlaHsd mice were
purchased from Harlan Laboratories (Harlan Winkelmann,
Borchen, Germany). Upon arrival, mice were housed singly
in standard cages and habituated for 2 weeks under standard
laboratory conditions (food and water ad libitum, 12 h dark–
light cycle: lights on 0700–1900 hours, 45–55% humidity,
21±2 1C). After 2 weeks, mice received either paroxetine at
10 mg kg�1 (1 mg paroxetine–hydrochloride–hemihydrate
(Sigma-Aldrich, St Louis, MO, USA) in 1 ml tap water,
thoroughly mixed before each application) or vehicle (tap
water) twice per day (between 0800 and 0900 hours and
1800 and 1900 hours) by gavaging for 28 days. In the
morning of day 29, mice received a final treatment, and
60 min later, the behavior in the forced swim test (FST),
water temperature 25–26 1C, was observed during a 5-min
test period. Immediately after the FST, mice were killed by an
overdose of Forene isoflurane (Abbott, Wiesbaden,
Germany), and blood was drawn by heart puncture and
collected in EDTA tubes (Kabe Labortechnik, Nuembrecht-
Elsenroth, Germany). Plasma was separated from serum by
centrifugation (1300 g, 10 min) and immediately frozen in
liquid nitrogen. Mice were perfused with 0.9% ice-cold saline
(Merck, Darmstadt, Germany) and their brains sampled.

Hippocampi were dissected, weighed, individually shock
frozen in liquid nitrogen and stored at �80 1C until further
analysis.

Metabolite analysis. Metabolite analysis was performed
by the UC Davis Metabolomics Core Facility (http://www.
metabolomics-core.ucdavis.edu/) using validated protocols
and standard operation procedures (see Supplementary
Figure S1). For quality control purposes, 30 standard meta-
bolites were included in the samples in each randomized
batch. FAMEs C08–C30 were used as internal references for
retention index (RI) calibration, the Leco proprietary decon-
volution protocol for peak finding (Leco, St Joseph, MI, USA)
and the BinBase database (http://fiehnlab.ucdavis.edu/db/)
for metabolite annotation.

Metabolite extraction. Per 10 mg of frozen hippocampus,
500ml pre-chilled extraction solution (acetonitrile, isopropa-
nole, water, 3:3:2 (v/v/v)) was added and the mixture was
homogenized for 45 s using Tissue Master 125 (Omni
International, Kennesaw, GA, USA). After centrifugation
(13,000 g, 5 min), supernatants were dried and resuspen-
ded with 500ml acetonitrile:water (1:1, v/v). After centri-
fugation (14 000 g, 2 min), supernatants were completely
dried and stored in darkness under argon for further analysis.
Plasma metabolite extraction was performed as described
previously by Urayama et al.34

Sample derivatization and GC-time of flight-mass
spectrometry metabolite profiling. Sample derivatization
with methoxylamine hydrochloride in pyridine and N-methyl-
N-trimethylsilyltrifluoroacetamide was performed as des-
cribed previously.34 Gas chromatography (GC)-time of
flight-mass spectrometry analysis was performed using
an Agilent 6890N gas chromatograph (Agilent, Palo Alto,
CA, USA) interfaced to a time-of-flight Pegasus III mass
spectrometer (Leco). Automated injections were performed
using an MPS2 programmable robotic multipurpose sampler
(Gerstel, Mühlheim an der Ruhr, Germany). The GC system
was fitted with both an Agilent injector and a Gerstel
temperature-programmed injector, cooled injection system
(model CIS 4), with a Peltier cooling source. An automated
liner exchange (ALEX) designed by Gerstel was used to
eliminate cross-contamination from sample matrix occurring
between sample runs. Multiple baffled liners for the GC inlet
were deactivated with 1-ml injections of MSTFA. The Agilent
injector temperature was held constant at 250 1C, whereas
the Gerstel injector was programmed (initial temperature
50 1C, hold 0.1 min and increased at a rate of 10 1C s�1 to a
final temperature of 330 1C, hold time 10 min). Injections of
1ml were made in the split (1:5) mode (purge time 120 s,
purge flow 40 ml min�1).

Chromatography was performed on an Rtx-5Sil MS column
(30 m� 0.25 mm i.d., 0.25-mm film thickness) with an Integra-
Guard column (Restek, Bellefonte, PA, USA). Helium carrier
gas was used at a constant flow of 1 ml min�1. The GC oven
temperature program was 50 1C initial temperature, with 1-min
hold time and ramping at 208 1C/min to a final temperature of
330 1C with 5-min hold time. Both the transfer line and the
source temperatures were 250 1C. The Pegasus III time of
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flight-mass spectrometer ion source operated at �70 kV
filament voltage. After a solvent delay of 350 s, mass spectra
were acquired at 20 scans per second with a mass range of
50–500 m/z.

Data analysis and statistics. 2-Monostearin, fructose,
glucose, glucose-6-phosphate, glycine and phenylalanine
were identified twice during chromatographic separation in
different chemical derivatization states and their signal
intensities were summed up for further analysis. Metabolite
signal intensities were normalized by the total sum of all
metabolite intensities. Pareto scaled metabolite signal
intensities were then analyzed using MetaboAnalyst (http://
www.metaboanalyst.ca).35

Downstream pathway analysis in the hippocampus and
antidepressant drug targets. Identification of altered
metabolites for subsequent pathway analysis in the
hippocampus was performed by a combined univariate and
multivariate data analysis strategy. Metabolites with altered
concentrations were identified by SAM (significance analysis
of microarrays)36 applying a q-value threshold of 15%.
Multivariate data structure was revealed by partial least
square—discriminant analysis considering metabolites with a
variable importance in projection 41, using just one compo-
nent (accuracy and R2480%, Q2¼ 0.57 and Po0.18 in
permutation tests).37 By exclusively considering the overlap
between the two statistically different methods, we improved
robustness of data analysis and increased confidence in
significantly altered metabolites.

Pathway analysis was performed using the Pathway Studio
software v7.1 (Ariadne Genomics, Rockville, MD, USA),
which contains literature-based relations between proteins,
functional classes, small molecules and cellular processes.
For an increased confidence, relations were only considered if
there were at least two reported literature references.

For identification of affected molecular pathways, a search
for common molecular upstream regulators was performed
including proteins and functional classes and for down-
stream targets including proteins, functional classes and
cellular processes of altered metabolites. A conservative

hypergeometric test38 was performed to detect significant
overrepresented (Po0.05) common regulators and targets.
The background for each common regulator/target was set
to the number of metabolites it relates to (minimum two
references) in the Ariadne database. Owing to the conserva-
tive test, common regulators/targets with only a few inter-
actions are highly penalized.38 Finally, metabolites along
with their regulators and targets were grouped according to
biological function into pathway clusters. In addition to the
identified pathway clusters, potential antidepressant drug
targets were identified. These comprise common regulators
and targets (proteins and functional classes) that modulate
these pathways.

Biomarker candidates in the hippocampus and plasma.
To detect biomarker candidates for antidepressant treatment
effects in the hippocampus, SAM was performed by applying
a q-value threshold of qo0.05. Each metabolite is presented
by a scatter plot indicating inter- and intra-group biological
variabilities. Metabolite/behavior correlation was assessed
using Pearson’s correlation of metabolite intensities versus
floating behavior in the FST. In addition, mice were grouped
according to floating time independent of treatment group
and corresponding average metabolite intensities are shown.

To detect biomarker candidates in the plasma, we corre-
lated hippocampal and plasma metabolite intensities
(SAMhippocampus qo0.05, Pearson’s correlation Po0.10).

Results

We performed a comparative metabolomic study in chronic
paroxetine- versus vehicle-treated DBA/2 mice. As expected,
paroxetine treatment significantly reduced depression-like
behavior in the FST, indicated by a reduced time of floating
(Po0.0001, Figure 1a). Six biological replicates per group
were selected for metabolite profiling based on immobility
behavior in the FST (Figure 1b).

A total of 270 metabolites were quantified in the hippocam-
pus and plasma, of which 110 were of known identity including
25 sugars, 24 amino acids, 17 fatty acids, 12 lipids, 12 organic
acids and 20 of other categories (Supplementary Tables S1
and S2).

Figure 1 Behavioral analysis of paroxetine-treated mice. (a) Chronic paroxetine treatment reduced passive behavior in the forced swim test determined by time of floating,
Po0.0001, tfloating (vehicle)¼ 90.3±6.1 s (mean±s.e.m.), tfloating (paroxetine)¼ 20.6±4.2 s. (b) Six biological replicates were selected for metabolomics analysis based on
the time of floating, P¼ 0.0014, tfloating (vehicle)¼ 97.0±11.0 s (mean±s.e.m.), tfloating (paroxetine)¼ 22.7±12.9 s.
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Downstream pathway analysis and antidepressant drug
target candidates in the hippocampus. For the investiga-
tion of affected hippocampal downstream pathways, we ana-
lyzed differences in metabolomic profiles using a combined
univariate and multivariate data analysis strategy as
described in the ‘Materials and methods’ section. In total,
28 metabolites including 9 amino acids, 5 sugars, 2 organic
acids, 1 fatty acid, 4 of other categories and 7 of unknown
identity were considered for pathway analysis (Table 1a).
Twenty four significantly altered metabolites in the hippo-
campus were present at higher levels upon paroxetine
compared with vehicle treatment. A log2 abundance factor
distribution of all metabolites for the hippocampus and
plasma is shown in Supplementary Figure S2, indicating
slightly higher metabolite levels in paroxetine-treated
hippocampi.

Identified pathway clusters included energy metabolism,
amino-acid metabolism and hormone signaling (Figure 2).
Regulators of these pathways, as illustrated in Figure 2 and
summarized in Table 2, represent antidepressant drug targets
that have the potential to modulate these pathways.

Energy metabolism. Most profound alterations at the
pathway level were found to be related to energy meta-
bolism. Glucose, glucose-6-phosphate and fructose-6-
phosphate, metabolites involved in glycolysis, were present
at 2–4-fold higher levels upon paroxetine treatment. Levels
of lactate, a metabolite linked to glycolysis, were reduced
by 30%. Potential tricarboxylic acid (TCA) cycle alterations
were reflected by a 2.5-fold increase in fumarate levels.
Regulators of energy metabolism were identified as hexo-
kinase 1 and 2, glucokinase, glycogen synthase 2, glucose
transporter, fructose 1,6 diphosphatase, mannose phos-
phate isomerase and fructose bisphosphatase 1.

Amino acid metabolism. Eight proteinogenic amino acids
were considered significant for pathway analysis (Ala, Ile,
Leu, Pro, Ser, Thr, Tyr, Val), all being upregulated by paroxe-
tine treatment (23–72% increase). All but two (Ser, Thr)
amino acids are metabolically linked to TCA cycle interme-
diates linking amino-acid changes to energy metabolism
alterations. Potential regulators are represented by 3-methyl-
2-oxobutanoate dehydrogenase, an important enzyme in
branched-chain amino acid (BCAA), Val, Leu, Ile, degrada-
tion and glutamate dehydrogenase, converting glutamate to
alphaketoglutarate, a TCA cycle intermediate.

Hormone signaling. Hormone signaling was dominated by
glucagon and insulin. Both control blood glucose levels and
the pre-hormone angiotensinogen that is involved in blood
pressure regulation.

Biomarker candidates in the hippocampus and plasma.
Biomarker candidates were identified by univariate data
analysis, as described in the ‘Materials and methods’ section.
A total of 34 metabolites were found in the hippocampus
(7 amino acids, 4 sugars, 2 fatty acids, 1 lipid, 2 organic
acids, 1 of other categories and 17 of unknown identity), of
which 24 were present at higher levels upon paroxetine
treatment (Table 1b). Galactose-6-phosphate (4.88), fumaric

acid (2.47), fructose (2.19) and xylulose (2.08) were among
the metabolites with the greatest fold change and the most
significant changes were found for threonic acid (q¼ 0.009),
xylulose (q¼ 0.024) and valine (q¼ 0.024). Supplementary
Figure S3 provides detailed information on significant
metabolites (scatter plots and correlation analysis). For
many metabolites there was a high correlation between
metabolite intensities and depression-like behavior in the
FST. This represents a first hint that paroxetine-induced
metabolite alterations may be linked to a depression-like
phenotype and do not represent a mere side effect (Supple-
mentary Figure S3).

For identification of plasma biomarker candidates, a
correlation analysis of hippocampus versus plasma metabo-
lite intensities was performed. Out of 17 hippocampus
biomarker candidates (SAMhippocampus qo0.05) of known
identity, 3 metabolites show high correlation values (two-tailed
Po0.10) upon paroxetine treatment. Calculated Pearson’s
coefficient values were r¼ 0.77 for GABA, r¼ 0.75 for
galactose-6-phosphate and r¼�0.73 for leucine (Figure 3).

Discussion

Metabolomic studies hold great promise for the identification
of molecular alterations upon drug treatment.29–32,39

To exclude any metabolite level alterations that are caused
by environmental factors such as nutritional effects, animals
with homogeneous genetic backgrounds and housed under
controlled conditions are the preferred study objects. This
way, inter-individual variability that is commonplace in patient
studies can be avoided resulting in a better signal-to-noise
ratio of the drug-elicited metabolite level changes. To our
knowledge, this is the first study identifying metabolite
signatures in chronically paroxetine-treated DBA/2 mice. We
aimed at revealing treatment effects beyond elevation of
serotonin levels in the synaptic cleft that are involved in
therapeutic antidepressant effects. Understanding the cross-
talk between altered metabolomic pathways will greatly
enhance our understanding of the drug’s mode of action and
adverse side effects.

Affected downstream pathways in the hippocampus.
The selective serotonin reuptake inhibitor paroxetine inhibits
presynaptic serotonin transporters leading to enhanced
serotonergic synaptic transmission, which was previously
shown to be essential for therapeutic efficiency.6 Our results
indicate that enhanced serotonin availability results in diverse
downstream pathway alterations.

Most significantly, paroxetine treatment altered hippocam-
pal energy metabolism (Figure 2, Tables 1a and 2),
particularly the initial steps of glycolysis. Recent studies have
linked antidepressant treatment to energy metabolism altera-
tions. Scaini et al.40 demonstrated increased mitochondrial
respiratory chain activity in selected brain regions after
chronic antidepressant treatment. Prefrontal cortex, hippo-
campal and striatal, but not cerebellar citrate synthase and
succinate dehydrogenase activities were increased after
paroxetine treatment.41 Santos et al.42 found increased brain
creatine kinase activity after chronic paroxetine treatment. All
these findings indicate that in order to normalize metabolic
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Table 1 (a) Hippocampal metabolite level alterations after paroxetine treatment reveal affected pathways (PLS-DA VIP41 and SAM qo0.15, see Figure 2).
(b) Hippocampal biomarker candidates for monitoring antidepressant treatment response (SAM qo0.05)

Metabolite Pubchem
CID

Chemical
class

Fold
change

PLS-DA,
VIP score

SAM,
P-value

SAM,
q-value

(a)

Alanine 5950 Amino acid 1.48 4.6 0.006 0.031
GABA 119 Amino acid 0.87 5.3 0.005 0.026
Isoleucine 6306 Amino acid 1.58 2.0 0.002 0.026
Leucine 6106 Amino acid 1.66 2.8 0.003 0.026
Proline 145742 Amino acid 1.65 2.2 0.039 0.075
Serine 5951 Amino acid 1.18 2.0 0.082 0.103
Threonine 6288 Amino acid 1.25 1.2 0.056 0.087
Tyrosine 6057 Amino acid 1.23 1.1 0.051 0.087
Valine 6287 Amino acid 1.72 2.8 0.001 0.024
Threonic acid 439535 Fatty acid 0.59 1.1 o0.001 0.009
Fumaric acid 444972 Organic acid 2.47 1.8 0.004 0.026
Lactic acid 612 Organic acid 0.70 3.3 0.018 0.054
Fructose 5984 Sugar 2.19 1.9 0.003 0.026
Fructose-6-phosphate 69507 Sugar 1.99 1.2 0.029 0.062
Glucose 5793 Sugar 3.75 2.9 0.033 0.067
Glucose-6-phosphate 5958 Sugar 2.55 1.6 0.027 0.061
Inositol myo- 892 Sugar 0.75 3.7 0.021 0.057
Ethanolamine 700 Other 1.69 3.3 0.003 0.026
Hypoxanthine 790 Other 1.09 1.2 0.108 0.125
Taurine 1123 Other 1.34 3.1 0.071 0.094
Uracil 1174 Other 1.27 1.4 0.022 0.057
199786 NA Unknown 1.32 1.1 0.026 0.061
202571 NA Unknown 3.08 1.0 0.017 0.054
203259 NA Unknown 1.50 1.1 0.025 0.060
223535 NA Unknown 1.69 1.2 0.013 0.046
227964 NA Unknown 4.14 1.1 0.031 0.064
295226 NA Unknown 1.61 1.8 0.016 0.052
301745 NA Unknown 1.75 1.6 0.049 0.087

(b)

Alanine 5950 Amino acid 1.48 4.6 0.006 0.031
b-Alanine 239 Amino acid 1.40 o1 0.002 0.026
GABA 119 Amino acid 0.87 5.3 0.005 0.026
Isoleucine 6306 Amino acid 1.58 2.0 0.002 0.026
Leucine 6106 Amino acid 1.66 2.8 0.003 0.026
Ornithine 6262 Amino acid 1.25 o1 0.008 0.034
Valine 6287 Amino acid 1.72 2.8 0.001 0.024
Lignoceric acid 11197 Fatty acid 0.65 o1 0.013 0.046
Threonic acid 439535 Fatty acid 0.59 1.1 o0.001 0.009
2-Monopalmitin 123409 Lipid 1.52 o1 0.011 0.044
Fumaric acid 444972 Organic acid 2.47 1.8 0.004 0.026
Ribonic acid 5460677 Organic acid 1.33 o1 0.005 0.026
Fructose 5984 Sugar 2.19 1.9 0.003 0.026
Galactose-6-phosphate 99058 Sugar 4.88 o1 0.002 0.026
Xylose 6027 Sugar 1.84 o1 0.004 0.026
Xylulose 5289590 Sugar 2.08 o1 o0.001 0.024
Ethanolamine 700 Other 1.69 3.3 0.003 0.026
199239 NA Unknown 0.77 o1 0.014 0.048
199553 NA Unknown 1.23 o1 0.004 0.026
202572 NA Unknown 3.45 o1 0.005 0.026
202573 NA Unknown 2.54 o1 0.001 0.026
214201 NA Unknown 2.29 o1 0.002 0.026
214537 NA Unknown 0.63 o1 0.007 0.032
216860 NA Unknown 1.31 o1 0.005 0.026
217797 NA Unknown 8.00 o1 0.004 0.026
219021 NA Unknown 1.93 o1 0.012 0.046
219169 NA Unknown 0.40 o1 0.012 0.045
223535 NA Unknown 1.69 1.2 0.013 0.046
231659 NA Unknown 0.62 o1 0.010 0.043
234563 NA Unknown 0.32 o1 0.005 0.027
236605 NA Unknown 2.93 o1 0.003 0.026
239332 NA Unknown 0.43 o1 0.001 0.026
241111 NA Unknown 2.79 o1 0.003 0.026
270407 NA Unknown 0.67 o1 0.008 0.034

Abbreviations: PLS-DA, partial least square—discriminant analysis; NA, not applicable; SAM, significance analysis of microarrays; VIP, variable importance in
projection.
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hypoactivity, which is frequently observed in depressed
patients, energy pathways are a pharmacological target
worth pursuing. Increased ATP levels could also facilitate

energy-dependent antidepressant-treatment-associated cell-
ular processes like G-protein activity, protein kinase activi-
ties (protein kinase A, protein kinase C), synaptic activity

Figure 2 Pathway analysis of altered metabolites upon paroxetine treatment. Common targets and regulators of significant metabolites were identified by a conservative
hypergeometric test expression analysis systematic explorer (EASE), scoreo0.05. Metabolites and targets/regulators were clustered into energy metabolism, amino acid
metabolism and hormone signaling pathways. Green: metabolites, red: proteins, yellow: cellular processes, orange: functional classes.

Table 2 Antidepressant drug target candidates that are regulators and targets of altered metabolites, expression analysis systematic explorer (EASE), scoreo0.05

Pathway cluster Antidepressant drug target candidate Category P-value EASE score

Carbohydrate metabolism ATP-dependent hexokinase Functional class 0.005 0.033
D-fructose 1,6-diphosphatase Functional class 4.1E-04 0.012
FBP1 (fructose bisphosphatase 1) Protein 0.004 0.042
GCK (glucokinase) Protein 8.8E-05 0.001
glucose transporter Functional class 0.002 0.021
GYS2 (glycogen synthase 2) Protein 0.001 0.008
HK1 (hexokinase 1) Protein 1.5E-04 0.006
HK2 (hexokinase 2) Protein 7.5E-05 0.004
MPI (mannose phosphate isomerase) Protein 1.5E-04 0.006

Amino acid metabolism 3-Methyl-2-oxobutanoate dehydrogenase Functional class 0.002 0.033
aa (amino acid) import Cellular process 0.005 0.048
Glutamate dehydrogenase Functional class 0.004 0.030

Hormone signaling AGT (angiotensinogen) Protein 0.012 0.047
DPP4 (dipeptidyl-peptidase 4) Protein 1.5E-04 0.006
GCG (glucagon) Protein 0.004 0.021
INS (insulin) Protein 0.003 0.013

Other Uchl1 (ubiquitin carboxyl-terminal esterase L1) Protein 0.002 0.032
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(transport of ions and neurotransmitter uptake) and protein
synthesis (BDNF).43

We further identified significant alterations in amino acid
metabolism, which is closely linked to energy metabolism
through TCA cycle intermediates. However, from our data
it is not clear whether increased amino acid concentrations
contribute to or are a consequence of altered energy
metabolism and further studies are required to answer this
question.

We also identified significantly altered neuroactive amino
acid level including b-alanine, a glycine receptor agonist,
and decreased levels of GABA, the most prominent inhibi-
tory neurotransmitter, indicating a direct link of amino acid
metabolism to neurotransmission. Furthermore, significantly
increased levels of tyrosine, the amino acid precursor of
epinephrine, could contribute to elevated noradrenergic
neurotransmission, a target of selective noradrenaline reup-
take inhibitors.

Biomarker candidates for antidepressant treatment
effects in the hippocampus. Biomarkers for antidepres-
sant treatment response that indicate expected treatment
efficiency at an early time point are in great demand. The
metabolites identified in this study can provide a basis for
future in vivo studies using either nuclear magnetic
resonance spectroscopy, or cerebrospinal fluid and blood
samples, the latter being the preferred specimen for imple-
mentation of a clinical biomarker assay.

Branched chain amino acids. Concentrations of the
essential amino acids valine, leucine and isoleucine
increased by 50–70% upon paroxetine treatment. Elevated
levels of these amino acids, especially leucine, have been
shown to increase protein synthesis through increased
mammalian target of rapamycin signaling in liver, skeletal
muscle, kidney and adipose tissues.44–46 Until now, however,
there is no evidence that BCAAs also induce protein
synthesis in the brain. Mammalian target of rapamycin
signaling, which is closely linked to synaptic plasticity,47

was shown to be inhibited by the selective serotonin reuptake
inhibitor sertraline leading to decreased, not elevated, protein
synthesis,48 seen in other tissues. Rapamycin, an inhibitor
of mammalian target of rapamycin signaling exhibited
antidepressant-like effects in mice and rats,49 whereas

antidepressant effects of ketamine in treatment-resistant
depressed patients were attributed to activated mammalian
target of rapamycin signaling.50

Different pathways could be affected by increased BCAA
levels in the hippocampus since BCAA metabolism is directly
connected to energy metabolism. Specifically, oxidative
BCAA degradation leads to Krebs cycle intermediates.51,52

Thus, alterations in energy metabolism upon paroxetine treat-
ment could, at least in part, be influenced by altered BCAA
concentrations. Furthermore, alterations in Krebs cycle
intermediates were shown to result in altered neurotransmitter
synthesis,53 suggesting that increased BCAA levels could
also influence synaptic transmission.

Biomarker candidates for antidepressant treatment
effects in the plasma. Metabolite alterations in the plasma
were less pronounced than those in the hippocampus. This
finding is not unexpected as paroxetine primarily targets
cerebral neurotransmission. To see whether central nervous
system alterations are also reflected in the plasma, we
performed a brain/plasma metabolite correlation analysis.
We identified GABA, galactose-6-phosphate and leucine as
biomarker candidates for antidepressant treatment effects.
All three plasma biomarker candidates represent alterations
also observed in the brain. Further studies need to validate
these findings in humans by a targeted analysis in specimens
from antidepressant treatment responders versus non-
responders.

Future studies. Although we have identified a significant
intensity level/phenotype correlation for a number of meta-
bolites (Supplementary Figure S3), we cannot unambiguo-
usly associate identified pathway alterations or biomarker
candidates with antidepressant therapeutic effects. To
address this issue further, one line of investigation could
include a pharmacological analysis of different mouse
models of depression including chronic mild stress,54 social
defeat55,56 or early-life stress through maternal separation,57

wherein antidepressant treatment effects could be more
directly associated with decreased depression-like behavior.
Directly targeting the identified pathways in mouse models of
depression may also help in this endeavor. In this pilot study,
we have identified molecular changes upon antidepressant
treatment at the metabolome level in DBA/2 mice that reflect

Figure 3 Plasma metabolite biomarker candidates for monitoring antidepressant treatment response. Hippocampal metabolite intensities were correlated with plasma
metabolite intensities (Po0.10).
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pathway alterations beyond monoamine reuptake inhibition.
On the basis of pathway information, we revealed putative
antidepressant drug targets and biomarker candidates for the
assessment of antidepressant treatment effects elicited
through novel modes of action.
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