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Abstract: Loratadine is an anti-histamine routinely used for treating allergies. However, recent
findings have shown that Loratadine may also have anti-inflammatory functions, while their exact
mechanisms have not yet been fully uncovered. In this paper, we investigated whether Loratadine
can be utilized as an anti-inflammatory drug through a series of in vitro and in vivo experiments
using a murine macrophage cell line and an acute gastritis mouse model. Loratadine was found to
dramatically reduce the expression of pro-inflammatory genes, including MMP1, MMP3, and MMP9,
and inhibit AP-1 transcriptional activation, as demonstrated by the luciferase assay. Therefore, we
decided to further explore its role in the AP-1 signaling pathway. The expression of c-Jun and c-Fos,
AP-1 subunits, was repressed by Loratadine and, correspondingly, the expression of p-JNK, p-MKK7,
and p-TAK1 was also inhibited. In addition, Loratadine was able to reduce gastric bleeding in acute
gastritis-induced mice; Western blotting using the stomach samples showed reduced p-c-Fos protein
levels. Loratadine was shown to effectively suppress inflammation by specifically targeting TAK1 and
suppressing consequent AP-1 signaling pathway activation and inflammatory cytokine production.

Keywords: Loratadine; anti-inflammatory effect; AP-1; TAK1

1. Introduction

Inflammation is an immunological response to the intrusion of foreign substances
into the body or tissue repair failure. It protects our bodies from such harmful external
or internal stimuli by recruiting immune cells, which can attach to or eliminate foreign
elements or injured tissue [1–3]. However, when the inflammatory response outstrips
the level of infection, it becomes a critical factor in driving other diseases, including
diabetes, arthritis, and cancer [4–7]. Immune cells express pattern recognition receptors
(PRRs), which are responsible for recognizing damage/pathogen-associated molecular
patterns (DAMPs/PAMPs) expressed by pathogens [8–10]. Some of the most widely studied
mammalian PRRs are toll-like receptors (TLRs), which are responsible for inflammatory
pathway activation. Among the 10 TLRs discovered in humans, TLR4 is responsible for
lipopolysaccharide (LPS) recognition to identify representative disease-causing PAMPs
expressed by gram-negative bacteria [11–13]. Once an LPS is bound to TLR4, sequential
intracellular inflammatory signaling processes are initiated by myeloid differentiation factor
88 (MyD88) and TIR-domain-containing adaptor-inducing interferon-β (TRIF), two adaptor
proteins attached to the cytosolic toll-interleukin-1 receptor (TIR) domain of TLR4. Nuclear
factor-kappa B (NF-κB), interferon regulatory factor 3 (IRF3), and activator protein-1 (AP-
1) signaling pathways are the three representative intracellular inflammatory pathways
activated by MyD88 and TRIF [14–16].
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Among them, the AP-1 pathway is regulated by the transcription factor AP-1, which
is responsible for regulating cell differentiation, cell cycle progression, and apoptosis. The
AP-1 pathway consists of c-Fos and c-Jun families, and its transcriptional activation is
mediated through the dimerization of these two subunits [17–21]. Originally located in the
cytosol, c-Fos and c-Jun translocate into the nucleus and dimerize after they are activated
by their upstream kinases, mitogen-activated protein kinases (MAPKs). MAPKs comprise a
family of serine/threonine protein kinases, notably including extracellular signal-regulated
kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. MAPKs are activated by upstream
MAPK kinases (MAPKKs), such as MAPK/ERK kinase (MEK) and MAPK kinase (MKK).
Activation of MAPKKs is mediated by MAPKK kinases (MAPKKKs), notably including
transforming growth factor-β-activated kinase 1 (TAK-1), mixed lineage kinase 3 (MLK3),
and apoptosis signal-regulating kinase 1 (ASK1) [22–25]. The activation of the above kinases
is regulated by sequential phosphorylation from upstream kinases to downstream kinases.
Activation of AP-1 allows the transcription of inflammation-related enzymes, including
matrix metallopeptidases (MMPs) and cyclooxygenase 2 (COX-2) [26–30].

Histamine is a primary mediator of the allergic response. It is kept in mast cells
or basophils until the cells receive certain stimuli allowing it to be released out of the
cells [31,32]. When histamine interacts with histamine receptors H1, H2, H3, or H4, an
allergic reaction occurs. Among them, drugs targeting the H1 receptor are most commonly
used for the treatment of allergies [33,34]. Meanwhile, Loratadine is an H1 histamine
receptor antagonist; therefore, it is widely used as allergy medication. More importantly, it
is within the second generation of non-sedating anti-histamine drugs [35,36].

However, there have been several reports presenting the H1 receptor-independent anti-
inflammatory effects of H1 receptor antagonists by inhibiting NF-κB and AP-1 activities.
Fexofenadine, a widely-used anti-histamine drug, was also shown to have inhibitory effects
with COX-2 in an H1-receptor-independent manner [37,38]. In the meantime, various stud-
ies have revealed that Loratadine may be used as a novel anti-inflammatory drug [39–41].
Similarly, our previous study of Loratadine showed that it possesses inflammation-suppressive
activities in the NF-κB signaling pathway [42].

Nevertheless, its inflammation-regulatory activities in another important inflamma-
tory response pathway, the AP-1 signaling pathway, remain undetermined. Therefore,
in this paper, we investigate the exact mechanism of the anti-inflammatory effects of
Loratadine in the AP-1 signaling pathway.

2. Results
2.1. Anti-Inflammatory Effects of Loratadine Are Mediated by Its Transcriptional Regulation of
Pro-Inflammatory Genes

First, in order to determine whether or not Loratadine has anti-inflammatory effects
on the transcriptional level, we examined the mRNA expression levels of pro-inflammatory
genes as well as the activation of transcription factor AP-1 under inflammation-triggered
conditions. In RAW264.7 cells treated with LPS (1 µM), Loratadine (20–40 µM) effectively
suppressed the mRNA expression of MMP1, MMP3, and MMP9 (Figure 1a), which are
representative pro-inflammatory factors expressed via AP-1 pathway activation [43,44]. In
addition, for further rationalization of such an effect, we also conducted the same experi-
ment with prednisolone, an FDA-proved anti-allergic and anti-inflammatory drug [45], as
a positive control. As shown in Figure 1b, prednisolone also suppressed the expression of
COX-2 and MMP9 in a dose-dependent manner, supporting the validity of Loratadine’s
anti-inflammatory effects indicated by MMP-reducing behavior. Therefore, we decided
to further investigate whether such reduction in pro-inflammatory gene expression was a
consequence of direct AP-1 inhibition by Loratadine.
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Figure 1. Inhibitory effects of Loratadine on the mRNA expression of pro-inflammatory genes and the
transcriptional activation of inflammatory transcription factors. (a,b) RAW264.7 cells were pre-treated
with the indicated concentrations of Loratadine (20–40 µM) or prednisolone (50–200 µM) for 30 min.
The cells were treated with LPS (1 µg/mL) for 6 h, and the mRNA expression levels of MMP1, MMP3,
MMP9, and GAPDH (control) were measured by reverse-transcription polymerase chain reaction
(RT-PCR) and agarose gel electrophoresis. Visualization of DNA bands was achieved by exposing
the gel to UV irradiation. (c–f) HEK293T cells were transfected with AP-1-luc, MyD88, TRIF, and
β-galactosidase (control) using PEI for 24 h. Cells were treated with the indicated concentrations
of Loratadine (20–40 µM) for 6 h before cell harvesting. The expression of AP-1 was measured by
luciferase activity. (f) HEK293T cells were treated with the indicated doses of Loratadine (20–40 µM)
for 24 h, and viability was measured using the MTT cell viability assay. ## p < 0.01 compared to
normal group; * p < 0.05 and ** p < 0.01 compared to control group. All data are presented (a–f) as
mean ± standard deviation of the experiments performed with 4–6 samples.

In MyD88- and TRIF-overexpressed or PMA (100 µM)-treated HEK293T cells, AP-
1-luc activation levels were significantly reduced in a concentration-dependent manner
by Loratadine treatment (20–40 µM), as indicated in Figure 1c–e. The figures clearly in-
dicate that AP-1 promoter activity, in other words, AP-1 transcription, is suppressed by
Loratadine treatment. Furthermore, the cell viability assay showed that Loratadine treat-
ment (20–40 µM) did not have any cytotoxicity at investigated concentrations (Figure 1f),
implying that the reduction in AP-1 transcription was not due to cell death. Therefore,
we decided to set the target concentration of Loratadine as 20–40 µM since these three
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concentrations showed a dose-dependent mode of action, and none of them showed cell
toxicity. In conclusion, these data suggest that Loratadine suppresses pro-inflammatory
factors via transcriptional regulation, and such effects are not outcomes of cell death.

2.2. Loratadine Targets the AP-1 Signaling Pathway to Reduce Inflammatory Responses Both In
Vitro and In Vivo

Since we discovered suppressive effects of Loratadine on AP-1-mediated gene ex-
pression and promoter activity of AP-1 (Figure 1), we further investigated whether such
anti-inflammatory effects could also affect the constituent molecules of the intracellular
AP-1 signaling pathway. Based on the concept that two subunits of AP-1, c-Jun, and c-Fos,
translocate from the cytosol to the nucleus upon activation [46], the expression levels of
c-Jun and c-Fos were determined within the nuclear fraction. In RAW264.7 cells, the nuclear
expression levels of both c-Jun and c-Fos were clearly decreased following Loratadine treat-
ment (40 µM) 15 min after LPS induction (Figure 2a). On the other hand, total cell lysate
also showed decreased phosphorylation levels of c-Jun at 30 min and c-Fos at 30 and 45 min
after LPS treatment (Figure 2b). It clearly indicates that Loratadine inhibits the activity of
c-Jun and c-Fos. In addition, decreased levels of total c-Jun and c-Fos by Loratadine imply
that Loratadine may also be involved in the degradation of the transcription factors.
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Figure 2. Anti-inflammatory effects of Loratadine on the constituent kinases of the AP-1 signaling
pathway. (a) RAW264.7 cells were pre-treated with Loratadine (40 µM) for 30 min following LPS
treatment (1 µg/mL) for the indicated time points (15–45 min). The expression levels of c-Jun, c-Fos,
and Lamin A/C (control) within the nuclear fraction were assessed by Western blotting analysis.
(b–e) RAW264.7 cells were pre-treated with Loratadine (40 µM) for 30 min following LPS treatment
(1 µg/mL) for the indicated time points (5–60 min). The levels of total or phosphorylated c-Jun,
c-Fos, ERK, JNK, p-38, MEK1/2, MKK4, MKK7, TAK-1, and β-actin (control) within the whole lysate
were measured by Western blotting analysis. NF: nuclear fraction; WCL: whole cell lysate. (f) Acute
gastritis was induced using HCl/EtOH after vehicle, Loratadine, or ranitidine injection. Stomach
samples were obtained and cut open after sacrifice to assess stomach bleeding levels. (g) Stomach
samples were ground in liquid nitrogen and lysed using cell lysis buffer. Western blotting was
performed to assess the expression levels of total and phosphorylated c-Fos and β-Actin (control).
NF: nuclear fraction; WCL: whole cell lysate; Ran: Ranitidine. (Bottom panels of a–e,g). Relative
intensity of these proteins was calculated by ImageJ.

Subsequently, we evaluated the cytosolic levels of AP-1 upstream kinases in LPS-
induced RAW264.7 cells. Among the three different MAPKs, ERK, JNK, and p38, p-JNK
(phosphorylated JNK) levels were clearly decreased 5 and 15 min post-inflammation
induction by Loratadine treatment (40 µM), as shown in Figure 2c. Consistently, we also
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found the expression levels of p-MKK7 (phosphorylated MKK7), an upstream molecule of
JNK, to be decreased by the same concentration of Loratadine 3 and 5 min post-induction
(Figure 2d). Other MAPKKs, including MEK1/2 and MKK4, did not show such a clear
reduction (Figure 2d). Finally, the expression levels of TAK1, which is a member of the
MAPKKK family and an upstream activator of MKK7, were examined. LPS induction and
Loratadine treatment (40 µM) were not found to reduce p-TAK1 (phosphorylated TAK1)
levels (Figure 2e). Under inflammation-triggering conditions, a reduction in molecules
downstream from TAK1 but not p-TAK1 itself indicates that TAK1, among other molecules
of the AP-1 signaling pathway, might be the primary target of Loratadine.

In addition, in order to demonstrate the anti-inflammatory effects of Loratadine in vivo,
we investigated a hydrochloride (HCl)-induced acute gastritis mouse model. Ethanol-
induced gastritis leads to increased gastric acid secretion, which results in sequential
activation of c-AMP, H2R, and H+/K+ ATPase, eventually causing gastric mucosal dam-
age [47–49]. On the other hand, Ranitidine is known to be a potential H2R antagonist,
inhibiting H2R-mediated gastric damage [50,51]. Therefore, we decided to use Ranitidine
as a control drug in the experiment. HCl/EtOH-induced mice showed the typical phe-
notype of acute gastritis, bleeding of the stomach. However, Loratadine (5, 10 mg/kg)
injection significantly reduced gastric bleeding, and its effect was comparable to Ranitidine
(40 mg/kg) (Figure 2f). Moreover, phosphorylated c-Fos levels were dose-dependently
decreased in stomach samples from Loratadine-treated mice compared to those of the
vehicle-treated group (Figure 2g). These results suggest that the anti-inflammatory effects
of Loratadine are mediated by its suppressive activity in the AP-1 signaling pathway.

2.3. TAK1 Is the Prime Target Molecule of Loratadine

In order to determine whether TAK1 is the primary target of Loratadine, we further
examined the drug’s anti-inflammatory activity in TAK1-overexpressing cells. Overex-
pression of TAK1 can induce and activate its downstream molecules, resulting in levels
of inflammation similar to cells treated with LPS [52,53]. First, we decided to check the
expression of pro-inflammatory cytokines after TAK1 overexpression. When TAK1 was
overexpressed in RAW264.7 cells, COX-2 expression was significantly reduced following
Loratadine treatment (40 µM) (data not shown). Furthermore, TAK1 overexpression in
HEK293T cells induced AP-1 promoter activation; however, it was dose-dependently sup-
pressed by Loratadine (30 and 40 µM) (Figure 3a). These results suggest that TAK1-induced
inflammation can be suppressed by Loratadine treatment, implying that Loratadine may
directly interact with TAK1. Therefore, we performed the cellular thermal shift assay
(CETSA) to find out whether or not Loratadine directly targets and binds TAK1 to suppress
the AP-1 signaling pathway during inflammation. Compared to the unbound state, the
thermal stability of TAK1 is higher when it is bound with other molecules. Within 45 to
63 degrees Celsius, the TAK1 band intensity of DMSO-treated cells was clearly lower than
that of Loratadine (40 µM)-treated cells, showing a reducing pattern as the temperature
rose (Figure 3b). This indicates that Loratadine and TAK1 interact and may directly bind. In
addition, we decided to further investigate the target binding site of TAK1 for Loratadine.
TAK1 has an ATP binding site, K63, which enables it to transform into an active state upon
ATP binding [54,55]. In order to find out whether K63 of TAK1 is the target binding site for
Loratadine, we point-mutated K63 into A63. If K63 was the binding site, mutated TAK1
with A63 would show no change in expression of both p-TAK1 and p-MKK7. However,
we found that there was still a reducing pattern of p-MKK7 in K63A TAK1-transfected
HEK293T cells after Loratadine treatment (40 µM) (Figure 3c), indicating that Loratadine
does not appear to bind to K63. These results suggest that Loratadine targets TAK1 within
the AP-1 signaling pathway to exert anti-inflammatory effects, and the ATP-binding site of
TAK1 is not the target site for Loratadine.



Int. J. Mol. Sci. 2022, 23, 3986 7 of 15

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 17 
 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. Loratadine specifically targets TAK-1 to exert anti-inflammatory activity. (a) HEK293T 

cells were transfected with AP-1-luc, HA-TAK-1, and β-galactosidase (control) using PEI for 24 h. 

Cells were treated with the indicated doses of Loratadine (30–40 μM) for 1 h. The expression level 

of AP-1 was assessed by measuring luciferase activity. (b) HEK293T cells were transfected with 

TAK1 using PEI for 24 h and treated with Loratadine (40 μM) for 1 h after transfection. The binding 

affinity of TAK-1 and Loratadine was evaluated using the cellular thermal shift assay at the indi-

cated temperatures. (c) HEK293T cells were transfected with HA-TAK-1-WT or HA-TAK-1-K63A 

constructs using PEI for 24 h and treated with Loratadine (40 μM) for 1 h and whole-cell lysates 

were prepared. The expression levels of total or phosphorylated TAK-1, MKK7, HA, and β-actin 

(control) were measured through Western blotting analysis. (Bottom panel of c) Relative intensity 

of these proteins was calculated by ImageJ. ## p < 0.01 compared to the normal group; ** p < 0.01 

compared to the control group. Data are presented as mean ± the standard deviation of experiments 

performed with 4–6 samples. WCL: whole cell lysate. 

3. Discussion 

Inflammation is a fundamental process for maintaining immunologic homeostasis; 

however, an excessive inflammatory response can lead to severe disorders, including au-

toimmune diseases and cancer [56–58]. In this paper, we demonstrate the anti-inflamma-

tory activity of a commercialized anti-histamine drug, Loratadine, which specifically in-

Figure 3. Loratadine specifically targets TAK-1 to exert anti-inflammatory activity. (a) HEK293T
cells were transfected with AP-1-luc, HA-TAK-1, and β-galactosidase (control) using PEI for 24 h.
Cells were treated with the indicated doses of Loratadine (30–40 µM) for 1 h. The expression level
of AP-1 was assessed by measuring luciferase activity. (b) HEK293T cells were transfected with
TAK1 using PEI for 24 h and treated with Loratadine (40 µM) for 1 h after transfection. The binding
affinity of TAK-1 and Loratadine was evaluated using the cellular thermal shift assay at the indicated
temperatures. (c) HEK293T cells were transfected with HA-TAK-1-WT or HA-TAK-1-K63A constructs
using PEI for 24 h and treated with Loratadine (40 µM) for 1 h and whole-cell lysates were prepared.
The expression levels of total or phosphorylated TAK-1, MKK7, HA, and β-actin (control) were
measured through Western blotting analysis. (Bottom panel of c) Relative intensity of these proteins
was calculated by ImageJ. ## p < 0.01 compared to the normal group; ** p < 0.01 compared to the
control group. Data are presented as mean ± the standard deviation of experiments performed with
4–6 samples. WCL: whole cell lysate.

3. Discussion

Inflammation is a fundamental process for maintaining immunologic homeostasis;
however, an excessive inflammatory response can lead to severe disorders, including au-
toimmune diseases and cancer [56–58]. In this paper, we demonstrate the anti-inflammatory
activity of a commercialized anti-histamine drug, Loratadine, which specifically inhibits
TAK1 activation and, therefore, suppresses the AP-1 signaling pathway and consequent
MMP production. We have previously reported that Loratadine can reduce several pro-
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inflammatory cytokines, including iNOS, IL-1β, TNF-α, IL-6, and COX-2, by suppressing
the NF-κB signaling pathway [42]. These findings suggest that Loratadine is able to coun-
teract exaggerated inflammatory responses, thereby maintaining immunological balance
while preventing the uncontrolled progression of inflammation.

Recently, drugs targeting the AP-1 pathway have emerged as next-generation treat-
ments for both cancer and autoimmune disease. The AP-1 pathway governs major inflam-
matory responses by regulating cell differentiation, proliferation, apoptosis, angiogenesis,
and invasion [59–63]. Meanwhile, AP-1 is composed of different combinations of the Fos
and Jun families. The Fos family includes c-Fos, FosB, and Fra-1 and -2, whereas the Jun
family includes c-Jun, JunB, and JunD [61,64,65]. Each of them controls different cellular
responses by up- or down-regulating related gene products. C-Fos and c-Jun up-regulate
factors that are responsible for proliferation, such as EGFR, GM-CSF, and cyclin D1 [66–69].
On the other hand, c-Jun also down-regulates proteins that inhibit proliferation and stimu-
late apoptosis, such as p53 and FASL [70–73]. In addition, c-Fos can up-regulate genes that
promote cellular invasions, such as MMP1, MMP3, and CD44 [74–77]. Therefore, AP-1 has
been a foremost target for cancer and inflammatory disease treatment. For instance, T-5224,
a selective inhibitor of c-Fos/AP-1, has been reported to have preventive effects on carti-
lage destruction and osteophyte formation [78]. Furthermore, a selective small-molecule
inhibitor of c-Fos/AP-1 has been shown to resolve arthritis in pre-clinical models [79].

TAK1, a constituent molecule of the AP-1 signaling pathway, is also a chief regulator
of cell survival and apoptosis, which has made itself a promising target for a wide set of
diseases. For instance, Takinib, a TAK1-specific inhibitor, was reported to mediate cell
death in rheumatoid arthritis and breast cancer by suppressing TNF-α production [80,81].
Other TAK1 inhibitors, such as LYTAK1 and (5Z)-7-Oxozeaenol, also showed suppres-
sive effects on various types of cancer, including ovarian cancer, cervical cancer, and
neuroblastoma [82–85].

Loratadine is one of the most frequently used anti-allergic drugs, whose safety and
efficacy have already been approved by the FDA. Together with the findings that outline
AP-1 and TAK1 as being promising drug targets, our paper suggests the potential of
Loratadine as an operative anti-inflammatory agent, with known and manageable side
effects and proven safety and stability. Furthermore, such findings will also contribute to
future research on drug repositioning by providing proper methods and workflows for
discovering new effects of pre-existing commercial drugs on different diseases.

4. Materials and Methods
4.1. Materials

Loratadine was purchased from Tokyo Chemical Industry Co., LTD. (Tokyo, Japan).
Carboxymethylcellulose (CMC), dimethylsulfoxide (DMSO), L-NAME, lipopolysaccharide,
3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT), polyethyleneimine
(PEI), Ranitidine, and stillen were obtained from Sigma Aldrich (St. Louis, MO, USA).
DMEM, fetal bovine serum (FBS), penicillin/streptomycin, phosphate-buffered saline
(PBS), RPMI 1640, trypsin, and TRIzol were acquired from GIBCO (Grand Island, NY,
USA). HEK293T (CRL-1573) and RAW264.7 cells (CRL-2278) were products from American
Type Culture Collection (Rockville, MD, USA). Luciferase constructs with AP-1 binding
sites and CFP-TRIF, FLAG-MYD88, pcDNA, and Tag-2 constructs were used as previously
reported [86]. Real-time and semiquantitative reverse transcriptase-polymerase chain
reaction primers were bought from Macrogen Inc. (Seoul, Korea). All other chemicals were
purchased from Sigma. Total and phospho antibodies for the MAPK family were obtained
from Cell Signaling Technology (Beverly, MA, USA) and Santa Cruz Biotechnology (Santa
Cruz, CA, USA).

4.2. Compound Preparation, Animals, and Cell Culture

First, 40 mM of Loratadine stock solution was prepared using DMSO as a carrier. The
stock solution was further diluted and treated at final concentrations of 20–40 µM using
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cell culture media for in vitro experiments. For in vivo procedures, 5–10 mg/kg using 0.5%
sodium carboxymethyl cellulose (CMC) solution as a carrier. Male ICR mice (5–6 weeks
old) were purchased from Daehan Biolink (Osong, Korea) and were housed in autoclaved
plastic cages under standard housing conditions. All studies were conducted according
to the guidelines of the Institutional Animal Care and Use Committee at Sungkyunkwan
University (Suwon, Korea; approval ID: 2019-12-03-1). Murine macrophage RAW264.7
cells and human embryonic kidney HEK293T cells were cultured in RPMI1640 and DMEM
media, respectively, containing 5 or 10% inactivated FBS, penicillin (100 IU/mL), and
streptomycin (100 µg/mL). Cells were cultured in an incubator that maintained a 5% CO2
level and a temperature of 37 ◦C [87,88].

4.3. Gastritis Mouse Model

Negative and positive control groups, 5 ICR mice per group, received oral administra-
tion of 0.5% CMC solution, while the two Loratadine-treated groups were orally injected
with 5 mg/kg or 10 mg/kg Loratadine solution. The control group was injected with
40 mg/kg Ranitidine. The injection was performed twice a day for 3 days. For acute
gastritis induction, mice received orally administered 150 mM hydrochloric acid (HCl)
in 60% ethanol (EtOH) 1 h before sacrifice. The stomach of each mouse was extracted to
measure the area of inflammatory lesions. Quantification of the lesion area was performed
using ImageJ [88].

4.4. mRNA Expression Analysis Using Reverse-Transcription Polymerase Chain Reaction

RAW264.7 cells (1× 106 cells/mL) were seeded in 12-well culture plates and incubated
for 24 h. Loratadine (20–40 µM) or DMSO (as a control) was administered to cells 30 min
before LPS induction (1 µg/mL). After 6 h of incubation, cells were harvested using
cold PBS, and total RNA was isolated from the cells using TRIzol reagent following the
manufacturer’s guidelines. In order to increase sample stability, cDNA was synthesized
from the extracted mRNA using Thermo Fisher Scientific’s cDNA synthesis kit (Waltham,
MA, USA); corresponding primers of COX-2, MMP1, MMP3, and MMP9 were applied for
general PCR amplification. mRNA expressions of samples were analyzed by agarose gel
electrophoresis; PCR band intensities were quantified using ImageJ. Primer sequences are
listed in Table 1 [89].

Table 1. Primer sequences used in this study.

Gene Name Sequence (5′ to 3′)

MMP-1
F GCCTGCGTCCATCAACACT
R CCCTCCTCGTCCACCTCAA

MMP-3
F ACTCCCTGGGACTCTACCAC
R TTCTTCACGGTTGCAGGGAG

MMP-9
F TCTTCCCCAAAGACCTGAAA
R TGATGTTATGATGGTCCCAC

COX-2
F GGGAGTCTGGAACATTGTGAA
R GCACATTGTAAGTAGGTGGACTGT

GAPDH
F CAATGAATACGGCRACAGCA
R AGGGAGATGCTGGTTGG

F: Forward, R: Reverse.

4.5. Luciferase Reporter Assay

HEK293T cells (1.2 × 105 cells/mL) were seeded in 24-well culture plates and incu-
bated for 24 h. Target gene constructs (Tag2-MyD88, Tag2, CFP-TRIF, CFP, HA-TAK1, HA,
AP-1-luc, and β-gal) were then transfected into the cells using PEI. After 24, 40, or 48 h
incubation, the original culture media was completely removed, and Loratadine (20–40 µM)
or DMSO were introduced to the cells with fresh media. After incubating for 3 h, the media
was completely removed, and the cells were treated with luciferase lysis buffer. The plate
was frozen at −70 ◦C for 3 h. Luciferin and β-gal assay buffers were added for luciferase
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and β-gal analysis, respectively. Luciferase activity was assessed by detecting luminescence
levels, and β-gal activity was measured through OD values at 405 nm [90].

4.6. Cell Viability Assay

HEK293T cells (1 × 105 cells/mL) were seeded in 96-well culture plates and incubated
for 24 h. Loratadine (20–40 µM) or DMSO (as a control) were administered, and the cells
were incubated for 24 h. MTT solution was added to the cell-containing medium, which
underwent incubation for 3 h. MTT stopping solution was added thereafter. After 24 h of
incubation, the cell viability was assessed through OD values at 570 nm [91].

4.7. Total Cell Lysate Preparation

RAW264.7 cells (2.5 × 106 cells/mL) were seeded in 3 cm culture plates and incubated
for 24 h. The cells were pre-treated with Loratadine (20–40 µM) or DMSO (as a control) for
30 min prior to inflammation induction. The cells were then treated with LPS (1 µg/mL)
for specific periods (2–60 min), and the cells were then harvested using cold PBS. Total cell
lysates were prepared using cold cell lysis buffer (20 mM of Tris-HCl, pH: 7.4; including
2 mM of EDTA, 2 mM of EGTA, 50 mM glycerol phosphate, 1 mM of DTT, 2 µg/mL of
aprotinin, 2 µg/mL of leupeptin, 1 µg/mL of pepstatin, 50 µM of PMSF, 1 mM of benzamide,
2% Triton X-100, 10% glycerol, 0.1 mM of sodium vanadate, 1.6 mM of pervanadate, and
20 mM of NaF). Cell debris was removed by centrifugation at 12,000 RPM for 1 min. Total
cell lysates were kept at −70 ◦C until use [87,92].

4.8. Western Blotting

Protein concentrations of total cell lysate samples were quantified for size-dependent
separation. Proteins were separated by SDS-polyacrylamide gel electrophoresis in SDS-
PAGE running buffer (10% SDS, Tris-base, glycine). Subsequently, proteins were transferred
to PVDF membranes by electrophoresis in a transfer buffer solution (10% SDS, Tris-base,
glycine, methanol). Membrane blocking was performed by rolling the tubes on a roller
with 5% BSA solution applied for 1 h at room temperature. Primary antibodies specific
to the target proteins (total or phosphorylated c-Jun, c-Fos, Lamin A/C, ERK, JNK, p38,
MEK1/2, MKK4, MKK7, ASK, MLK3, TAK-1, and β-actin) were added, and the solutions
were incubated with 5% BSA solution for 1–2 h at room temperature or overnight at 4 ◦C.
After washing primary antibodies 3 times with 0.1% TBST buffer (Tris-base, NaCl; 0.1%
Tween 20; pH: 7.6), specific HRP-linked secondary antibodies (anti-rabbit or anti-mouse)
were added, and the solutions were incubated with 5% BSA solution for 1–2 h at room
temperature or overnight at 4 ◦C. ECL reagent was applied for protein visualization, and
signals were detected by ChemiDoc XRS (Bio-Rad, Hercules, CA, USA.). The relative
intensity of each band was analyzed through the ImageJ program [93].

4.9. Gene Overexpression

HEK293T cells (2 × 105 cells/mL) were seeded in 12-well culture plates and incubated
for 24 h. Target gene construct and its carrier vector (HA-TAK1 and HA) were then
transfected into cells using PEI. After 24 h, the original media was completely removed,
and Loratadine (40 µM) was introduced to the cells in addition to fresh media. After further
incubation for 3 h, media containing Loratadine was completely removed, the cells were
harvested, and the total cell lysates were prepared. Protein expression levels were assessed
by Western blotting using ECL reagents [94].

4.10. Cellular Thermal Shift Assay

HEK293T cells (1.2 × 106 cells/mL) were seeded in 6 cm culture plates and incubated
for 24 h. The target gene construct (HA-TAK1) was transfected into cells using PEI. After
24 h of incubation, Loratadine (40 µM) was introduced to the cells after the original
media was replaced by fresh media, and the cells were thereafter incubated for 1 h. After
24 h of incubation, the cells were counted, and each group was adjusted to have an
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identical number of cells. Cells were lysed in a real-time PCR machine (Bio-Rad) within a
temperature range of 45 to 63 ◦C. After a temperature shift, the protein level of TAK1 was
analyzed by Western blotting [95].

5. Conclusions

Loratadine exhibits anti-inflammatory activity in murine macrophage cells by specifi-
cally inhibiting the AP-1 signaling pathway. During this process, Loratadine targets TAK1
to suppress AP-1 transcriptional activity, thereby reducing pro-inflammatory cytokine
expression, including that of MMP1, MMP3, and MMP9. Loratadine can also exert such
inflammation-suppressing effects in an acute gastritis mouse model, implying its potential
as an effective anti-inflammatory drug (Figure 4).
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