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Abstract: Different types of cells, such as endothelial cells, tumor-associated fibroblasts, pericytes, and
immune cells, release extracellular vesicles (EVs) in the tumor microenvironment. The components
of EVs include proteins, DNA, RNA, and microRNA. One of the most important functions of
EVs is the transfer of aforementioned bioactive molecules, which in cancer cells may affect tumor
growth, progression, angiogenesis, and metastatic spread. Furthermore, EVs affect the presentation
of antigens to immune cells via the transfer of nucleic acids, peptides, and proteins to recipient
cells. Recent studies have also explored the potential application of EVs in cancer treatment. This
review summarizes the mechanisms by which EVs regulate melanoma development, progression,
and their potentials to be applied in therapy. We initially describe vesicle components; discuss
their effects on proliferation, anti-melanoma immunity, and drug resistance; and finally focus on
the effects of EV-derived microRNAs on melanoma pathobiology. This work aims to facilitate our
understanding of the influence of EVs on melanoma biology and initiate ideas for the development
of novel therapeutic strategies.

Keywords: extracellular vesicles (EVs); melanoma; angiogenesis; metastasis; invasion; drug resistance;
immune system; therapeutic application

1. Melanoma

Human skin is the first layer of defense, protecting us from external factors and provid-
ing control of body temperature and storage of moisture and fat. Skin cancer is a common
malignancy, with three major types (basal cell carcinoma, squamous cell carcinoma, and
melanoma), which have different precursor cells. Basal cell carcinoma and squamous cell
carcinoma are classified as non-melanoma skin cancers [1]. Malignant melanoma which
is derived from melanocytes is the most aggressive, invasive, and life-threatening skin
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cancer [2]. Risk factors for melanoma development include fair skin and exposure to
sunlight while ultraviolet light exposure is one of the main causes of the development of
melanoma [3]. According to the World Health Organization, approximately 132,000 new
cases of melanoma are diagnosed each year worldwide. Especially in white (Caucasian)
people, melanoma is becoming more common, mostly due to their less pigmented skin,
which renders this population more susceptible to ultraviolet light exposure [4].

Metastasis is a multistep process. The first step involves tumor cells invading the
basal membrane and entering the blood vessels. Then, these tumor cells circulate in
the blood stream until their attachment at the site of metastasis and initiate subsequent
extravasation. Finally, they colonize and grow in distal host organs. In melanoma, vascular
invasion occurs predominantly via lymphatic vessels. Vascular invasion is associated with
factors indicative of a poor prognosis, including stage, increased Breslow thickness, and
ulceration [5]. Cells can communicate by different types of EVs, which include exosomes,
apoptotic bodies, and microvesicles (MVs) [6]. EVs are important mediators of intercellular
communication between cells and distal organs and are crucial to cancer progression [7].
The role of EVs in melanoma remains unclear. Research focusing on understanding the
functions and effects of EVs is essential to improve the treatment for melanoma patients
and reduce the risk of melanoma metastasis. This review will help scientists understand
more about the relationship between EVs and aggressive cancer and inspire in-depth
research to make greater progress and breakthroughs.

2. Classification and Biology of Extracellular Vesicles

EVs can mediate intercellular communication during many cellular processes, and this
role of EVs has piqued the interest of the scientific community. Evidence of the existence
and functions of EVs was first collected in 1946 through a combination of ultracentrifu-
gation, electron microscopy, and functional studies [8]. In 1970, the term “extracellular
vesicle” was used in a manuscript title for the first time [9]. In the 1970s–1980s, several in-
dependent studies identified the release of plasma membrane vesicles from rectal adenoma
microvillus cells [10] and discovered virus-like particles in human cell cultures and bovine
serum as preliminary findings of exosomes [11]. In 1983, detailed ultrastructural studies
indicated that EVs are released through the fusion of multivesicular bodies (MVBs) with
the cell membrane during immature red blood cell differentiation [12]. Since 2006, several
reports have indicated that nucleic acids, proteins, and other molecules can be transferred
between cells via EVs [13]. Through this shuttle-like mechanism, EVs modulate the activ-
ity of recipient cells and participate in various physiological and pathological processes,
including tumor development, growth, progression, metastasis, and the development of
drug resistance [14]. EVs express specific membrane proteins that facilitate EV interactions
with particular recipient cells. This process was shown to be involved in organotropic
metastatic spread [15]. Following these findings, researchers have isolated EVs from most
cell types and biological fluids. The rapid development of the EV research community
has been due to the establishment of the International Society of Extracellular Vesicles
(ISEV) in the early 2000s, which conducted rigorous and standardized work in this area,
including the establishment of the Journal of Extracellular Vesicles. Commercial investment
in EV diagnosis and treatment has also increased, and many companies have developed
several cancer diagnostic tests based on EVs.

Based on their size and biogenesis, EVs can be classified into exosomes, MVs, and
apoptotic bodies (Figure 1). Exosomes and MVs can be released by normal cells or cancer
cells, although they differ in several aspects. Exosomes are nanosized vesicles of endocytic
origin that bud from MVBs toward the lumen of the compartment and are released into
the extracellular space. Their size varies from 30 to 100 nm and is limited by the size of
the MVBs (40–200 nm) [16]. The content of exosomes includes proteins, DNA, mRNA, and
microRNA. In particular, Rab GTPases, soluble N-ethylmaleimide-sensitive factor activat-
ing protein receptors (SNAREs), Annexin, and Flotillin are enriched in EVs. Moreover,
three transmembrane protein (CD9, CD63, and CD81) families are known to accumulate in
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the plasma membrane domain and are highly expressed in exosomes, thereby serving as
biomarkers for exosomes [17].
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EVs are known to facilitate intercellular communication between adjacent cells and
distant cells [18,19]. EVs can be released by immune cells as antigen-presenting vesicles to
stimulate antitumor immune responses or to induce carcinogenesis via suppressing inflam-
matory responses. EVs derived from tumor cells have also been shown to promote cancer
cell proliferation by inactivating cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells
to suppress the immune response and promote regulatory CTL differentiation [20]. Within
the nervous system, EVs are thought to be involved in the formation of myelin, the growth
of neurites, and the survival of neurons [19]. In addition, several pathogenic proteins, such
as viruses and β-amyloid peptides, have been reported to be transferred to other cells
via EVs [21]. An important finding is that the roles of mRNAs and miRNAs in EVs from
different sources are completely different from each other. Some studies have shown that
EVs also circulate in various body fluids, including blood and urine, and their mRNAs and
miRNAs can be transferred to recipient cells and participate in many biologically relevant
processes, including immune response and angiogenesis [22].

To investigate the characteristics of EVs, a purification protocol is required to be
constructed. Early researchers widely used differential ultracentrifugation (DUC) as the
method for EV isolation, with its extensive applicability, large capacity, ease of scaling up,
and relatively high purification quality. By using DUC, large particles, such as whole cells,
cell debris, subcellular structures, and other contaminants, can be removed under a low
centrifugal speed. Thenceforth, scientists elevated the centrifugal force to precipitate EVs.
Recently, it was verified that DUC outplays five commercial purification kits in terms of
vesicle purity, which was a suitable approach for EV research up to the present. However,
DUC-isolated EVs may suffer from the contaminants of other non-vesicular particles.
Owing to the distinction in particle density between EVs and nano-contamination, density-
gradient ultracentrifugation (DGUC) was applied to increase the purity of EVs. According
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to the minimal information from studies of extracellular vesicles 2018 (MISEV2018), several
components, especially sucrose gradient solution, were applied as the medium for EV
purification. Configuring the separation medium with gradient densities across the density
range of EVs, crude isolated samples are loaded onto the top of the medium and undergo
a longer ultracentrifugation period for further purification. Despite all of the advantages
of DUC and DGUC, the pricey equipment and time-consuming process are a matter of
concern. The centrifugal- and shearing-force-induced structural damage or aggregation
also impede the downstream application. Nonetheless, the enhanced purity and quality of
EVs provide a step forward in the research on nanoparticles [23].

3. EVs Derived from Melanoma and Their Role in Cancer Progression

Biological information between adjacent tumor cells can be transmitted through tumor-
derived EVs in a paracrine manner. This signal transduction between malignant cells not
only promotes cancer growth and metastasis but also can interfere with normal signaling
pathways [24]. Tumor cells may metastasize to distant organs in the body and regulate the
tumor microenvironment to form pre-metastatic niches; in these cases, tumor-derived EVs
may be potential biomarkers for tumor progression and invasion [25]. In addition, tumor-
derived EVs are expected to be used as carriers for cell-free vaccines and for the delivery
of specific tumor therapeutic molecules. In this section, we focus on the role of tumor-
derived EVs in melanoma development and metastasis and their potential applications in
advancing the diagnosis and treatment of melanoma and personalized medicine.

3.1. Growth and Angiogenesis

The literature indicates that the addition of EVs to a human cell culture enhances EV
production and supports cell proliferation [20]. The biodistribution of cancer-derived EVs
in tumor tissues is an important factor in determining the role of EVs in tumor prolifera-
tion [26]. In vivo experiments have shown that B16BL6 melanoma cells secrete and absorb
B16BL6 cell-secreted EVs to induce their own proliferation and inhibit their own apoptosis,
promoting tumor progression [27]. EV uptake by target cells relies on the integrity of
plasma membrane microdomains, namely lipid rafts, which are known to be enriched
with cholesterol. Scavenger receptor type-B1 (SR-B1) is a high-affinity receptor for mature
high-density lipoproteins (HDLs), and SR-B1 maintains cholesterol equilibrium, uptakes
extracellular material, and promotes cell signaling [28,29]. The expression of SR-B1 in
melanoma enhances EV formation and cellular uptake, promoting a metastatic phenotype.
SR-B1 is associated with the expression of microphthalmia-associated transcription factor
(MITF) and the regulation of proto-oncogene mesenchymal-to-epithelial transition (MET)
factor. SR-B1 is a key molecule for regulating EV uptake and cancer growth [30]. Wnt
Family Member 5A (WNT5A) regulates the release of EVs containing the immunomodula-
tory cytokine IL-6 and proangiogenic factors IL-8, VEGF, and MMP2 from melanoma cells
(MeWo, SKmel28, A2058, A375, and HTB63). This effect increases angiogenic processes
and facilitates metastatic spread [31]. Hood et al. indicated that melanoma EVs can boost
endothelial angiogenic responses to create a premetastatic niche [32]. A previous report
indicated that miR-155 in melanoma-derived EVs can induce reprogramming of fibrob-
lasts into CAFs (cancer-associate fibroblast) and trigger the proangiogenic switch of these
CAFs [33].

3.2. Migration and Invasion

Studies on melanoma cell migration and invasion and on the underlying molecular
mechanisms are essential for improving melanoma diagnosis, prognosis, and therapy. EVs
play an important role in this regard and regulate the migratory and invasive capacity
of melanoma cells. Several studies have demonstrated that EVs can increase migratory
and invasive capacities [34]. EVs derived from melanoma cells have also been shown
to increase type I interferon receptor (IFNAR1) and cholesterol 25-hydroxylase (CH25H)
in normal cells, thus facilitating EV uptake and pre-metastatic niche development [35].
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Matrix metalloproteinases (ADAM) and ADAM with thrombospondin motifs (ADAMTS)
are enriched in melanoma-derived EVs. These proteins are critical for degrading the
extracellular matrix of cancer cells and increasing metastatic spread [36]. Insulin-like
growth factor 2 mRNA-binding protein 1 (IGF2BP1) is a multifunctional RNA-binding
protein that has been linked to the development of a variety of malignancies. According to
previous research, EVs derived from IGF2BP1-overexpressing melanoma cells exacerbate
EV-induced metastasis [37]. Xiao et al. showed an increase in invasiveness when normal
melanocytes were treated with melanoma EVs [38]. Melanoma usually metastasizes to
the lungs, bones, liver, and brain and rarely to other organs. The current mechanism
of this pattern needs further understanding, but it is likely that EVs play an important
role. For example, melanoma cells are exposed to bone-derived soluble factors, which are
related to the molecular activation pathway of stromal-cell-derived factor 1 (SDF-1)/CXC
chemokine receptor type 4 (CXCR4)/type 7 CXC chemokine receptor (CXCR7). To this
end, EVs reprogram the innate osteotropism of melanoma cells by upregulating their
CXCR7 expression [39]. These results suggest that melanoma-cell-derived EVs contribute
to melanoma metastasis. In addition, adipocytes secrete EVs, which are oxidized by fatty
acids and are absorbed by tumor cells, resulting in increased metastasis and invasion of
melanoma [40]. EVs from melanoma cells with poor metastatic potential potently inhibit
metastasis to the lung and trigger immune surveillance, resulting in the elicitation of a
broad range of monocyte (PMO)-reliant innate immune responses. Furthermore, Plebanek
et al. suggested that cancerous cells are cleared at the pre-metastatic niche [41].

3.3. Tumor Microenvironment

The interactions of cancer cells with their environment determines whether the pri-
mary tumor is contained, metastasizes, or establishes dormant micrometastases. EVs play
essential roles in the interstitial transport and intercellular communication within the tumor
microenvironment (TME). Metastatic tumor cells show increased ability to sort EV cargo
(i.e., proteins and microRNAs) and to release EVs. EV cargo is then transferred to stromal
cells, including those that are present in premetastatic niches. Furthermore, EVs promote
tumorigenesis and invasion through a variety of mechanisms, resulting in premetastatic
niche formation. The following table describes the roles of EVs in the TME [42] (Table 1).

Table 1. The mechanisms of tumor microenvironment regulations in cancers.

Method Mechanism Reference

pH
Extracellular acidity may increase the ability of cancer cells to release EVs.
The pH of the environment can be used to regulate the release of EVs,
affecting the development of the tumor or the control of drug resistance.

[43]

EMT pathway

During EV-mediated epithelial–mesenchymal transition (EMT)-like
processes, the mitogen-activated protein kinase (MAPK) signaling
pathway is activated and promotes metastasis. It was demonstrated that
melanoma-cell-derived EVs promote the EMT in the
tumor microenvironment.

[44]

Inflammatory
EVs secreted by metastatic melanoma cells spontaneously metastasize to
the lungs and brain and activate proinflammatory signals that induce cell
inflammation to promote tumor metastasis.

[45]

Metabolism
miRNA inhibitors of melanoma-derived EVs regulate stromal cell
metabolism, inhibit the activity of miR-155 and miR-210, and may
contribute to the promotion of metastasis.

[46]

Immune system

The lipid, protein, DNA, mRNA, and miRNA components in EVs are
transferred to recipient tumor cells, affecting many immune-related
pathways, leading to the activation, differentiation, and expression of the
immune cells and the regulation of the tumor microenvironment, thus
affecting tumor development, metastasis, and drug resistance.
EVs are regulated and released by the TME and regulate the cell biology
of myeloid-derived suppressor cells (MDSCs), including promoting their
activation and amplification and enhancing their
immunosuppressive functions.

[47,48]
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3.4. Immune System

The tumor microenvironment controls immune surveillance and anti-tumor immu-
nity [49], mainly through intra- and extracellular signaling. Immunoediting is a complex
process that includes intra- and extracellular signals. EVs play an important role in immune
escape, both directly and indirectly. The direct modulation of either immune cells or their
immature precursors is mostly driven by EV-mediated anti-apoptotic or pro-apoptotic sig-
naling during the melanoma cell migration. The indirect roles of EVs include the expansion
and differentiation of negative regulators of the immune system, such as myeloid-derived
suppressor cells (MDSCs) and regulatory T lymphocytes (Tregs), thus promoting tumor cell
escape from immune surveillance [50,51]. Several effects, i.e., mechanisms link EVs and the
immune system (Table 2). Studies have shown that EVs secreted by tumor cells protect and
maintain the growth of cancer cells, while EVs produced by normal cells, especially stem
cells, inhibit tumor growth and suppress cancer progression [52]. Homing of melanoma
exosomes to sentinel lymph nodes imposes synchronized molecular signals that effect
melanoma cell recruitment, extracellular matrix deposition, and vascular proliferation
in the lymph nodes [53]. In addition, tumor-derived EVs were shown to interfere with
immunization by inducing loss of antigen expression, suppression of immune effector
cells, exchange of nucleic acids, changes in recipient cell transcription, and inhibition of the
immune cell response [54]. Other studies point out that tumor cells and tumor-infiltrating
immune cells form a highly tolerant microenvironment, increasing tumor growth and
allowing metastatic spread. Studies of anti-tumor immunity have explored the host’s
immune responses and promote the development of new therapies and novel methods for
use in future therapeutic methods [55].

Table 2. The effect of tumor-derived EVs in immune systems.

Target Mechanism Reference

CD8(+) effector T cells
Melanoma-derived EVs induce immune suppression by promoting
T regulatory cell expansion and destroying antitumor CD8(+)
effector T cells, thus leading to tumor escape.

[56]

CD4+ T cells
Melanoma-derived EVs may directly activate the mitochondrial
apoptotic pathway of CD4+ T cells through the microRNA in
the EVs.

[57]

PTEN

Tumor-secreted miR-214 is sufficiently delivered to recipient T cells
by EVs specifically targeting mouse peripheral CD4+ T cells.
miR-214 downregulates phosphatase and tensin homolog (PTEN)
and promotes Treg expansion. Tumor-derived EVs enhance
immune suppression and tumor implantation/growth in mice.

[58]

MHC

The major histocompatibility complex (MHC) class I molecules and
EVs have an important correlation with the induction of
antigen-specific T cell responses and the stable
development of tumors.

[59]

PD-L1

Increased tumor surface expression of programmed death-ligand 1
(PD-L1) facilitates tumor cell escape from immune surveillance.
PD-L1 interacts with the programmed death-1 (PD-1) receptor on T
cells to elicit the immune checkpoint response. Metastatic
melanomas release EVs that carry PD-L1 on their surface, which
suppresses the function of CD8(+) T cells and facilitates
tumor growth.

[60]

PTPN11

Melanoma-derived EVs provide a complex biological load, and the
upregulation of tumor tyrosine-protein phosphatase nonreceptor
type 11 (PTPN11) expression by B16F0 EVs suppresses T
lymphocyte function.

[61]

M1 and M2
macrophages

EVs derived from melanoma in premetastatic lymph nodes trigger
angiogenesis in tumors by inducing classically activated (M1) and
alternatively activate (M2) macrophage-mediated angiogenesis by
inducing endothelial cell proliferation.

[62]

NKG2D Melanoma-cell-derived EVs downregulate NKG2D expression in
natural killer cells to induce immune suppression. [63]
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3.5. Drug Resistance and Clinical Treatment

EVs are involved in the development and regulation of different cancer-related pro-
cesses. Drug resistance of cancer cells is a huge clinical problem and requires further
investigation. Nevertheless, it is known that drug-resistant tumor cells are able to enclose
chemotherapeutic agents in EVs and transfer anticancer drugs out of tumor cells. Therefore,
understanding the molecular mechanisms and signaling pathways of EV-mediated drug
resistance will help in the design of novel cancer treatments.

A large number of studies indicate that EVs play a crucial role in the development
of the drug resistance of cancer cells (Table 3). Previous research has indicated that the
use of BRAF kinase inhibitors (vemurafenib and dabrafenib) to treat melanoma patients
bearing the BRAF-activating mutation V600E results in tumor regression, followed by
quick development of drug resistance. Receptor tyrosine kinases (RTKs) are upregulated
and activate the PI3K-Akt signaling pathway. EVs from drug-resistant melanoma cells
were enriched with the RTK PDGFRβ, and delivering EVs rich in PDGFRβ to metastatic
melanoma cells with the BRAF inhibitor-sensitive phenotype activated the PI3K/AKT
pathway and resulted in the development of drug resistance [64]. Moreover, a novel
truncated form of anaplastic lymphoma kinase (ALK) named ALKRES was found to be
secreted in EVs. The transfer of ALKRES to sensitive, ALK-negative melanoma cells caused
activation of the MAPK signaling pathway and transferred the characteristics of drug
resistance to the recipient cells [65].

Table 3. The effect of tumor-derived EVs on drug resistance.

Gene ID Mechanisms Reference

ALK

ALK activates the MAPK signaling pathway to target
cancer. Combined treatment with the inhibitor of ALK
and BRAF can significantly reduce tumor growth and
induce apoptosis in melanoma.

[65]

PDGFRβ

PDGFRβ is a resistance driver transferred to recipient
melanoma cells via EVs, resulting in the activation of
phosphoinositide 3-kinases (PI3K)/protein kinase B (PKB)
signaling and escape from the MAPK pathway in
BRAF-inhibitor-sensitive cells, thus influencing drug
sensitivity in the recipient melanoma cells.

[64]

3.6. Small RNA (microRNA)

MicroRNAs (miRNAs) constitute a class of small single-stranded noncoding RNAs
(~22 nt in length) that suppress gene expression. miRNAs are transcribed in the nucleus by
RNA polymerase II or III. Primary miRNA transcripts (pri-miRNAs) are cleaved through a
complex that consists of the endonuclease Drosha and the RNA-binding protein DGCR8.
Hairpin pre-miRNAs are exported to the cytoplasm and are cleaved by the endonuclease
Dicer to form dsRNA–miRNA duplexes. The complementary strand of the mature miRNA
sequence is degraded, facilitating miRNA-induced silencing complex (RISC) formation
and targeting the complementary sequences in the 3′ UTR of target mRNAs inhibit trans-
lation. miRNAs regulate many physiological and pathophysiological processes, such as
growth, differentiation, and cancer progression. miRNAs regulate hundreds of genes;
thus, miRNAs can cause complex phenotypic changes [66]. The loss of certain miRNAs
facilitates cancer growth, whereas overexpression of other miRNAs promotes cancer pro-
gression [67]. miRNAs change the phenotype of melanoma cells and metabolic pathways
during melanoma progression. They also affect the extracellular matrix (ECM), which in-
cludes fibroblasts, endothelial cells, and immune system cells [68]. miRNAs have different
functions in each step of the development of different cancers [69]. Cells have the ability
to selectively sort miRNAs into EVs for secretion to nearby or distant targets. Moreover,
certain disease states have also identified dysregulated EV-miRNA content, shedding light
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on the potential role of selective sorting in pathogenesis. The latest findings regarding the
roles of EVs-relevant miRNAs in melanoma pathobiology are summarized in Table 4.

Table 4. The mechanisms and target locations of microRNA in melanoma.

miRNA ID EV Origin Effect Target
Site Reference

let-7g-5p Patient’s plasma Increases levels of let-7g-5p in EVs, which is
associated with better disease control MAPK [70]

miR-34a Patient’s plasma Prevents tumor relapse and blocks tumor
cell proliferation

β-
catenin [71]

miR-211 Melanosome
Targets IGF2R and leads to activation of
MAPK signaling, which promotes
melanoma growth

IGF2R [72]

miR-222 Melanoma EVs Increases tumor malignancy PI3K/AKT [73]

miR-155,
miR-210 Melanoma EVs Modulate stromal cell metabolism, which

promotes the development of metastasis OXPHOS [46]

miR-709,
miR-2137 Melanoma EVs Modulate T cell function PD-L1 [74]

miR-494 Melanoma EVs Suppresses tumor growth and metastasis
when levels are increased none [75]

miR-146a,
miR-155,

miR-125b,
miR-100,

miR-125a,
miR-146b,
miR-99b

Melanoma EVs Convert myeloid cells into myeloid-derived
suppressor cells

CTLA-4,
PD-1

[76]

miR-106b-5p Melanoma EVs Activates the ERK pathway EphA4 [77]

miR-205 Melanoma
Regulates E2F-regulated AKT
phosphorylation to inhibit the proliferative
capacity of melanoma cells

E2F1,
E2F5 [78]

miR-182 Melanoma
Suppresses the expression of MITF and
FOXO3 and stimulates migration of
melanoma cells

MITF
and

FOXO3
[79]

miR-21 Melanoma
Upon upregulation in melanocytes,
increases the proliferation rate and
decreases the apoptosis rate

PTEN [80]

miRNA-342 Melanoma

Targets zinc-finger E-box-binding
homeobox 1 (ZEB1) and decreases the
proliferation and invasion rates of
melanoma cells.

ZEB1 [81]

4. Therapeutic Applications of Extracellular Vesicles

There are several studies on EVs in therapeutic applications. Interestingly, tumor cells
release subpopulations of EVs that differ in their molecular and biological characteristics.
These differences are essential for the precise transfer of biological information between
cells. Accordingly, different components of EVs derived from different cells have different
effects depending on their source. Based on these features, monitoring EV phenotypes
during treatment enables the discovery of specific EV profiles and an understanding of
how these correlate with drug resistance development in melanoma patients. Further
analysis of EV heterogeneity will help in understanding the biology of EVs in health and
disease and accelerate the development of EV-based diagnostic and therapeutic approaches.
Melanoma is diagnosed with cancer-specific EV phenotypes from melanoma patient plasma
by a multiplex EV phenotype analyzer chip that incorporates a nano-mixing-enhanced
microchip and a multiplex surface-enhanced Raman scattering (SERS) nanotag system [82].
For these reasons, the therapeutic potential of EVs deserves further consideration in the
context of drug delivery and regenerative medicine [83]. For example, EVs combined with
liposomes and nanoparticles offer novel therapeutic delivery methods. Specifically, EVs
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derived from cancer cells can be carriers of drugs for delivery and can effectively inhibit
tumor proliferation because of their ability to transfer biologically active components and
overcome biological barriers [84]. In addition to being considered as potential therapeutics,
EVs have the ability to enhance tissue regeneration and serve as potential replacements
for stem cell therapy, playing a role in reimmunization, which promotes regeneration
and inhibits pathogens [85]. These properties can lead to a wide range of therapeutic
applications, including vaccination, treatment for autoimmune diseases, cancer, and tissue
damage (Table 5). In recent years, many drugs for melanoma have been developed, but
stimulating cancer cell death is still the major strategy [86]. If cancer cells acquire drug
resistance, therapeutic treatment becomes challenging and the mortality rate significantly
increases. The injected EVs derived from colon cancer through the tail vein of NOD.CB17-
Prkdcscid/NcrCrlBltw mice determined neoplastic transformation and metastases in the
lungs of the mice [87]. Another study proved that the timing of EV administration is
as critical as that of oral administration after resection of the primary tumor reversed
the pro-metastatic effects of milk-derived EVs in breast cancer models [88]. EVs from
a highly metastatic clonal variant of the osteosarcoma cell line were internalized by a
poorly metastatic clonal variant of the same cell line and induced a migratory and invasive
phenotype. It was pointed out that EVs derived from highly metastatic clonal variants
drive metastatic behaviors [89]. EVs originated from the brain carry messages to cancer
cells that modify glioma cell metabolism, reducing lactate, nitric oxide (NO), and glutamate
(Glu) release. EVs affect Glu homeostasis, increasing the expression of Glu transporter
Glt-1 on astrocytes [90]. Recently, there is increasing evidence showing that EVs promote
cancer progression and metastasis. It is suggested that clinicians effectively control the
secretion of pernicious exosomes and melanoma will be remedied comprehensively.

Table 5. The therapeutic applications of EVs in cancer.

Method Mechanisms Reference

Nanoparticle

Acridine orange (AO) is an eosinophilic dye that is coated onto a
system with EVs as nanocarriers for molecular therapy. AO not only
extends the time of drug delivery but also attenuates the toxicity
induced in normal cells. Exo-AO treatment has great potential and
can be used as a new method for treating tumors by
delivering Exo-AO.
Nanoplatforms, such as EVs modified with targeting ligands, can
improve the anticancer and anti-inflammatory effects of imperialin.
The system not only significantly improves the release of the drug in
the tumor but also is more biocompatible, showing extremely low
systemic toxicity both in vitro and in vivo. This platform provides a
new method for more efficient use of EVs for drug delivery
and targeting.
EV biomimetic porous sputum nanoparticles (PSiNPs) secreted by
biocompatible tumor cells were developed as drug carriers for
targeting cancer chemotherapy. After intravenous administration, the
drug is delivered with specificity.

[91–93]

Chemotherapy EVs can act as carriers for chemotherapeutic/chemopreventive
agents to suppress tumor proliferation. [94]

Vaccine
EVs loaded with tumor antigens and Mycobacterium tuberculosis
antigens have great potential to be used as vaccines to overcome the
immune escape of tumor cells after genetic modification.

[95]

Gene therapy

The suicide fusion gene construct was loaded into EVs derived from
nontumorigenic cell lines. Delivery to glioblastoma cell lines and
spheres effectively induced apoptosis of glioblastoma cells and thus
inhibited tumor growth in vivo.

[96]

Inhibitor

CD133 (Prominin-1) is a stem cell marker that is involved in the
development of tumors, differentiation, and anticancer treatment.
The use of histone deacetylase 6 (HDAC6) inhibitors to induce CD133
+ release in cancer cell EVs has potential as an antitumor mechanism.

[97]
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5. Conclusions

EVs are important modulators of inter- and intracellular communications. EVs reg-
ulate diverse cellular processes, and they also contribute to cancer development and
metastasis. The EV components can be transferred to other cells, affecting the physiological
processes of the recipient cells and influencing the entire tumor microenvironment. EVs
offer a valuable alternative to the current therapeutic options. They serve as nanoscale
vehicles for drug delivery and have great potentials in this regard, not only because of their
high biocompatibility, but also due to their low cytotoxicity. Tumor-cell-derived extracellu-
lar vesicle surface antigens have a huge effect on the immune system and can be modified
by various agents to directly affect tumor cells or regulate antitumor immunity. The high
EV heterogeneity is a problem in exploring their full therapeutic potential. Regarding their
application as drug carriers, the disadvantages include low transfection efficiency and
high dependence on cell division for cases in which cell cycle manipulation is required. In
addition, the experimental conditions must be precisely controlled during nanoparticle
delivery to avoid vesicle rupture. Thus, verifying the roles of EVs in clinical practice is
not a simple endeavor, and more research is needed before EVs can be practically applied
as therapeutic tools (Figure 2). Nevertheless, EVs offer a fully new approach for treating
melanoma and other cancers. Understanding their regulation and biological features has a
high potential to improve cancer treatment in the future.
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