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Abstract

General anesthesia significantly alters brain network connectivity. Graph-theoretical analysis has been used extensively to
study static brain networks but may be limited in the study of rapidly changing brain connectivity during induction of or
recovery from general anesthesia. Here we introduce a novel method to study the temporal evolution of network modules
in the brain. We recorded multichannel electroencephalograms (EEG) from 18 surgical patients who underwent general
anesthesia with either propofol (n = 9) or sevoflurane (n = 9). Time series data were used to reconstruct networks; each
electroencephalographic channel was defined as a node and correlated activity between the channels was defined as a link.
We analyzed the frequency of subgraphs in the network with a defined number of links; subgraphs with a high probability
of occurrence were deemed network ‘‘backbones.’’ We analyzed the behavior of network backbones across consciousness,
anesthetic induction, anesthetic maintenance, and two points of recovery. Constitutive, variable and state-specific
backbones were identified across anesthetic state transitions. Brain networks derived from neurophysiologic data can be
deconstructed into network backbones that change rapidly across states of consciousness. This technique enabled a
granular description of network evolution over time. The concept of network backbones may facilitate graph-theoretical
analysis of dynamically changing networks.
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Introduction

General anesthesia rapidly modulates levels of consciousness

and has been suggested to be a useful tool for the study of

consciousness [1,2]. The precipitous state transitions across loss

and recovery of consciousness provide a unique opportunity to

study dynamic brain network behavior.

The reduced level of consciousness during anesthesia is

associated with topological changes of functional connectivity in

the brain [3–8]. The disruption of functional connectivity and

suppression of metabolic activity are common features demon-

strated across numerous neuroimaging studies. However, the

limited temporal resolution of conventional brain imaging

techniques restricts such studies to topological rather than

temporal changes, which may be critical to mechanisms of general

anesthesia. Recent studies of single unit recordings and local field

potentials in humans have demonstrated the importance of

dynamic temporal changes of neural networks during general

anesthesia [9].

To examine the spatial and temporal properties of functional

brain connectivity simultaneously, we introduce a novel concept,

termed ‘‘dynamic network backbones.’’ The dynamic network

backbone allows us to measure the statistical relevance of

subgraphs in a network and to trace the dynamics of subgraphs

by extending the concept of a network motif [10] to the temporal

domain.

A subgraph of network N is a graph whose nodes and links are

included in N. A network motif is a subgraph pattern that occurs

with greater frequency than in a random network. Conventional

structural and functional network motifs mainly relate to

topological characteristics such as nodes and connections in the

network. Motifs quantify anatomical building blocks and elemen-

tary functional processing modes of a brain network. These small

network building blocks provide insight into the rules governing

the global brain network [10,11].

To expand the motif into the time domain, we generated a

network time series from a windowed EEG dataset and then

evaluated the statistical significance of the possible subgraphs for a

given network time series. If the occurrence of a subgraph is

statistically significant, we define the subgraph as a temporal

backbone of the dynamic brain network. The dynamic network

consists of numerous temporal backbones and their configuration

reflects the spatial and temporal properties of a functional brain

network. The study of temporal backbones may provide unique

information about the neural correlate of general anesthesia in the

time domain. Furthermore, this method will be useful to study the
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significant change of network configurations across various states

of consciousness induced by general anesthesia.

In the current study, we used two distinct anesthetics to

modulate the level of consciousness. Using the dynamic network

backbone method we investigated the number of network

backbones that appeared, diminished and returned across different

states of consciousness. In particular, we investigated the

characteristic temporal evolution pattern for each network

backbone around the state transitions and the distinctive effect

of two types of anesthetics on the temporal evolution of subgraphs.

We hypothesized that there would be typical network backbones

corresponding to the conscious, unconscious and recovery states.

According to information integration theory, the repertoire of

possible brain states would be reduced after loss of consciousness

and would return after recovery [12–14]. We demonstrate a

reduced number of network backbones after anesthetic-induced

unconsciousness, as well as a complex interplay of both

‘‘constitutive’’ and ‘‘variable’’ network backbones.

Materials and Methods

Subjects
The EEG data were originally gathered for a prior study of the

frontoparietal system [15]. The Institutional Review Board (IRB)

of Asan Medical Center approved this study in human volunteers.

After IRB approval and written consents from the participants,

eighteen patients scheduled for elective abdominal or breast

surgery (n = 18, male/female = 8/10, American Society Anesthe-

siologists Physical Status I and II, age 29–66 years) were enrolled

in the study. Two different types of anesthetics were administered

to patients, and eight channel EEG was recorded. The patients’

state of consciousness was separated into five states (baseline

consciousness, induction of anesthesia, general anesthesia, recov-

ery from general anesthesia, full recovery).

Anesthetic administration
Patients received no sedative or other medications before

induction of anesthesia. One of two anesthetic regimens was

randomly selected and administered to patients: (i) Propofol: target

controlled infusion of 2.0 mg/ml was started and increased at a

rate 1.0 mg/ml per 20 s until loss of consciousness (LOC) for nine

patients; or (ii) Sevoflurane: 2 vol% was started and increased at a

rate 2 vol% per 20 s until LOC for the other nine patients. Time

to LOC was determined by checking every 5 s for the loss of

response to verbal command (‘‘open your eyes’’).

EEG recording
EEG was recorded at eight monopolar channels in the

frontoparietal region (Fp1, Fp2, F3, F4, T3, T4, P3 and P4

referenced by A2, which followed the international 10–20 system

for electrode placement) by a WEEG-32 (LXE3232-RF, Laxtha

Inc., Daejeon, Korea) to study frontal-parietal connectivity

originally with a sampling frequency of 256 Hz.

Electromyogram (EMG) was concurrently recorded at four

bipolar channels (bilateral frontalis and temporalis muscle) by a

QEMG-4 (Laxtha Inc., Daejeon, Korea) with a sampling

frequency of 1024 Hz. The EEG and EMG recordings were

divided into five monitoring epochs: (i) baseline, 5 min before

anesthetic induction; (ii) induction, from start of anesthetic

induction to LOC; (iii) anesthetized state, 5 min after LOC; (iv)

recovery, from the end of anesthesia to recovery of consciousness

(ROC); (v) post-recovery, 5 min after recovery in the Post-

Anesthesia Care Unit. Fourier-based bandpass filtering (zero-

phase forward and reverse filtering with Blackman-Harris window

function) (0.5–35 Hz for correlation calculation, Delta:

0.1,4.0 Hz, Theta: 4.0,8.0 Hz, Alpha: 8.0,12.0 Hz, Beta:

12.0,30.0 Hz for phase locking value calculation) was applied to

EEG data before the network backbone analysis.

Network time series and dynamic network backbones
The network time series is produced with EEG data fragmented

using the moving window method and the statistically significant

subgraphs are extracted from the network time series pool. Figure 1

and Figure 2 illustrate the procedure for extracting the network

backbones. First, extract possible subgraphs from network time

series. Second, count the number of their appearances through

time. The subgraphs with statistically significant appearance

compared with their randomized set (see ‘Statistical analysis’) are

defined as the network backbones, and the collection of them is the

network backbone set.

The decomposition of a network into its modules in spatial

terms is regarded as a network motif and motif fingerprint. Network

backbones can be considered to be a temporal extension of the

network motif approach. Backbones are derived from the series of

networks, in which specific links are maintained across windows. It

is distinguishable from the static network motif, which has a

frequent spatial appearance compared with that of randomized

networks. The network backbone is related primarily to temporal

duration, while the motif fingerprint is based on spatial

appearance. In this study, the network time series was generated

from EEG by using a moving window method (window size: 6

second, moving size: 250 millisecond). At each window, the

adjacency matrix was constructed by calculating coherence

measure. Pearson correlation coefficient (0.5,35 Hz range) and

mean phase synchrony[16] (delta, theta, alpha, beta bands) were

used independently in order to check the consistency. Mean phase

synchrony (phase locking value) is defined at time t as the average

value

PLVt~
1

N
D
XN

n~1

exp(ih(t,n))D ð1Þ

where N is the number of sample datasets and h(t,n) is the phase

difference w1(t,n){w2(t,n). Phases are calculated by Hilbert

transformation.

If a pair of channels whose phase synchrony is significantly

higher than that of the surrogate datasets, the pair of channels was

deemed to be functionally connected (See ‘Statistical analysis’).

The parameter set including window size and threshold for

producing binary network time series was chosen to maximize the

diversity of networks at each state. Therefore, the entire process

for constructing the network time series is non-parametric.

The network at time t is Gt~(V ,E), where V and E are nodes

and edges in the network Gt, respectively. The subgraphs are

gt~(V ,e), e[E. For a fully connected network, the subgraph can

be labeled as

gi~(V ,ei) i : indexð Þ ð2Þ

At time t, module appearance ai
t is defined as a binary number such

that ai
t equals 1 if gi appears at time t and otherwise 0. The

probability pi of each module from a series of networks is defined

as follows. If the number of data points is T, occupation probability pi,

which is the probability of a specific network module appearing

over the whole series of networks is

Dynamic Brain Backbone Analysis during Anesthesia
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pi~

PT
t~1 ai

t

T
ð3Þ

If a network at time t has n nodes and h distinct links, the

number of possible modules is

Xh

i~1

n{1

i

� �
~
Xh

i

(n{1)!

i!(n{i{1)!
ð4Þ

Since the total space of the modules is too large to compute

efficiently, we fixed the module size at 4 (4 edges) in this study.

Figure 1. Extracting network backbones from a network time series. This diagram illustrates how to extract backbones and their dynamics
from a network time series. The first row is a series of networks constructed from segmented EEG data. The other rows are network backbones
extracted from the network time series. The network backbone persists for at least one EEG epoch. The number of links for a backbone is fixed as the
smallest network size (3 for illustration) appearing in the given network time series. The occupation probability indicates the proportion of time
windows in which specific network backbone appears over the given network time series.
doi:10.1371/journal.pone.0070899.g001

Figure 2. Scheme for extracting network backbones from an EEG time series. a) Segmenting EEG time series into small time windows
(moving window method). b) Construct adjacency matrix by calculating mean phase coherence or Pearson correlation coefficient with zero lag
among EEG channels at each window. c) Generate dynamic network time series. d) Identify dynamic network backbones. With dynamic network
backbones, draw e) the time series of dynamic network backbones and f) the rank-state diagram.
doi:10.1371/journal.pone.0070899.g002
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This module size was determined by the smallest number of links

in the series of networks for our EEG data, in order to guarantee

that each window had at least one backbone candidate.

Parameter estimates for functional connectivity
At each window, we derived a correlation matrix Ckl

j (k, l:

channel index, j: window index) by calculating the correlation

coefficient or phase synchronization index among EEG channels.

A correlation matrixCkl
j was converted to a binary form adjacency

matrixAkl
j with threshold h (; 0 if ckl

j vh and otherwise 1). The size

of network ensemble (n) was defined as the number of unique

adjacency matrices (excluding redundant adjacency matrices) in

the whole network time series. All parameters for these connec-

tions (threshold (h), window size(d) and moving size (g)) were

determined with the parameter set that provides the largest

network ensemble size (n), in other words, providing the most

information on connectivity for a given multivariate data set. For

our EEG data, the window size of 6 seconds and window moving

size of 250 milliseconds consistently provided the largest network

ensemble. However, the threshold for connection (h) was variable

for states.

Extracting the dynamic network backbones from a
network series

After generating the largest network ensemble for a given EEG

data set, we extracted the network backbones. First, we identified

the smallest number of links (m) in the whole series of networks and

then extracted all possible subgraphs with m links Sm
i (i: link tuple

index) in the series of networks. The number of possible subgraphs

with N nodes and m links is (N-1)!/m!(N-m-1)!. To determine

network backbones, we calculated the occupation probability pi of

Sm
i and took L highly ranked Sm

i based onpi. For instance, if a

network backbone has an occupation probability of 1, it indicates

that the backbone can be found throughout the entire network

series. In this study, we focused on the temporal evolution of L

highly ranked network backbones, assuming that highly ranked

network backbones represent the temporal behavior of the whole

network ensemble. The configuration of network backbones for

each window was represented with binary symbols (ai
t, i: backbone

index, t: window index, and 1: present, 0: absent in a window).

Thus, the total network time series G is able to be converted into a

series of binary symbols of all network backbones (visualizing ‘‘1’’

with black dot in Figure 3). Finally, we can use the binary form

series of network backbones in order to study the temporal

evolution behavior of each network backbone.

Algorithm for reducing computation time
The computation time for detecting all motifs from a network

depends on the size of network. There are many algorithms for

detecting motifs with improved computation speed. However, the

previous algorithms do not work for detecting dynamic network

backbones because the motif does not incorporate the node

indices, which are crucial for this process.

To reduce the computation, we used the hierarchical structure

of subgraphs of network ensembles. If a network A is a supergraph

of network B, the subgraphs of the network B also become the

subgraphs of network A. Thus, the basic ideas for reducing

computation are: (1) construct the hierarchy of networks by their

supergraph-subgraph relationship, and (2) do not count the

subgraphs that were already counted in the smaller networks in

order to avoid duplicate extraction (See Figure 4 for pseudo-code).

By removing the duplicate detection loops for the subgraphs of

larger networks, we can reduce the computation time by O(ln N).

In practical cases, the measured brain state (e.g. baseline,

anesthetized) is a stationary state, which guarantees that the

number of unique networks converges regardless of network time

series length. As a result, the time complexity is reduced by O(N).

Overall, the time complexity of the whole procedure is reduced by

O(N ln N).

Similarity of network backbone configurations across
states and anesthetic groups

To quantify inter- and intra-subject similarity of network

backbone configurations across the five states of consciousness,

we measured the cosine similarity between network backbone

configurations. Cosine similarity is defined as

s~
bi
:bj

bik k bj

�� �� ð5Þ

,where bi and bj are the network backbone sets for state i and j. For

example, if there are three types of backbones in a network time

series, type 1 and 3 appear in the state i, and type 2 and 3 appear

in the state j, then bi and bj are denoted as {1, 0,1} and bj = {0,1,1},

respectively. The cosine similarity s is

s~

P3
k~1 bk

i |bk
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

k~1 (bk
i )2

q
|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
k~1 (bk

j )2
q ~

1

2
ð6Þ

The range of cosine similarity is from 0 to 1; 1 indicates the same

configuration, otherwise, 0 indicates a completely different

configuration.

To quantify the similarity of backbone configurations across

states, we extracted the 60 most probable network backbones from

each state. For direct comparison, the indices of network backbone

types are matched over all backbone configurations, filled with 0

for nonexistent backbone types. It is notable in this study that a

similar network backbone configuration indicates similar temporal

configuration of network backbones, which is distinct from similar

spatial configuration.

Statistical analysis
The functional connections between EEG channels were

determined by a comparison with a randomized data set.

Randomized data sets were created by random phase shuffling

while retaining the same power spectrum using the AAFT method

[17]. 40 randomized data sets were created for each time window.

If the phase synchrony or the correlation coefficient between two

EEG channels was significantly deviated from that of randomized

data (p,0.05 with one paired t-test), we deemed the EEG

channels to be functionally connected. This comparison was

performed to avoid the problem of spurious correlation/phase

synchrony measurements that can result from lower frequency

dominant power spectrum in the anesthetized state [18]. Through

this process, the series of weighted networks Gi were generated

from EEG data.

The inter-subject variability of network backbones and the

significance of dynamic network backbones were tested. We chose

the backbones commonly found over all subjects (.77% of

subjects) as dynamic network backbones (common network

backbones). The significance of dynamic network backbones was

assessed by comparison with the surrogate data. For each data set,

we generated 400 surrogate time series and extracted the network

Dynamic Brain Backbone Analysis during Anesthesia
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backbones. Kruskal-Wallis H-test was applied to the original and

the surrogate data sets. The significance level of the test was set as

p,0.001. For every test set, p-values were less than1026, which

strongly rejects the null hypothesis (See Figure 5). All statistical

tests are performed with scipy statistics module (0.10) and Kruskal-

Wallis H-tests were checked with a statistical toolbox in

MATLABH R2011a.

Materials
MATLABH version of our dynamic network backbone extrac-

tion codes is available at http://github.com/inureyes/network-

backbone-toolkit.

Results

Configuration of dynamic network backbones for each
state and anesthetic group

We investigated the configuration of network backbones across

various states of consciousness and between two anesthetic groups.

Figure 3 demonstrates an example of the time course of dynamic

network backbones during the experimental period. The complex

configurations of network backbones and the transient temporal

reorganization are presented across states. Figure 5a presents the

mean cosine similarity of network backbones among subjects for

the two anesthetic groups. 400 network backbones were extracted

from each subject and the inter-subject similarities within each

group were measured. About 40% of network backbones (out of

400) are shared among subjects, and the number of common

network backbones is decreased during anesthesia (Kruskal-Wallis

H-test, statistics: p,0.001). Figure 5b demonstrates the number of

state-specific network backbones. The state-specific (unique)

backbones are determined by comparison with the backbones in

the other four states. If a certain backbone in a specific state

appears in the other four states, the backbone is excluded from the

unique backbones. It is notable that each state has specific

backbones that are unique and that general anesthesia is

associated with a reduction of state-specific backbones (Mann-

Whitney U test, statistics: p,0.01). It must be emphasized that the

determination of a state-specific backbone is dependent on all

states analyzed. Thus, the observed differences in the specific

backbones of the ‘‘Baseline’’ state between the two anesthetic

groups does not mean that the two groups were different at

baseline, because this state was not analyzed in isolation. Rather,

backbone differences in the anesthetized or recovery state will

influence the determination of what is unique in each group in the

baseline state.

We summarized the configuration of dynamic networks for each

state and two anesthetic groups. Table 1 presents the number of

unique networks and common network backbones that appeared

in the pooled data for both anesthetic groups (i.e., propofol and

sevoflurane groups). 1196 network configurations are possible

from 300 sec state size and 0.25 second moving window size, and

approximately 21% of all possible configurations appear (Baseline:

276.33676.09, Induction: 249.22663.75, Anesthetized:

Figure 3. An example of dynamic network backbones from propofol-induced patients. The network backbones are sorted in the
ascending order of the occupation probability in the baseline state and their occupation pattern throughout states. New network backbones emerge
after the state transitions across five anesthesia stages. Each stage is divided by a blue vertical line. The black dots indicate the appearance of a
network backbone.
doi:10.1371/journal.pone.0070899.g003
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231.67680.67, Recovery: 262.33687.34, Post-recovery:

242.33675.10 for propofol-induced patients) in the data. About

79% of possible network configurations did not occur in the

reconstructed brain networks, suggesting that the temporal

organization of dynamic networks is not a random process, but

rather strongly constrained (Kruskal-Wallis H-test with 300

surrogate set, statistics: p,0.001).

Figure 4. Pseudo-code of dynamic network backbones detection algorithm.
doi:10.1371/journal.pone.0070899.g004

Figure 5. The inter-subject similarity of network backbone configurations for different states and anesthetic groups. a) The
similarities of network backbones profiles among subjects were measured by cosine similarity. The network backbone profile for a subject was
constructed with 400 backbones and was compared with others in five states of each anesthetic group. To test the significance of the similarity of
network backbones, the 400 surrogate data sets for each subject were generated and the similarity of network backbones was calculated (Green
bars). Errorbar indicates standard deviation of the similarities for all pairs of subjects. b) The number of unique network backbones for each state
(from top 1600 backbones). Errorbar indicates standard error of subject variability. Unique backbones are the backbones that appear only in a certain
state for each anesthetic group. The higher number of unique backbones in the baseline state of the sevoflurane group indicates that the other states
share fewer backbones with baseline state compared to the propofol group.
doi:10.1371/journal.pone.0070899.g005
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The minimum occupation probabilities of top-n network

backbones (n = 60, 400) are significantly increased after anesthesia

(Mann-Whitney U test statistics, p,0.01, if significant). The

decreased number of unique networks and increased number of

common network backbones implies a more monotonous pattern.

The higher occupation probability in the anesthetized state reflects

the lack of variety in the spatial and temporal configurations,

which is what would be predicted.

Categorization of dynamic network backbones based on
rank diagram

We categorized the network backbones based on the occupation

probability and the connection structure. By categorizing many

backbones, we can easily study the relationship between the states

and the network backbone configuration. The dynamic network

backbones were ranked by their occupation probability at each

state, which we term a ‘backbone-state rank diagram.’ The ranked

backbones were categorized by the connection structure, which is

denoted by different colors. The color intensity indicates its rank.

Figures 6–8 present the rank diagrams of network backbones for

two anesthetic groups, which were constructed using the common

backbones of the pooled data of nine subjects for each group.

Based on the rank diagram, we identified ‘‘constitutive’’ network

backbones that are present during all states, and ‘‘variable’’

network backbones that emerge or disappear in specific states. The

rank diagram for propofol-induced anesthesia (Figure 6a and

Figure 7) demonstrates that some network backbones linking the

prefrontal and frontal regions (green) persisted across state

transitions. By contrast, network backbones that linked the left

frontal and left parietal regions (blue) appeared only transiently

(induction-anesthetized, post-recovery). Network backbones that

linked the left and right hemispheres (purple) were reduced in the

recovery stage. Temporal-parietal backbones (orange) appear in

states affected by anesthetics (induction, anesthetized and recovery

state). Some types of network backbones that linked the prefrontal

and frontal regions appeared only at baseline and recovery state,

and then continued until the end of recording.

In Figure 6b and Figure 8, the rank diagram of sevoflurane

anesthesia demonstrated more complex network dynamics com-

pared to that of propofol. However, the network backbones linking

the prefrontal and the frontal regions were persistent across all

states as was found with propofol. The number of unique network

backbones corresponds to the diversity of networks. In our study,

sevoflurane-induced patients typically showed more diverse

Table 1. Brain networks and dynamic network backbones for nine subjects and each anesthetic (cross-correlation network).

States 5 Subject# 9 Backbone Size 4

State size 300.0 sec. Window Size 6.0 sec. Moving Size 0.250 sec.

PROPOFOL

Baseline Induction Anesthetized Recovery Post-recovery

Threshold 0.594460.0984 0.514460.0826 0.425560.1661 0.432260.1699 0.582260.0940

Network ensemble
size

276.33676.09 249.22663.75 231.67680.67 262.33687.34 242.33675.10

Number of common
backbones

428 526 971 494 288

Max. occupation
probability

0.971060.0457 0.989960.0130 0.996460.0068 0.980760.0270 0.948560.0878

Min. occupation
probability (top-12)

0.931460.0998 0.957560.0332 0.992160.0152 0.959760.0842 0.921460.1252

(top-60) 0.869860.1607 0.881760.0542 0.962560.0840 0.926760.0701 0.856860.1639

(top-400) 0.717160.2419 0.674660.1161 0.848760.1643 0.769560.1522 0.683960.2710

SEVOFLURANE

Baseline Induction Anesthetized Recovery Post-recovery

Threshold 0.576760.1246 0.578960.1295 0.522260.0895 0.461160.0929 0.537860.0917

Network ensemble
size

307.00689.68 276.11678.94 261.44674.18 286.00664.87 269.11675.70

Number of common
backbones

279 323 563 443 416

Max. occupation
probability

0.966760.0485 0.912460.1228 0.996560.0100 0.985760.0269 0.972660.0538

Min. occupation
probability (top-12)

0.888760.1356 0.858760.1558 0.988260.0316 0.967260.0359 0.944160.0866

(top-60) 0.794760.1815 0.765360.1934 0.972060.0510 0.929760.0710 0.911860.1294

(top-400) 0.637060.2067 0.582660.1930 0.776660.1745 0.770260.1218 0.773860.1807

A unique network is a network with a distinctive connection structure in the given network time series. Network ensemble size is the number of unique network
structures appearing in the data. The number of common backbones is the number of commonly found backbones across most subjects (.77%, 7/9 subjects in this
study). maxP denotes the maximum occupation probability that the network backbones can have for the pooled data. minP denotes the minimum occupation
probability that the network backbones can have. For example, minP(12) means the minimum occupation probability of the top 12 backbones. The minP(#)
demonstrates how slowly the occupation probability was reduced as the number of network backbones considered increases. Note that in the anesthetized state the
number of unique networks was reduced from baseline, indicating more frequent repetition of the same network and network backbone.
doi:10.1371/journal.pone.0070899.t001
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backbones than propofol-induced patients. For instance, the

sevoflurane rank diagram with the top 60 network backbones

(all bands, cross-correlation network case) included 156 different

types of common network backbones over the five states,

compared to 110 types in the case of propofol (first rank diagram

of Figure 7a and Figure 8a). This may reflect differences of

anesthetic mechanism or possibly different levels of consciousness,

as the two anesthetics were not given in equisedative doses.

The similarity of network backbone profiles across states
Some network backbones are maintained while others con-

stantly changed, reflecting a complex change of network backbone

configuration along with the change of states during general

anesthesia. To measure the similarity of network backbone

configurations across states, the cosine similarity index was used

with the top network backbones, as defined by occupation

probability for each state.

Figure 9 demonstrates the similarities of the top network

backbones across five states: waking, induction, anesthesia,

recovery and post-recovery. The top 60 network backbones were

selected from the common network backbones of the nine subjects

in each anesthetic group. The similarity s between the top 60

network backbones of two groups was measured as a normalized

value (from 0 to 1) using cosine similarity. For two given network

profiles, s = 1 denotes that two network backbone profiles are

perfectly preserved and s = 0 means that the profiles are

completely changed.

In Figure 9a, propofol induces a relatively slow change of

network backbone profile after induction (s = 0.82) and general

anesthesia (s = 0.73). After a large change at the recovery state

(s = 0.35), only 63% of the network backbone profiles are returned

to the post-recovery state. By contrast, sevoflurane produces

relatively large changes at induction (s = 0.63) and anesthesia

(s = 0.58), and smoothly returns to the original level of network

backbone profiles up to the post-recovery state (s = 0.77) (in

Figure 9b). In terms of the changing pattern, the loss of

consciousness (baseline, induction and anesthetized states, within

the red box of Figure 9a) and the recovery of consciousness

(recovery and post-recovery, within the blue box of Figure 9a) are

distinguishable in propofol-induced anesthesia.

The lowest cosine similarity is found in the comparison between

the induction and the recovery state (s = 0.43 for propofol, s = 0.50

for sevoflurane), both of which are transition states from

consciousness to unconsciousness, and vice versa. The distinctive

configurations of network backbones for both transition states may

reflect different state transition mechanisms for the loss and

recovery of consciousness. Regarding the network backbone

profile of the anesthetized state, the similarity with the other

states was low (Figure 9a and Figure 9b).

Robustness of network backbones from noise
contamination

We tested the sensitivity of the algorithm to noise, since

empirical datasets and clinical environments generally contain

noise from various sources.

To test the robustness of network backbones against noise

contamination, we simulated a network time series, which consists

of 4,000 networks with 6 nodes and 38,000 random links (the

average number of links is 9.5, with a range of 4,15 links for each

network). In this simulation, two noise parameters were introduced

into the simulated networks: the strength of random rewiring and

the proportion of noise contamination. The random rewiring was

applied to 1% to 20% of links at each network. The rewiring range

for the whole network time series was changed from 0.025% (1

network), 6.25% (250 networks), 12.5% (500 networks), 18% (720

networks), 50% (2,000 networks), and 75% (3,000 networks). After

Figure 6. Demonstration of backbone-state rank diagram for each anesthetic group. a) Propofol patient group and b) Sevoflurane patient
group. The network time series are constructed by Pearson correlation coefficient with zero lag (0.5,35 Hz) between EEG channels. Only the top 24
dynamic network backbones are shown in these figures (for the sake of readability). The network backbones were sorted from constitutive to variable
and state-specific backbones in descending order, clockwise from top center. The wider patch represents a higher occupation probability of the
backbone in a network time series. The network backbones were categorized into groups based on the connection, and presented with colors:
prefrontal-frontal connections (green), (pre)frontal-parietal connections (blue), intra-parietal connections (gray), inter-hemispheric connections
(purple) and temporal-parietal connections (orange).
doi:10.1371/journal.pone.0070899.g006
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Figure 7. Bandwidth-specific backbone-state rank diagram for the propofol group. The network time series are constructed (a) by Pearson
correlation coefficient with zero lag (all bands: 0.5,35 Hz, delta: 0.1,4.0 Hz, theta: 4.0,8.0 Hz, alpha: 8.0,12.0 Hz, beta:12.0,30.0 Hz) and (b) by
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that, we measured how many of the original network backbones

were extracted from the randomized network time series at each

noise level. We repeated the simulation test 450 times and

summarized the results.

Figure 10 demonstrates the robustness of dynamic network

backbone method. About 70% of the original network backbones

are preserved irrespective of the level of random rewiring up to

20%. The short-term noise contamination (6.25% and 12.5% in

Figure 10) does not interfere significantly with the original

backbones, even with strong random rewiring. On the contrary,

relatively long term noise contamination (18%, 50% and 75%)

significantly disrupts the original network backbones even with

smaller random rewiring at each network. The robustness test

shows that the noise contamination proportion in network time

series is more influential on the original network backbone than

the strength of random rewiring. This result is due to the method

of extracting network backbones based on the occupation

probability. The occupation probability is more strongly affected

by the proportion rather than the strength of random rewiring for

a short-term epoch. These findings suggest that applying proper

noise filters to the time series is important to obtain precise

network backbones, whereas sharp noises are negligible.

Discussion

This study reports a novel technique for analyzing dynamic

network changes across rapidly changing states of consciousness.

The analysis of backbones revealed characteristic time evolution

features of basic network elements and complex assembly patterns

of network subsets during general anesthesia.

Our approach has several advantages: (1) The concept of

dynamic network backbones expands the study of structural motif

to motifs in the time domain. By definition, the significant

temporal subgraphs (backbones) reflect the dynamic configurations

of the network, which has not been reflected in the spatial motif.

This is essential to the study of brain networks with state

transitions accompanied by a change of network structure. (2)

The dynamic network backbone method reveals new dynamic

properties of brain networks (variable, constitutive and state-

specific) for various states of consciousness. The dynamic

properties of the brain network consistently appeared for two

different connection measures (Pearson correlation coefficient and

mean phase coherence), four frequency bands, and two anesthetic

groups. This method can be applied to other fast state-transition

data in order to study the temporal configuration of substructures

in the brain network. (3) The method also revealed that even a

small number of EEG channels produces abundant and complex

network backbones. This is possible because the dynamic network

backbone takes into account the time domain. Network study with

a small number of nodes (e.g., channels) is an important advantage

of this method. (4) The dynamic network backbone is robust after

exposure to strong short-term noise contamination, which is

common with empirical data from EEG. Because of these

advantages, the dynamic network backbone approach is appro-

priate for studying functional circuits of both stationary state

networks and rapidly changing networks with a small number of

nodes.

With respect to general anesthesia, there are four main findings

to this study: (1) Anesthetics significantly reduce the diversity and

population of network backbones. (2) Different anesthetics

produce different changing patterns of network backbones,

possibly reflecting diverse molecular mechanisms. (3) Some

network backbones are not affected by anesthetics (e.g., local

connections such as prefrontal-frontal), while other backbones

were variable across states (e.g., long-range connections such as

frontal-parietal) [19,20]. (4) The deformation of network backbone

profiles at the loss and recovery of consciousness were unique to

each anesthetic.

Theories of meta-stability and dynamical system models

describe the dynamic coordination between different parts of the

brain [21–23]. Meta-stability is a theory of how global integration

and local segregation coexist in the brain. Several approaches have

been attempted to measure meta-stability based on empirical data

in different conscious states. These studies have suggested that

different conscious states can be characterized by different

hierarchical structures of simple patterns of brain activities, local

or global functional connectivity, and their temporal evolution

properties [22,24–26]. The current study extends this line of

investigation by introducing a method to study dynamic network

changes across time. By using the network backbone method we

were able to study quantitatively the change of hierarchical

structure of brain networks across different states of consciousness

induced by anesthetics as well as the distinct effects of two

anesthetics.

General anesthesia simplifies the complex temporal evolution

pattern of brain networks and reduces the population of network

backbones, transforming diverse brain connectivity into a more

restricted and consistent pattern. For both anesthetics, the number

of network backbones was reduced during induction, and also

reduced under anesthesia (See Table 1). The reduced complexity

of EEG activities in the anesthetized brain has been demonstrated

using various measures of entropy [27,28], but this is the first

reported quantification of the number of local functional network

elements. It is important to note that our interpretations rest on an

unproven assumption, namely that the prolonged duration of a

network backbone implies a significant role in brain function. It is

also notable that during anesthetic-induced unconsciousness, a

limited reduction of network backbones took place, while the

majority of network backbones in the brain were preserved.

Furthermore, a number of backbones appeared during general

anesthesia, some of which were state-specific and others that

persisted throughout recovery. These data suggest that general

anesthetics do not simply ‘‘turn off’’ certain networks or ‘‘turn on’’

others. Rather, there is likely a complex mosaic comprised of

constitutive backbones that persist across all states, other

backbones that appear to be specific for the state of consciousness

and general anesthesia, and still others that appear during

anesthesia and are maintained throughout the return of con-

sciousness. The novel method of dynamic network backbone

analysis may better reflect the diverse and dynamic changes of

network structure during general anesthesia compared to current

techniques of analyzing brain connectivity.

The constitutive and variable backbone types may be linked to

specific neuroanatomical substrates, but given the low spatial

mean phase coherence (band-specific) between EEG channels. 4-link backbones are extracted. The top 60 dynamic network backbones are shown in
these figures. The network backbones were sorted from constitutive to variable and state-specific backbones in descending order. The darker color
means a higher occupation probability of the backbone in a network time series. The network backbones were categorized into groups based on the
connection, and presented with colors: prefrontal-frontal connections (green), (pre)frontal-parietal connections (blue), intra-parietal connections
(gray), inter-hemispheric connections (purple) and temporal-parietal connections (orange).
doi:10.1371/journal.pone.0070899.g007
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Figure 8. Bandwidth-specific backbone-state rank diagram for the sevoflurane group. The network time series are constructed (a) by
Pearson correlation coefficient with zero lag lag (all bands: 0.5,35 Hz, delta: 0.1,4.0 Hz, theta: 4.0,8.0 Hz, alpha: 8.0,12.0 Hz, beta:12.0,30.0 Hz)
and (b) by mean phase coherence (band-specific) between EEG channels. 4-link backbones are extracted. The top 60 dynamic network backbones are
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resolution of the network this will require further testing with

higher-resolution methods. Local connectivity structures, such as

the prefrontal-frontal connections, tended to be constitutive,

whereas relatively distant connectivity structures, such as the

frontal-parietal, inter-hemispheric and frontal-temporal connec-

tions, represented variable backbones. The persistent frontal-

prefrontal network backbones under anesthesia are consistent with

our past study, in which the frontal and prefrontal network

preserved its optimal network structure after anesthesia, whereas

the parietal network was significantly disrupted [7]. The preserved

network backbones indicated relatively less anesthetic effect on the

frontal-prefrontal network after loss of consciousness. On the other

hand, the reduction of network backbones involving the frontal-

parietal connections (F3-P3) supports the hypothesis that the

disruption of frontal-parietal networks is a neural correlate of

anesthesia [1,5,7,8,15,19,29,30].

Our findings are consistent with both magnetic resonance

imaging and electroencephalographic studies from other research

groups suggesting that local network connectivity can be preserved

during general anesthesia, whereas longer-range connections are

disrupted. The disruption of long distance functional connections

has been suggested to be one neural correlate of anesthesia [19], a

hypothesis that has been recently supported in humans [9].

Persistent brain networks during general anesthesia were reported

in past fMRI studies [31], in which the network reflected the

averaged hemodynamic response at a very low frequency range

[32,33]. A study using electrocorticography reported that variable

cortical activities were superimposed on maintained functional

architectures during propofol anesthesia [34]. In our study,

network backbones with long range connections disappeared in

the anesthetized state while the backbones with local connections

were persistent, which is highly consistent with prior studies

(Figures 6–8) [19,31–33,35,36].

Finally, network backbone profiles were compared across states

produced by both anesthetics. The overall patterns of similarity

across states can be distinguished between the two anesthetics.

Sevoflurane resulted in a larger deformation in the network

backbone profiles of the induction and anesthetized states,

compared to those of propofol. Sevoflurane also produced faster

recoveries of the baseline profiles after return of consciousness and

at the post-recovery state. However, the anesthetics were not

necessarily maintained at equisedative concentrations with a

common behavioral measure and thus it is unclear if backbone

differences are related to the molecular mechanism of the drug or

to different levels of consciousness. It should also be noted that the

differences of network backbone profiles at the recovery and post-

recovery stages between the two anesthetics could be affected by

the differences of surgical procedures. Future studies designed

specifically to compare the two drugs will have to be performed to

characterize more precisely the differential effects on network

backbone structures.

shown in these figures. The network backbones were sorted from constitutive to variable and state-specific backbones in descending order. The
darker color means a higher occupation probability of the backbone in a network time series. The network backbones were categorized into groups
based on the connection, and presented with colors: prefrontal-frontal connections (green), (pre)frontal-parietal connections (blue), inter-hemispheric
connections (purple), intra-parietal connections (grey) and frontotemporal connections (red). Note that frontotemporal circuits are activated during
the recovery process.
doi:10.1371/journal.pone.0070899.g008

Figure 9. The similarities of network backbone configurations among the five states in the two anesthetic groups. (a) propofol and (b)
sevoflurane. The similarity of the five states was measured with the 60 network backbones that have the highest occupation probability for each
state. Darker color indicates higher similarity. The two transition states (induction and recovery) are dissimilar from one another in both anesthetic
groups. The red and blue boxes in Figure 9a denote the higher similarities among states in the propofol group, which are not found in the
sevoflurane group. The illustrations below the matrices present the distinctive recovery pathways for two anesthetic groups: for propofol, the
network backbone configuration was not recovered, whereas it was for sevoflurane.
doi:10.1371/journal.pone.0070899.g009
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Limitations
The present study has numerous limitations. First, this work

considered only low pass filtered EEG data (,35 Hz) to avoid

potential contamination of muscle artifact. Thus, the correlation

results excluded higher frequency elements of EEG (in particular,

gamma frequency band, 35–100 Hz), which may be important for

consciousness. Second, eight EEG channels resulted in a

reconstructed network with low spatial resolution. However, the

goal of this study was to demonstrate proof-of-principle that the

network backbone technique could be useful for assessing dynamic

state changes. Further study with high-density EEG is warranted.

Third, monopolar EEG recording of common reference (A2)

could give rise to a volume conduction effect. We did not treat this

potential problem in the network construction. Instead, we used

strict criteria to determine connections by surrogate data. Fourth,

extracting phases from EEG with a broad frequency range

frequently provides incorrect phase information. To avoid this,

only phase synchrony significantly deviated from a surrogate

dataset, which has the same spectral contents, was deemed a

functional connection. Fifth, heavy computation is required for

extracting dynamic network backbones, compared to conventional

network motifs [10,11]. This was part of the motivation to use a

network with limited nodes for the initial description and analysis

of network backbones. The run-time complexity is O(Nn), where n

is the size of subgraph. With multi-threaded code on a 12-core

Intel Xeon x5520 processor, the computation time of extracting

whole backbones for a single patient was about 15 minutes with 4-

link backbones from 8 nodes and 6,000 epoch network time series;

computation time increased to 120 minutes with the same

condition but 21 nodes (from prior experiments not shown).

Thus, at this time we cannot suggest that backbone analysis would

be useful in a real-time clinical setting. If we assume that the time-

series is measured from a stationary state, the alternative algorithm

described in the Methods section can reduce the calculation time

by O(NlnN) (see Methods). Sixth, the significant spectral power

shift after anesthesia could produce a relatively higher signal to

noise ratio (SNR). Thus, there is a potential for a higher SNR in

anesthesia giving rise to a larger number of common backbones

with higher occupation probability. However, it is difficult to

evaluate the SNR level of EEG data and its effect on network

backbones. To avoid this potential problem, we (1) identified

functional connections only if they were significantly deviated from

those of random data with the same power spectrum, (2) used

phase coherence, which is less affected by linear mixing noise

contamination, (3) tested the random effects produced by specific

power spectra of the five states (Figure 5a) and (4) tested two

different types of noise contaminations (Figure 10). Finally, it is

important to note that the backbones described in this study are

mathematical constructs that do not necessarily reflect neuroan-

atomical substrates or functional modules. However, our findings

regarding prefrontal-frontal backbones and frontal-parietal back-

bones are consistent with other studies and other neuroimaging

modalities.

Conclusion

This study of dynamic network backbones during general

anesthesia provides novel information regarding the profile of

network modules and their temporal deformation across various

states of consciousness. These results suggest a complex network

behavior comprised of constitutive and highly variable backbone

structures that form a mosaic across distinct states of conscious-

ness. Our findings also give further evidence for the disruption of

frontal-parietal network elements during anesthetic-induced un-

consciousness and the relative preservation of frontal-frontal

networks. Further study is warranted on network backbones as a

method of characterizing dynamic changes during normal and

abnormal states of consciousness.
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