
Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[11:44 22/7/2021 Sysbio-OP-SYSB210004.tex] Page: 1015 1015–1032

Syst. Biol. 70(5):1015–1032, 2021
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative
Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contactjournals.permissions@oup.com
DOI:10.1093/sysbio/syab004
Advance Access publication January 30, 2021

Adaptive Tree Proposals for Bayesian Phylogenetic Inference

X. MEYER∗

Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
∗Correspondence to be sent to: Department of Integrative Biology, University of California, Berkeley, CA 94720, USA

E-mail: xav.meyer@gmail.com

Received 2 October 2019; reviews returned 7 January 2021; accepted 17 January 2021
Associate Editor: Jeremy Brown

Abstract.—Bayesian inference of phylogeny with Markov chain Monte Carlo plays a key role in the study of evolution. Yet,
this method still suffers from a practical challenge identified more than two decades ago: designing tree topology proposals
that efficiently sample tree spaces. In this article, I introduce the concept of adaptive tree proposals for unrooted topologies,
that is, tree proposals adapting to the posterior distribution as it is estimated. I use this concept to elaborate two adaptive
variants of existing proposals and an adaptive proposal based on a novel design philosophy in which the structure of the
proposal is informed by the posterior distribution of trees. I investigate the performance of these proposals by first presenting
a metric that captures the performance of each proposal within a mixture of proposals. Using this metric, I compare the
performance of the adaptive proposals to the performance of standard and parsimony-guided proposals on 11 empirical
data sets. Using adaptive proposals led to consistent performance gains and resulted in up to 18-fold increases in mixing
efficiency and 6-fold increases in convergence rate without increasing the computational cost of these analyses. [Bayesian
phylogenetic inference; Markov chain Monte Carlo; posterior probability distribution; tree proposals.]

Studies relying on Bayesian inference of phylogenies are
routinely conducted with software packages designed
specifically for this purpose (Yang and Rannala
1997, 2012). These packages implement the Markov
chain Monte Carlo algorithm (MCMC) to estimate
the posterior distribution of parameters of a model
capturing the evolutionary history (phylogeny) of taxa
and their mode of evolution. Despite the pervasiveness
of these analyses, estimating such posterior distributions
remains a computational challenge whose complexity
largely stems from difficulties exploring and sampling
the space of tree topologies.

The challenge of exploring tree space has been
recognized since the earliest days of Bayesian
phylogenetic inference (Huelsenbeck et al. 2001).
Long analyses and failure to explore the region of
high posterior probability was shown to be a common
occurrence that increased in frequency with the number
of taxa studied (Beiko et al. 2006). Data sets with
large numbers of taxa frequently resulted in rugged
posterior distributions where clusters of tree topologies
with high posterior probabilities were separated by
low-probability valleys. A decade ago, the use of the
Metropolis-coupled MCMC algorithm (MC; Altekar
et al. 2004) was proposed as a solution to this major issue.
Although this solution is now considered as a standard
practice, the settings required for this method to
perform correctly remain a practical concern (Whidden
and Matsen 2015; Brown and Thomson 2018). Using the
MC3 algorithm reduces the failure rate by easing the
sampling of rugged posterior distributions of trees but
does not significantly improve the sampling efficiency
of the key actors for the exploration of the tree space:
the tree proposals.

Only a limited number of studies have considered the
challenge of defining efficient tree proposals. A thorough
analysis of standard tree proposals was conducted

by Lakner et al. (2008) who provided insight on their
performance. Following this study, the concept of guided
tree proposals was presented by Höhna and Drummond
(2012). This important contribution suggested using
scores (e.g., conditional clade probabilities or posterior
probabilities) to bias the proposal toward the most
promising trees among the set of trees proposed by a
traditional tree proposal. However, the practicality of the
resulting guided proposals remains limited due to the
additional computational burden. These proposals were
nonetheless implemented in MrBayes under the form
of parsimony-guided proposals (Ronquist et al. 2012;
Zhang et al. 2020).

Building efficient proposals for continuous
parameters has been the subject of numerous studies
in computational statistics (e.g., Gelman et al. 1996).
These studies have led to the development of adaptive
proposals. These proposals are self-tuned during an
MCMC run to propose moves tailored specifically
for the posterior distribution (Haario et al. 2001,
2005; Roberts and Rosenthal 2009). The field of
computational phylogenetics has employed these
approaches to improve the sampling efficiency of
continuous parameters by designing novel adaptive
proposals (Thawornwattana et al. 2017), developing
multivariate proposals that exploit the correlation
between parameters (Baele et al. 2017; Meyer et al.
2017), or by estimating distributions approximating
the posterior distributions of specific parameters
(e.g., branch lengths) to independently generate
new parameter values (Aberer et al. 2015; Claywell
et al. 2018). Most software for Bayesian inference
of phylogeny takes advantage of these methods for
continuous parameters (e.g., Ronquist et al. 2012; Aberer
et al. 2014; Höhna et al. 2016; Baele et al. 2017). However,
as no theory is readily available from the field of
computational statistics regarding the sampling of tree
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topologies, none of this software implement adaptive
proposals for tree topologies.

Software for Bayesian inference of phylogenies
continues to mostly rely on tree proposals that naively
explore the posterior distribution, as other alternatives
are computationally expensive or impractical. The
performance of these proposals hinders our ability
to infer large phylogenies and to consider more
complex and realistic evolutionary models. In this
study, I present the theoretical foundations for the
development of adaptive proposals for unrooted tree
topologies and use them to develop three prototype
adaptive proposals in the CoevRJ software (Meyer et al.
2019). The first two proposals are adaptive variants
of commonly used proposals and the third proposal
is a fully adaptive proposal based on a novel design
philosophy. I investigate the computational complexity
of these proposals and define a practical performance
metric to assess the efficiency of each proposal within
a mixture of proposals. Using this metric, I then
study the practical performance of these proposals on
simulated and empirical data sets, and compare it to the
performance of traditional and parsimony-guided tree
proposals.

MATERIALS AND METHODS

Phylogenetic Tree Proposals
I consider the problem of developing efficient

proposal kernels for unrooted tree topologies to conduct
Bayesian inference of phylogeny. This type of analysis
requires the estimation of the posterior probability
distribution:

p(θ,v,� |X)= p(X |θ,v,�)p(θ)p(v)p(�)∑
�

∫
v
∫
θp(X |θ,v,�)p(θ)p(v)p(�)dθdv

, (1)

with θ being the parameters of the evolutionary model,
� the unrooted tree topology, v the branch lengths and
X the alignment. Generally, the posterior distribution
is estimated using the Metropolis–Hastings algorithm
in which new parameters values are generated by a
proposal kernel and accepted with probability

�
({θ,v,�},{θ′,v′,�′})
= p(X |θ′,v′,�′)

p(X |θ,v,�)︸ ︷︷ ︸
Likelihood ratio

× p(θ′)p(v′)p(�′)
p(θ)p(v)p(�)︸ ︷︷ ︸

Prior ratio

× p(θ,v,� |θ′,v′,�′)
p(θ′,v′,�′ |θ,v,�)︸ ︷︷ ︸

Hastings ratio

,

(2)

with p(θ′,v′,�′|θ,v,�) defining the probability with
which the kernel proposes parameters (θ′,v′,�′) given
(θ,v,�). In this study, I focus on proposal kernels
modifying uniquely the tree topology and leaving the
branch lengths invariant for the sake of simplicity (i.e.,
θ=θ′ and v=v′), and on deriving their Hastings ratios
having the form p(�|�′)/p(�′|�). Existing strategies to
reassign branch lengths or hybrid proposals combining

branch lengths and tree alterations are compatible with
the tree proposals presented in this study (e.g., see
Aberer et al. 2015 for mapping strategies or hybrid
proposals).

Common proposals employed for the inference of
unrooted tree topologies include the stochastic Nearest
Neighbor Interchange (stNNI), extending Subtree
Pruning and Regrafting (eSPR; Swofford et al. 1996),
and extending Tree Bisection and Reconnection (eTBR;
Huelsenbeck et al. 2008). These proposals naively
explore tree space by arbitrarily altering the current tree
� using subtree swapping or pruning operations. For
instance, the stNNI proposal interchanges two subtrees
separated by an internal branch, while the eSPR proposal
prunes a subtree, moves it along a contiguous set of
branches (a path), and finally regrafts it on the last
branch of the path. Choices of branches, subtrees or
paths are made randomly during these proposals and
therefore frequently result in tree alterations with very
low acceptance probability (e.g., removing a branch
strongly supported by the data).

To improve the quality of the generated moves,
adaptive proposals for continuous parameters use
summary statistics of the posterior distribution, learned
during an MCMC run, to tune the proposal mechanism
(Roberts and Rosenthal 2009). Using these summary
statistics, parameters of a proposal kernel (e.g., the scale
of the random-walk) are adapted to target an optimal
acceptance rate. While the specifics of such adaptive
proposals are not directly applicable to tree topology
proposals, the concept of using summary statistics of the
posterior distribution can still be exploited. In this study,
I use the estimated marginal posterior probabilities of
splits, or split frequencies, to construct adaptive tree
proposals. This strategy is based on two components:
the estimation of the split frequencies and the design of
adaptive proposals exploiting these estimates.

Split Frequencies
Each branch of a phylogenetic tree represents a

unique bipartition of the set of taxa in the alignment.
These bipartitions, better known as splits, are a useful
tool to summarize the posterior distribution of trees.
Using samples collected during an MCMC run, the
marginal posterior probability of a split can be estimated
by observing the frequency with which a given split
occurs within the sampled tree topologies. Marginal split
frequencies provide therefore inexpensive estimates of
the support for each specific bipartition.

Adaptive tree proposals as defined in this study
require the split frequencies to be learned and made
available during MCMC runs. As in the post-MCMC
estimation of the marginal split frequencies, this
procedure is conducted by counting the occurrence
of splits within the sampled tree topologies and
normalizing them by the number of observed samples.
This procedure guarantees that estimates of the
split frequencies converge to the true posterior
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distribution when the MCMC algorithm is ergodic
and run for an infinite amount of time. However,
in practice, phylogenetic inferences are not run
long enough to ensure the robustness and accuracy
of the estimated split frequencies. To tackle this
problem, I develop a heuristic algorithm to learn the
split frequencies while overcoming several potential
issues (Supplementary material available on Dryad at
https://dx.doi.org/10.6078/D16D9P on learning split
frequencies).

The first issue results from the bias induced by
the starting parameters of the MCMC algorithm. The
earliest phase of an MCMC run generally samples
trees unrepresentative of the high probability region of
the posterior distribution until equilibrium is reached.
Therefore, in a postprocessing context, split frequencies
are evaluated using samples remaining after the removal
of the samples collected during the burnin phase.
However, the duration of the burnin phase is unknown
during an MCMC run and cannot be removed, so that
estimated split frequencies might be biased by these
early samples.

The second issue results from the volatility and
oscillatory behavior of the estimated split frequency
during the earliest phase, even after the equilibrium
is reached. This oscillatory behavior depends on
whether a split is present or absent in the sampled
tree topology. Adaptive proposals constructed with
these fluctuating estimates could induce unwanted
dependencies between the proposal probabilities and
the presence or absence of a split (e.g., nonreversibility of
the proposals), and impact the correctness of the MCMC
algorithm.

For these reasons, the heuristic learning algorithm is
based on common practices used for adaptive proposals
for continuous parameters (e.g., Haario et al. 1999;
Andrieu and Thoms 2008). The algorithm averages the
split frequencies over a fixed number of samples to
reduce the volatility of the estimates, uses a relaxation
mechanism that progressively reduces the impact of the
earliest samples observed, and detects the convergence
of the learning process when the amount of variation in
split frequencies stabilizes. This convergence is further
ensured by updating the estimated split frequencies
using monotonic decreasing weights (i.e., strictly
decreasing updates). Once convergence is reached,
the learning process is terminated to ensure that
the proposals preserve the ergodicity of the MCMC
algorithm.

Adaptive proposals strongly rely on the estimated split
frequencies. While this heuristic algorithm improves
the robustness and accuracy of these estimates, it
does not ensure a foolproof estimation procedure.
Therefore, to further improve the robustness of
adaptive proposals, these proposal mechanisms include
a stochastic component � to ensure that all trees remain
accessible regardless of the accuracy or correctness of
the split frequency estimates (Supplementary material
available on Dryad, stochastic component).

Adaptive Tree Proposals
Adaptive tree proposals rely on split frequencies

to define regions of the tree that are weakly or
strongly supported (i.e., having low or high split
frequencies). These regions are used to define moves
maintaining highly supported regions of the topology
while proposing modifications to regions having weak
support. For instance, applying this concept to the stNNI
proposal could reduce the frequency of subtree swaps
acting on splits with strong support while increasing the
frequency of swaps acting on splits with weak support.

While this concept can be applied to build adaptive
versions of naive proposals (e.g., stNNI or eSPR),
two limitations to this approach must be accounted
for. First, naive proposals generate relatively simple
and specific tree alterations, and are computationally
cheap. Their computational cost during an MCMC
iteration is largely dominated by the cost of the resulting
likelihood evaluation. To be efficient, adaptive versions
of naive proposals must present a favorable trade-off
between their inherent increase in computational cost
and their enhanced sampling ability. However, these
enhancements in sampling ability are limited by the
simplicity and specificity of moves generated by naive
proposals. Minimizing the increase in computational
cost with respect to the cost of a likelihood evaluation is
therefore key to designing competitive adaptive versions
of naive tree proposals.

The second key limitation results from a more
conceptual consideration: the type of moves generated
by a tree proposal. In absence of native operations
on the tree space, operators such as the nearest
neighbor interchange (i.e., NNI), the tree bisection and
reconnection (i.e., TBR), or the subtree regrafting and
pruning (i.e., SPR) operators are used to manipulate
tree topologies. Using these operators to define tree
proposals such as the stNNI, eTBR, and eSPR proposals
results in distinctive means of navigating the tree space
(i.e., distinct types of moves). Since each analysis benefits
differently from different types of moves, including tree
proposals based on various operators in a mixture of
proposals is fundamental to adequately explore the tree
space (Lakner et al. 2008). Building adaptive variants
of naive tree proposals limits the resulting proposals to
generate distinct types of moves (e.g., NNI or TBR) and
hinders their potential to adapt more broadly to different
tree spaces.

To better understand why this approach might not
be optimal for adaptive tree proposals, it is convenient
to consider a graph-based representation of the tree
space (Supplementary material available on Dryad,
graph-based representation). In this representation, each
vertex identifies a unique tree, and directed links (i.e.,
edges) represent the navigable network defined by a
given operator. For instance, the NNI operator defines a
network where only vertices representing trees reachable
by swapping two subtrees separated by a single branch
are linked. A naive tree proposal represents then a
weighted version of these graphs where the network is

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://dx.doi.org/10.6078/D16D9P
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
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defined by the operator and the link weights represent
the probability of moving from a tree to another tree.
Networks and link weights differ across naive proposals
but remain fixed for each proposal during an MCMC
analysis.

An adaptive version of a naive tree proposal will
share the same network as its naive counterpart but
will adapt the link weights (i.e., move probability)
at runtime to favor moves leading to trees having
high posterior probability using approximate split
frequencies as a proxy score. While this adaptive-weights
approach already represents an improvement over naive
proposals, it fails to fully exploit the information
contained in the split frequencies. This information can
also be used to identify which links are more favorable
out of extended networks that for instance consolidate
networks of several types of moves.

Therefore, I propose here a different design
philosophy where adaptive tree proposals use the
split frequencies not only to adapt the link weights at
runtime but also to pick which type of move is the
most favorable out of an extended network. Similarly
to eSPR and eTBR proposals, enumerating all outgoing
links (i.e., moves) for a given vertex (i.e., tree) on such
a network is impractical and expensive. Therefore,
other move-building mechanisms analogous to the
extension procedure of eSPR and eTBR proposals
must be considered. In practice, this new concept of
adaptive-network proposals uses split frequencies to
identify weakly and strongly supported regions of a
tree (e.g., clades or paths) that serve as building blocks
for the proposed moves. This design philosophy allows
adaptive tree proposals to generate tree alterations
specifically tailored to fit the posterior distribution of
tree topologies by tuning the link weights across an
extended network including the networks of NNI, SPR,
TBR operators, and more.

In this study, I consider both design philosophies for
adaptive proposals. First, I define two adaptive-weights
variants of existing naive proposals (stNNI and eSPR),
that is proposals having a network constrained by a
specific type of moves (i.e., NNI and SPR, respectively).
Then, I present a novel adaptive-network proposal that
uses the split frequencies to adaptively define the most
favorable type of moves among those defined by an
extended network.

Mathematical Notation.—I use the following
mathematical notation to describe adaptive proposals
(summarized in Table 1): an unrooted tree topology �
is defined by a set of vertices, V, and a set of edges, or
branches, E. The subset of edges, IE ⊂E, identifies the set
of internal edges. Each edge ei identifies a split sj =S(ei)
whose frequency is estimated by the function �(sj). A
split sj identifies a unique bipartition of the set of taxa
and can therefore be identified differently in several tree
topologies. For instance, two edges in different trees
(e.g., ei in � and ej in �′) can identify the same split sj.

TABLE 1. Mathematical notation.
Variables Interpretation

� Stochastic component
�= (V,E) Unrooted tree topology with edges ei ∈E

and vertices vj ∈V
sj A unique split identified by j in the set of

all possible splits
sj =S(ei) Operator returning the split identified by

edge ei
�(sj)=�(S(ei))=�(ei) Operator returning the split frequency of

sj
�c(sj)=1−�(sj) Complement of the split frequency
ei ={vj,vk}={vk,vj} Undirected edges
�ei ={vj,vk} �= �ei ={vk,vj} Directed edges
�(�ei)=�({vj,vk}) Internal edges contiguous to �ei

(neighboring edges)
IE Set of internal edges
�={�ex1 ,�ex2 ,..,�exm

}
Contiguous path in the tree

mcf(�ei) Min. split frequency in clade identified by
edge �ei

21

FIGURE 1. Steps of the A-stNNI proposal. In step 1, edge er is selected
according to Equation (3). Then, in step 2, the two subtrees to swap are
selected according to Equation (4).

I use a flexible definition of splits in the sense that a
split can be used to identify a bipartition and also to build
new partitions. In the context of a move, a directed edge�ei
specifies the direction of operations involving this edge.
For instance, the split s=j S(�ei) identifies the taxa in the
clade subtended by edge �ei. Using this definition, a new
split can then be constructed when a clade is moved by
considering the union of two splits: for instance, S(�ei)∪
S(�ej) would identify a bipartition segregating the taxa in
the clade subtended by edges �ei and �ej from all the other
taxa.

Edges contiguous to edge �ei are identified by the
operator �(�ei) that returns the next edges according to
the direction of �ei. As most of the adaptive proposals
considered act on internal edges, the �(·) operator only
returns edges contained in IE. Regions of the tree
topology are identified by contiguous paths � composed
of a set of contiguous undirected or directed edges (e.g.,
�x ={�ex1 ,�ex2 ,..,�exm

}
). Lastly, the operator mcf(�ei) returns

the smallest split frequency of the internal edges existing
in the clade subtended by edge �ei.

Adaptive stNNI
The adaptive stNNI (A-stNNI) proposal uses the split

frequencies to guide the selection of the central edge er
(Fig. 1). The split identified by this edge sr =S(er) will
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FIGURE 2. Steps of the A-2SPR proposal. In step 1, the edges (er,es), along which a subtree will be moved, are selected according to Equation (7).
Then, in step 2, a move among the 8 possible pruning and regrafting locations along edges (er,es) is selected according to Equation (8). Splits sp
and sq are identified on the resulting tree and correspond to terms S1(x,y,z) and S2(x,y,z) of Equation (8), respectively.

be altered by the interchange of two subtrees located on
each extremity of er. The interchange to apply among
the two possible outcomes is also guided by the split
frequencies.

The selection of the central edge er is biased toward
edges identifying weakly supported splits. The central
edge er is selected with probability

p(er |�)= �+�c(er)∑
ei∈IE

�+�c(ei)
. (3)

The new split su replacing sr is determined by one of
the two possible outcomes of subtree interchange. The
edge ex subtending the first subtree to swap is arbitrarily
chosen among the four edges contiguous to edge er (i.e.,
with probability p(ex|er,�)=1/4). The second subtree is
selected among the two subtrees on the opposite side
of er that are identified by edges ec and ed, respectively
(Fig. 1). The new split su segregates the taxa identified
by the edge ex and either edge ec or ed from the others,
resulting in split S(ex)∪S(ec) or S(ex)∪S(ed), respectively.
To favor the interchange leading to the tree with the
strongest support, the edge ey identifying the second
subtree is selected with probability proportional to �(su):

p(ey |er,ex,�)

= �+�(S(ex)∪S(ey))∑
ei∈{ec,ed}

�+�(S(ex)∪S(ei))
with ey ∈{ec,ed}. (4)

An A-stNNI move is identified by the triplet of edges
(er,ex,ey) and is proposed according to probability

p(�′ |�)=p(er |�)×p(ex |er,�)×p(ey |er,ex,�), (5)

and leads to the new tree topology �′. The reverse move
happens with probability

p(� |�′)=p(e′
r |�′)×p(ex |e′

r,�
′)×p(ey |e′

r,ex,�
′), (6)

where e′
r identifies the edge of the new split su (i.e.,

central edge) in �′, and edges ex and ey identify the same
splits in � and �′. The Hastings ratio required to evaluate
the acceptance probability of a A-stNNI move (Eq. (2)) is
the ratio of Equations (6) and (5).

Adaptive 2-edges SPR
The adaptive 2-edges SPR (A-2SPR) is an adaptive

version of the eSPR move. Similarly to the eSPR proposal,
this adaptive proposal prunes a subtree, moves it along
a path made of consecutive edges, and regrafts it (Fig. 2).
The length of the path is however limited to exactly two
edges, resulting in the alteration of two splits. In contrast
to the usual eSPR strategy, the A-2SPR first selects the
path along which the subtree will be moved and then
considers all the possible pruning and regrafting moves
along this path. The A-2SPR can be seen as a natural
extension of the A-stNNI to two edges since the path is
selected to target regions of the tree with weak support,
while the move is selected to favor the resulting tree
having the strongest support.

In the first step, I select a pair of contiguous edges
(er,es) with probability inversely proportional to the
product of their estimated marginal split frequencies, as
defined by,

p(er,es |�)= �+�c(er)×�c(es)∑
(ei,ej)∈I(E×E)

�+�c(ei)×�c(ej)
, (7)

where I(E×E) identifies the set containing all pairs of
contiguous internal edges in �. The pair (er,es) has the
four edges ea,eb,ec, and ed at its extremities and the edge
et in its center, which is the edge sharing a vertex with
both edges er and es.

The second step enumerates all the possible moves
across edges (er,es) for subtrees subtended by edges
ea,eb,ec, and ed. Each of those edges can be regrafted
two ways after moving along edges (er,es). For instance,
assuming that ea and eb are adjacent, the subtree
identified by edge ea could be pruned and then regrafted
on edges ec or ed. Assuming that edge ec is selected as the
regrafting point, the split sr =S(er) and ss =S(es) would
be removed and would be replaced by splits sp and sq.
The split sp would separate taxa in subtrees identified
by edges eb and et from the others (i.e., sp =S(eb)∪S(et)=
S(ea)∪S(ec)∪S(ed)), while the split sq would separate taxa
in the clade identified by edges ea and ec from the others
(i.e., sq =S(ea)∪S(ec)).
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FIGURE 3. Schematic of an A-PBJ proposal. The two SPR-type moves defined by the stable path �s (Fig. 4) and unstable paths �
(u)
u and �

(v)
u

(Fig. 5) are applied on the example tree �, resulting in tree �′. After having defined a stable path and two unstable paths (step 1), the two SPR-type
moves identified by their respective unstable paths consist of pruning the clade including the stable path (step 2) and then regrafting it at the
opposite extremity of their respective unstable paths (step 3). The probability of an A-PBJ move is the joint probability of building the stable
path and the two unstable paths as defined in Equations (11) and (12).

For mathematical convenience, edges ea,eb,ec, and ed
can be relabeled using their relative position using
notation ep1,p2 (Fig. 2). Indexes pi ∈

{
r,l
}

define whether
the edges are at the right (p1 =r) or left (p1 = l) extremity
of edges (er,es) and whether the edges are the right or
left one relative to each other (p2). Using this notation,
the subtree to prune is identified by its subtending
edge ex,y at extremity x of edges (er,es) and the
regrafting point is identified by edge ex̄,z at the opposite
extremity x̄ (e.g., x=r→ x̄= l). To propose favorable
moves, the probability of selecting a pair of pruning and
regrafing edges is proportional to the estimated marginal
frequencies of the new resulting splits (i.e., sp and sq) and
is defined as

p(ex,y,ex̄,z |er,es,�)

= �+�
(
S1
(
x,y,z

))×�
(
S2
(
x,y,z

))∑
i,j,k∈{l,r}3

�+�
(
S1
(
i,j,k

))×�
(
S2
(
i,j,k

)) ,
(8)

with S1(x,y,z)=S
(
ex,y

)∪S
(
ex̄,z

)∪S
(
ex̄,z̄

)=sp

and S2(x,y,z)=S
(
ex,y

)∪S
(
ex̄,z

)=sq.

The move identified by the quadruplet of edges
(er,es,ex,y,ex̄,z) is proposed according to probability

p(�′ |�)=p(er,es |�)×p(ex,y,ex̄,z |er,es,�), (9)

and leads to the new tree topology �′. The reverse move
happens with probability

p(� |�′)=p(e′
r,e

′
s |�′)×p(ex,y,ex,ȳ |e′

r,e
′
s,�

′) (10)

where edges e′
r and e′

s identify the new splits. Edge
ex,y identifies the edge originally pruned and ex,ȳ its
neighbor in � that subtend the same subtrees in � and �′.
The ratio of Equations (10) and (9) defines the Hastings
ratio for the A-2SPR proposal that is used to evaluate the
acceptance probability of a move (Eq. (2)).

This strategy can be generalized to build adaptive N-
edges SPR moves. However, two pitfalls are inherent to

this approach. First, building proposals affecting a fixed
number of edges, which includes the A-2SPR proposal,
is inconvenient and can result in nonergodic proposals
when used on their own. Second, the proposal’s
efficiency would suffer from significant increases in
computational cost. The computational complexity of
the enumeration of all N-edges paths grows as O(2N),
while the one of estimating the move probabilities grows
as O(N) (Supplementary material available on Dryad,
computational complexity).

Adaptive Path Building and Jolting Proposal
While the A-stNNI and A-2SPR proposals generate

moves constrained by the NNI and SPR move types
(i.e., fixed network), the adaptive path building and
jolting proposal (A-PBJ) embraces a different design
philosophy that uses the estimated split frequencies to
define the move type adaptively (i.e., adaptive-network
proposal). This approach is achieved by using the split
frequencies to identify two types of structures within a
tree topology: weakly and strongly supported regions.
A proposal designed under this philosophy will strive
to generate moves maintaining the regions with strong
support while altering other regions with weak support.
Moves resulting from this strategy are specifically
tailored to fit the posterior distribution of trees
at hand.

The A-PBJ proposal implements this novel design
philosophy by using contiguous paths within a tree
to identify weakly and strongly supported regions: the
unstable and stable paths, respectively (Fig. 3). The
procedure used to build such paths and an A-PBJ move
are first summarized here and then detailed in the
next sections, and lastly illustrated with an example in
the Supplementary material available on Dryad (Path
building: an illustrative example).

This proposal begins by selecting a stable path acting
as the backbone of the move. Unstable paths are then
constructed at both extremities of the backbone when
possible: that is, when the stable path leads to internal
edges (Fig. 3, step 1). An unstable path defines an

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
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1 2 30 1

FIGURE 4. Construction of a stable path �s using split frequencies �(ei). In step 1, the edge es is selected according to Equation (13). Then, in
step 2, the path is extended on both sides of edge es according to Eqs. (14–16). Finally, in step 3, both extensions are concatenated forming path �s
(Eqs. 17–19)). Edges of the stable path are represented with dashed white lines. Other edges are represented with solid black lines and colored
in function of their split frequency.

2

1

2a Extension

1a Extension 1b Re-graft edge

2b Re-graft edge

0 1

FIGURE 5. Construction of the unstable paths �
(u)
u and �

(v)
u at the extremities of �s (Fig. 4). In the two separate building phase (steps 1 and 2),

the paths are constructed by extension (steps 1a and 2a) according to Eqs. ((20)–(22)). Then, the last edges identifying the re-graft points (steps
1b and 2b) are selected according to Eq. (23). In steps 1b and 2b, the edges identifying the clades to prune, the paths and the regrating points are
represented with dashed, dotted and solid white lines, respectively. Other edges are represented with solid black lines and colored in function
of their split frequency.

eSPR-type move by construction. First, the edge at the
extremity of the stable path and adjacent to the unstable
path is pruned (Fig. 3, step 2). The subclade including
the backbone is moved along the unstable path and then
regrafted (Fig. 3, step 3).

The stable path and its splits remain unaltered by
this move, while the splits of both unstable paths are
replaced by new splits. Depending on the number of
unstable paths identified and the edges forming them,
move types produced by the A-PBJ proposal include,
but are not limited to, stNNI, eSPR, and eTBR moves.
For instance, if only one unstable path composed of one
edge can be built, then the A-PBJ proposal generates a
single 1-step SPR-type move or equivalently a stNNI-
type move. However, if two unstable paths are built and
include several edges, then the move generated by the A-
PBJ proposal is equivalent to an eTBR-type move if the
stable path has only one edge or a pair of independent
eSPR-type moves otherwise.

The path building strategies are key to the efficiency
and reliability of the A-PBJ proposal. The stable paths
must capture sets of splits having high frequencies
that would benefit from alterations at their extremities;
constructing stable paths starting and ending at terminal
nodes would not enable any moves. The unstable paths
must capture sets of low-frequencies splits of variable
size and, in this sense, act as a generalization of the

mechanisms previously employed in the A-stNNI and
A-2SPR. This generalization must, however, avoid the
expensive enumeration of all possible N-edges paths to
remain computationally competitive.

The strategies used to construct such paths and
their resulting probabilities are defined in the following
sections. The construction of a stable path �s with
probability p(�s|�) is illustrated in Figure 4. The unstable
paths �

(u)
u and �

(v)
u are built at each extremity of the stable

path �s identified by edges �elk and �erm . Those unstable
paths are constructed with probabilities p(�(u)|�s,�) and
p(�(v)|�s,�), respectively, as illustrated in Figure 5.

The probability of an A-PBJ move is defined using the
joint probability of building its component paths and is
given as

p(�′ |�)=p
(
�s |�)×p

(
�

(u)
u | �elk ,�

)
×p
(
�

(v)
u |�erm ,�

)
. (11)

The reverse move happens with probability

p(� |�′)=p
(
�′

s |�′)×p
(
�

(a)
u | �e′

lk
,�′)×p

(
�

(
b
)

u |�e′
rm

,�′
)

, (12)

where �′
s identifies the path including edges identifying

the same splits as �s. Paths �
(a)
u and �

(
b
)

u are inverse
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versions of path �
(u)
u and �

(v)
u , respectively, and identify

the reverse eSPR-type moves.
The ratio of Equations (12) and (11) defines the

Hastings ratio for the A-PBJ proposal required to
evaluate the acceptance proposal of a move (Eq. (2)). The
different terms involved in Equations (11) and (12) are
detailed in the next sections.

Stable Path.—The construction of a stable path �s involves
first selecting an edge with probability

p(es |�)= �+�(es)∑
ei∈IE

�+�(ei)
. (13)

This equation favors the selection of edges identifying
high-frequency splits. The path �s is then built by step-
wise extension of its extremities. Starting from edge
es the path is extended in both directions, namely
the �es and �es directions, respectively (Fig. 4, step 2).
After including edge es in a partial path (e.g., �

(r)
s ), the

extension mechanism iterates over two steps: first, the
termination condition of the extension, and second (if
not terminated), the extension of the path with a new
edge.

Assuming an initial direction �es and the initial partial
path �

(r)
s =( �es =�er1

)
, the first iteration (i=1) begins

by testing the termination condition that occurs with
probability

p(stop |�eri ,�)= 1
(�+1)

×
(

�+ min
ej∈�(�eri )

�c(ej)

)
. (14)

This probability favors the termination of the extension
mechanism whenever a split identified by a neighboring
internal edge ej ∈�(�eri ) could benefit from being altered.
However, when edge �eri does not lead to at least
one internal neighboring edge (i.e., �(�eri )=∅), then the
extension terminates deterministically.

If the termination condition is not met (which happens
with probability 1−p(stop|�eri ,�)) and the next candidate
edges are not terminal, the path continues its extension
by selecting the next edge to add. Internal edges
identifying a split with high frequency and leading to
a clade containing low-frequency structures represent
good candidates for extension and are selected with
probability

p(�eri+1 |�eri ,�)= �+�(�eri+1 )×(1−mcf(�eri+1 ))∑
�ek∈�(�eri )

�+�(�ek)×(1−mcf(�ek))
, (15)

where mcf(�ek) identifies the minimum split frequency in
the clade identified by �ek . The selected edge �eri+1 is

then added to the path (e.g., �
(r)
s =(�er1 ,�er2

)
) and a new

iteration begins (i= i+1).
This process continues until the termination event

occurs or until the path reaches an endpoint (i.e., �(�eri )=

∅) . The probability of having extended the partial stable
path �

(r)
s = (�er1 ,..,�eri ,..,�erm ) in direction �es is then given as

p
(
�(r) |�,�es

)
=

m−1∏
i=1

[(
1−p

(
stop |�,�eri

))×p
(�eri+1 |�,�eri

)]
×p
(
stop |�,�erm

)
. (16)

The extension mechanism is repeated in the opposite
direction (i.e., �es) resulting in partial stable path �

(l)
s =

( �el1 ,.., �elj ,.., �elk ). Both partial paths �
(r)
s and �

(l)
s are then

concatenated to form the stable path

�s =
(

�elk ,.., �elj ,.., �el1 =es =�er1 ,..,�eri ,..,�erm

)
. (17)

The construction of this path is conditional on the
selection of edge es as starting point and is built with
probability

p
(
�s |es,�

)=p
(
es |�)×p

(
�(r) |�es,�

)
×p
(
�

(l)
s | �es,�

)
. (18)

Given that this exact path may be built starting from
any edge ei ∈�s, the probability of building path �s must
be marginalized over all potential starting edges and is
defined as

p
(
�s |�)= ∑

ei∈�s

p
(
�s |ei,�

)
. (19)

Unstable Paths.—The mechanism used to build unstable
paths consists of extension phases starting from each of
the extremities of the stable path �s, each identified by
edges �elk and �erm , respectively. An unstable path fully
defines an eSPR-type move (Fig. 5). For instance, the
unstable path �

(v)
u = (�ev1 ,..,�evi ,..,�evm ) starting after edge

�elk includes the edge to prune (�ev1 ) that subtends the
moving clade C (i.e., the clade containing the stable
path), the edge that identifies the direction of the move
(�ev2 ), the edges traversed by clade C and the regrafting
point of clade C (�evm ). As in the extension of the stable
path, an unstable path �

(v)
u is built by iterating over two

steps: the extension termination and edge selection steps.
The extension phase is terminated with a probability

proportional to the risk of extending the unstable path
with an edge identifying a split with a high-frequency
in the next step. The termination event occurs with
probability

p(stop |�evi ,�)= 1
�+1

×
⎛
⎜⎝�+

∑
�ek∈�(�evi )

p(�ek |�evi ,�)×�(�ek)

⎞
⎟⎠,

(20)
where p(�ek|�,�evi ) is the probability of extending path �

(v)
u

with edge �ek (Eqs. (21–23)). When edge �evi does not lead
to at least one internal neighboring edge (i.e., �(�evi )=∅),
then the extension terminates deterministically.
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If the termination does not occur, the next edge is
selected according to probabilities defined by the edge’s
role in the eSPR move (i.e., direction, traversed or
regrafting edge). The first edge selected identifies the
direction along which clade C will move and is selected
with probability

p(�evi+1 |�evi ,�)= �+�c(�evi+1 )∑
�ek∈�(�evi )

�+�c(�ek)
, i=1, (21)

that favors the removal of edges identifying low-
frequency splits.

Each edge traversed by clade C is then selected with
probability

p(�evi+1 |�evi ,�)

= �+�c(�evi+1 )×�(sC ∪S(�evi+1 ))∑
�ek∈�(�evi )

�+�c(�ek)×�(sC ∪S(�ek))
,with 1< i<m−1,

(22)

where sC identifies the split containing the taxa of clade
C. This probability accounts for the removal of the
current split S(�evi+1 ) and the addition of the new split
(sC ∪S(�evi+1 )).

The last edge, selected after the termination of the
extension phase, identifies the regrafting edge for clade
C and is selected with probability

p(�evi+1 |�evi ,�)= �+�(sC ∪S(�evi+1 ))∑
�ek∈�(�evi )

�+�(sC ∪S(�ek))
, i=m−1, (23)

that is, in proportion to the frequency of the last split
added.

Building an unstable path �
(v)
u is the outcome of

the selection of the direction, the extension of the
traversed path and the choice of the regrafting edge.
The probability of building an unstable path is therefore
defined as,

p
(
�

(v)
u |�ev1 ,�

)
=p
(�ev2 |�,�ev1

)
×

m−2∏
i=2

[(
1−p

(
stop |�,�evi

))×p
(�evi+1 |�,�evi

)]
×p
(
stop |�,�erm−1

)×p
(�evm |�,�evm−1

)
. (24)

The probability of an A-PBJ move (Eqs (11) and (12))
is defined as the joint probability of building a stable
path (Eq (19)) and the two unstable paths starting at its
extremities (Eq (24)).

Parsimony-Guided stNNI and eSPR
I implemented parsimony-guided stNNI and eSPR

proposals based on the concepts presented in Höhna
and Drummond (2012) to compare adaptive proposals

with other strategies for guiding tree proposals
(Supplementary material available on Dryad, Parsimony
score transformation). Two different strategies were
considered: exhaustive guided stNNI (G-stNNI) and
guided N-edges eSPR (G-NSPR) proposals. The
mechanism of these proposals consists of defining a set of
potential moves and drawing one of them proportionally
to the parsimony score of the resulting trees. Each
proposal differs in the strategy used to build the set of
moves. The G-stNNI proposal enumerates all possible
stNNI moves for the current tree �. The G-NSPR proposal
randomly choose a subtree to prune, then enumerates all
eSPR moves altering at most N-edges. Using N =1 has
a similar effect to a guided stNNI that would randomly
choose the central edge and then use the parsimony score
to guide the subtree interchange.

Theoretical Computational Complexity of Proposals
The performance of an MCMC proposal is defined

by its sampling efficiency and its computational cost
relative to the likelihood evaluation. Understanding how
the computational cost of tree proposals grows with
respect to different data set sizes or model complexity
is therefore important to identify potential limitations.
Since, it is not practically possible to test several tree
proposals on a broad range of data sets and models,
I defined the theoretical computational complexity of
the different proposals used in this study and compared
them to the cost of a partial likelihood (Supplementary
material available on Dryad, computational complexity).
These complexities and the conditions under which
a proposal is strictly less expensive than a partial
likelihood evaluation are summarized in Table 2.
This theoretical analysis indicates that parsimony-
guided tree proposals have performance improvements
limited by their dependencies to the number of sites
m. Conversely, adaptive tree proposals should have
negligible computational cost as long as the number of
taxa n is smaller than m.

The parsimony-guided proposal G-stNNI could
exceed the computational complexity of a partial
likelihood evaluation under the condition that the
number of taxa n exceed the product of the number
of symbols c (e.g., c=4 for nucleotides) and the
number of rate categories k under a discrete-Gamma
rate model (Yang 1994). Such scenarios would happen
even when using moderately complex models as the
GTR+� substitution model with k =4 rates categories.
The G-NSPR proposal seems more competitive as its
efficiency condition is reached when 2s �ck. Even if this
condition is not reached, a G-NSPR can be executed
at a fraction 2s/(ck) of a partial likelihood evaluation,
which represents a reasonable computational overhead
for small values of s.

While the overhead cost of adaptive proposals
is nonnegligible compared to naive proposals, their
computational overhead remains negligible with respect
to partial likelihood evaluations as long as 2n�cmn̂k2,

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
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TABLE 2. Computational complexity of the proposals, likelihood
operations and condition under which a proposal is strictly less
expensive than a likelihood evaluation (i.e., Cost condition).

Operation Complexity Cost condition

Full lik. O(cmnk2) —
Partial lik. O(cmn̂k2) —
Partial pars. O(mn̂k) —
stNNI O(1) 1�cmn̂k2

eSPR O(s) s�cmn̂k2

eTBR O(2s) 2s�cmn̂k2

G-stNNI O(mn̂nk) n�ck
G-NSPR O(2smn̂k) 2s �ck
A-stNNI O(n) n�cmn̂k2

A-2SPR O(s+2sn) s+2sn�cmn̂k2

A-PBJ O(s1 +s2 +s2
3 +n) 2n�cmn̂k2

≈O(2n)

Notes: Alignments have m sites for n sequences defined over an
alphabet of k characters (e.g., k =4 for nucleotide sequences). The
Gamma model for rate heterogeneity has a number c of rate
categories (Yang 1994), while a partial likelihood requires n̂<n
operations instead of n. Finally, s represents the number of splits
altered by a move. For the A-PBJ proposal, s1, s2, and s3 identify
the number of edges in the two unstable paths and stable path,
respectively.

where n̂ is the number of edges included in a partial
likelihood evaluation. This efficiency condition is met
even for the simple models (e.g., nucleotide substitutions
model without rate heterogeneity, c=1,k =4) as long
as n≤m (which is a prerequisite to obtain accurate
inferences of phylogeny).

Assessing the Performance of Tree Proposals
Diagnosing the behavior of an MCMC algorithm

is generally achieved by monitoring its sampling
performance (e.g., effective sample size) on different
parameters. This task is particularly difficult when
monitoring the performance of MCMC algorithms to
estimate the posterior distribution of trees due to the
discrete nature of this parameter. Nonetheless, two
different characteristics are usually monitored. The first
characteristic is the time to convergence of the MCMC
algorithm, that is the number of iterations required
until the Markov chain reaches its equilibrium. The
second characteristic is the mixing efficiency, that is, the
propensity of the MCMC algorithm to mimic the process
of directly drawing samples from the true posterior
distribution.

Few robust and practical procedures exist to measure
these two characteristics for samples of phylogenetic
trees and none are able to separately monitor the
behavior of tree proposals within a mixture. In the next
sections, I first enumerate the existing procedures and
define how I use them. Then, I present a novel metric able
to isolate and assess the performance of tree proposals
contained in a mixture of proposals.

Existing performance metrics.—The standard metric to
assess the convergence of MCMC runs estimating the
posterior distribution of trees is the average standard

deviation of split frequencies (ASDSF). This metric
captures the variance of the posterior distribution of
split frequencies among several independent MCMC
runs. In previous studies, the efficiency of tree proposals
was assessed using a convergence threshold based
on the ASDSF (Lakner et al. 2008; Höhna and
Drummond 2012). After a thorough investigation of this
procedure, Whidden and Matsen (2015) suggested that
the number of replicates plays a key role in the accuracy
of this metric and proposed an alternative metric. This
metric, the mean round trip cover time (MRT), represents
the mean number of iterations required to visit each
high probability tree, starting from and returning to
the highest probability tree. Alas, the MRT could not
be applied on diffuse tree distributions and required
MCMC runs consisting of an enormous number of
samples. Lastly, Lanfear et al. (2016) proposed several
metrics to approximate effective sample sizes (ESS)
for tree topologies by mapping tree topologies into a
continuous parameter and then by applying standard
approaches to estimate the ESS. In practice, this is
achieved by measuring pairwise distances between tree
topologies. While these approximate ESS methods are
very promising to diagnose MCMC runs, they are not
appropriate for a benchmark of tree proposals. Indeed,
using pairwise distances between tree topologies to
convert tree topologies into a continuous parameter
obfuscates the ability of the proposals to visit each split
or tree. This key characteristic of tree proposals is better
assessed by the ASDSF and MRT metrics.

I used multiple long and independent runs with
MrBayes to obtain accurate estimates of the posterior
distribution of split frequencies p(s|X). These reference
split frequencies were used to assess the convergence of
each one of the runs under two scenarios: the overall
convergence of the MCMC run (before burnin removal)
and convergence after removal of the burnin phase. The
first metric informs on the number of iterations required
to reach convergence, while the second indicates the
efficiency of the proposals at estimating the split
frequencies. I defined these convergence criteria as
satisfied when the Euclidean distance between the
reference p(s|X) and the estimated p̂(s|X) marginal
distribution of split frequencies for all splits si with
p(si|X)>0.1 was lower than a fixed threshold. I defined
these thresholds to represent an average error of 2%
and 1% per split for the before and after-burnin removal
convergence metrics, respectively.

Assessing the Contribution of Moves in a Mixture of
Proposals.—The aforementioned convergence metrics
(e.g., ASDSF) capture the behavior of MCMC runs
without providing information on the performance of
the different tree proposals composing a mixture of
proposals. Except for the acceptance rate of each tree
proposal, no metrics are readily available to measure the
relative contribution of each proposal. The acceptance
rate is informative of the proposal behavior, but fails to
capture the number of trees that the proposal can access
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FIGURE 6. Example of the cycle-visit metrics for a single analysis. Panel a) displays the reference split frequencies. b) The C-V frequencies for
an idealized proposal. c)–e) The observed C-V frequencies for the stNNI, eSPR, and A-stNNI proposals, respectively. These frequencies differs
in amplitude across proposals (e.g., split 34) and from the ideal behavior shown in b). f) and g) The summarized statistics for each proposal, that
is the resulting C-V efficiency and C-V distance metrics.

or alter: a proposal could have a high acceptance rate but
only visit a small fraction of the 95% credible set. For the
same reason, running MCMC analyses using a single tree
proposal to measure its convergence performance (e.g.,
MRT) could prove impossible for some proposals due
to their inability to reach some parts of the tree space.
Failure to reach convergence is unrepresentative of the
mixing efficiency of tree proposals and could lead us to
discard proposals that efficiently sample the posterior
distribution of trees once convergence is reached.

I therefore considered an alternative approach to
characterize the performance of each tree proposal in a
mixture of proposals. This strategy starts by defining an
idealized tree proposal. This reference proposal is simply
the joint posterior distribution of parameters θ,v and
trees �. The expected behavior of this idealized proposal
is compared to the measured behavior of practical tree
proposals with regard to their ability to visit splits.
Focusing on the split-wise behavior of proposals rather
than the generated sequences of trees has a significant
advantage: the behavior of a proposal with respect to a
given split can be summarized by the average number of
moves it takes for the proposal to visit, and then revisit
this split.

During an MCMC run, the number of moves, or
number of iterations, taken by a proposal to visit and
then revisit a split identifies a cycle-visit. A cycle-visit
starts with the appearance of the split in the tree being
sampled. It then includes the number of subsequent
iterations when the split is still sampled, plus the number
of iterations when the split is not sampled, until its
first reappearance. When trees are drawn directly from
the posterior distribution, the frequency of a cycle-visit
depends entirely on the marginal posterior probability
of a split and can be derived by considering the sum of

two geometric random variables (Sen and Balakrishnan
1999). These variables are the number of iterations before
the disappearance of the split in the trees sampled
and the number of iterations before its reappearance,
respectively. The probability of a period of length ki for a
full visit-cycle given the split posterior probability p(si|X)
is given as,

p
(
ki |q=p

(
si |X

))= q(1−q)ki −(1−q)qki

1−2q
. (25)

and is undefined for p
(
si |X

)=0.5.
Assuming that accurate estimates of the split

frequencies are available (e.g., reference runs), the
characteristics of the ideal tree proposal can then be
summarized on a split-wise basis by considering the
expected period E(ki) of splits si. These expected periods
can be estimated numerically using Equation (25).
Figure 6a,b shows examples of splits posterior
probabilities p(si|X) and expected cycle-visit frequencies
(i.e., 1/E(ki)) for the reference ideal proposal. In practice,
that is during an MCMC run, the expected cycle-visit
(C-V) frequencies for each proposal can be estimated
under the condition that the full proposal history is
tracked by logging the iteration at which they are
applied and the resulting effect on the splits existing
in the sampled tree. Figure 6c–e shows examples of
these estimates (i.e., 1/Ê(ki)) for three proposals used
in a single MCMC run (i.e., stNNI, eSPR and A-stNNI
proposals).

In this study, I use the expected C-V frequencies to
define two metrics characterizing the performance of a
tree proposal. The first metric consists in summing the C-
V frequencies estimated for a given proposal for all splits
having an estimated posterior probability p(si|X)>0.1.
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This metric, the C-V efficiency, captures how many new
splits are visited on average per proposed moves. This
value integrates implicitly the acceptance rate of the
proposal and the number of splits altered by the moves,
but does not indicate if the splits coverage of the proposal
is adequate. Indeed, a proposal could be characterized by
a good C-V efficiency while being unable to visit several
splits. Figure 6f provides an example of the C-V efficiency
of the ideal proposal as well as the ones used during
the MCMC run. In this example, the C-V efficiency
indicates that the A-stNNI proposal outperformed the
naive proposals while performing significantly worse
than the ideal proposal. For proposals modifying a
unique split per move, the C-V efficiency is directly
linked to the acceptance rate of the proposals (e.g., 0.12
and 0.61 for the stNNI and A-stNNI, respectively).

The second metric, the C-V distance, is
complementary to the first one and represents the
splits coverage of the proposals by comparing the
expected C-V frequencies per split of the idealized
proposal to the ones estimated for the proposal of
interest. In other words, this metric, the C-V distance,
represents the departure from the relative expected C-V
frequencies of the ideal proposal and is therefore defined
as the Euclidean distance between the normalized C-V
frequencies of the ideal proposal and the one of interest,

d=

√√√√√∑
ki∈S

⎡
⎣( E[ki]−1∑

kj∈S E[kj]−1

)
−
⎛
⎝ Ê[ki]−1∑

kj∈S Ê[kj]−1

⎞
⎠
⎤
⎦2

,

(26)
where S identifies all cycle-periods ki of splits si having
a posterior frequency p(si|X)>0.1. The C-V frequencies
are rescaled to remove the effect of the C-V efficiency,
or amplitude of the C-V frequencies. An example of C-V
distances is shown in Figure 6g. In this example, the eSPR
proposal has a larger C-V distance than the two others
because it struggles to visit splits 34 and 38 (Fig. 6c–e).
In conclusion, the C-V efficiency and distance shown in
Figure 6f,g highlight that the A-stNNI proposal is at least
three times more efficient according to the C-V efficiency
and covers splits as well as the stNNI proposal.

To simplify the interpretation of the C-V distance in
upcoming benchmarks, I will consider the inverse of
this metric (i.e., d−1): the C-V coverage. This transformed
metric conveniently increases as the proposal behavior
approaches the one of the ideal proposal.

RESULTS

This study is decomposed in two separate
experiments. First, I assessed the performance of each
proposal separately and validated the new efficiency
metrics on data sets (i.e., SIM1 to SIM4) simulated
with the INDElible software (Fletcher and Yang 2009).
Trees were simulated under a birth–death model and
alignments were simulated under the GTR model

(Supplementary material available on Dryad, data set
simulation settings). Then, I assessed the performance
of a proposal mixture containing adaptive proposals
by comparing it to the traditional mixture of naive
proposals. This comparison was conducted using 11
empirical data sets (i.e., DS1 to DS11) commonly used to
evaluate tree proposals (Table S2 of the Supplementary
material available on Dryad; Lakner et al. 2008; Höhna
and Drummond 2012; Whidden and Matsen 2015).

Set-up of the Analyses
I analyzed each data set with MrBayes (Ronquist

et al. 2012) to obtain accurate estimates of the
tree and split posterior distributions. Simulated and
empirical data sets were analyzed under the GTR model
and GTR+� model with four categories, respectively
(Supplementary material available on Dryad, Priors
settings). Analyses of at least 50 million iterations with
four Metropolis-coupled chains were replicated three
times and used to define the reference split frequencies.
Each analysis reached an ASDSF value smaller than
0.005, suggesting that runs converged properly.

The adaptive and parsimony-guided proposals are
implemented in the CoevRJ software (Meyer et al. 2019),
which is designed to simultaneously infer phylogenies
and molecular coevolution. This software also includes
more traditional models such as the GTR+� model. I
therefore used the GTR+� model to assess proposal
performance and conducted analyses of 10 million
iterations with 10 independent chains for each proposal
mixture and data set with the same models and prior
settings used to build the reference split frequencies. I
then conducted additional runs with three Metropolis-
coupled chains for the empirical data sets (using the
same settings, iterations, and number of replicates as
their MCMC equivalent).

Mixtures of Proposals
Five different proposal mixtures were considered

for these experiments (Table S1 of the Supplementary
material available on Dryad). The reference mixture is
the naive mixture composed of the stNNI, eSPR and
eTBR proposals applied each at equal frequency (as in
MrBayes), with a probability p=0.6 of extending a path
for eSPR and eTBR. This probability was chosen based
on empirical observations and according to Lakner et al.
(2008). All subsequent mixtures applied stNNI and eSPR
proposals at low frequency as a baseline.

The adaptive and guided mixtures were composed of all
adaptive (i.e., A-stNNI, A-2SPR, and A-PBJ) and guided
(i.e., G-stNNI, G-1SPR, G-2SPR) proposals, respectively,
each applied at equal frequencies. The mixed mixture
applied all the adaptive and guided proposals with equal
frequencies, with the exception of the G-stNNI that was
removed due to its expensive computational cost. Finally,
the best mixture was a version of the mixed mixture where

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
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FIGURE 7. Relative performance improvements of proposals on four simulated data sets using the stNNI proposal as reference. a) and b) The
relative C-V efficiency for each proposal without and with penalization for their computational costs, respectively. c) and d) The relative increase
in C-V coverage and acceptance rate, respectively. e) The relative computational time for the whole MCMC iteration (proposal and likelihood
computational time). Absolute values are available in Figures S11–S15 of the Supplementary material available on Dryad.

the proposal weights were tuned for performance based
on empirical observations.

Representation of the Performance Metrics
Each of the experiments presented in the following

sections describes the performance of several proposals
or proposal mixtures across many data sets. To
homogenize the performance metrics measured across
data sets, relative metrics are reported using a
representative proposal or mixture involved in the
experiment as reference. For instance, when individual
proposals or mixtures of proposals are compared, the
stNNI proposal or naive mixture are respectively chosen
as reference. Reporting the C-V efficiency for the A-
stNNI proposal is then achieved by presenting the
ratio of the C-V efficiency measured for the A-stNNI
proposal and the C-V efficiency of the reference proposal
(e.g., stNNI). This metric representation highlights the

magnitude of the performance improvements regardless
of the data set.

Similarly, different proposals or mixtures may have
significantly different computational costs. Therefore,
the relative C-V efficiency and convergence metrics
reported in the experiments are weighted by the
relative computational time unless specified otherwise.
In other words, the performance gains reported for
a metric (e.g., increase in C-V efficiency) include
differences in computational costs (e.g., slower proposal)
to identify the effective performance gains. However,
this transformation is not applied to the relative C-
V coverage metric given that the time-component is
already accounted for in the relative C-V efficiency. The
relative C-V coverage remains then a straight comparison
of the split-coverage of two proposals or mixtures.

Lastly, while these transformed metrics allow us to
quickly compare the effective performance increases or
decreases in a given experiment, they also obfuscate the
raw measurements. Therefore, raw metrics (i.e., absolute

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
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value) are reported in the Supplementary material
available on Dryad (Figs. S11 to S17 of the Supplementary
material available on Dryad).

Performance of Proposal Mixtures on Simulated Data Sets
Proposal Performance.—On the four simulated data
sets, the adaptive proposals achieved the best mixing
efficiency according to the C-V efficiency with consistent
2- to 8-fold performance improvements over the stNNI
proposal (Fig. 7a). These increases in mixing efficiency
for the A-stNNI proposal were not affected by its
inherent increase in computational cost (Fig. 7b). Despite
slight decreases in C-V efficiency gains after being
rescaled from the relative computational time, the
more complex adaptive proposals (i.e., A-2SPR and A-
PBJ) consistently demonstrated significant performance
gains in comparison to all the naive and parsimony-
guided proposals. These increases in C-V efficiency
were mirrored by increased acceptance rates (Fig. 7d).
As shown by the relative C-V coverage (Fig. 7c), most
proposals modifying several edges (e.g., eTBR, A-2SPR,
or G-2SPR) were less prone to visit all splits according to
the theoretical expectation than the one-edge proposals
(e.g., stNNI, A-stNNI, or G-stNNI). In general, the
relative C-V efficiency and coverage highlight that the
proposals were either strictly better than the stNNI
(i.e., A-stNNI), more efficient regarding specific splits
(i.e., A-2SPR and A-PBJ) or worse (i.e., the remaining
proposals, except on data set 3). Lastly, the measured
computational cost for each proposal reflected the
theoretical complexity, and particularly affected the
G-stNNI proposal with a nearly 10-fold increase in
computational cost (Fig. 7d).

The performance of the naive proposals worsened
proportionally to the number of splits modified by a
move, as shown by the decreases in all metrics (Fig. 7).
Regardless of the proposal’s performance, using moves
that alter multiple splits remains a mandatory feature
for the estimation of tree distributions to ensure the
proper exploration of the tree space. For instance, eSPR-
type moves were able to visit tree topologies containing
splits hardly reachable by stNNI-type proposals on
data set SIM3; this advantageous feature was captured
by the C-V coverage (Fig. 7c for data set SIM3). The
parsimony-guided proposals, as implemented in this
study, performed poorly in term of mixing efficiency.
The G-stNNI proposal was the only parsimony-guided
proposal to improve the C-V efficiency by up to 2.5-
fold factor, but at the cost of a 10-fold increase in
computational cost. In practice, the G-stNNI remained
therefore less efficient than the naive and adaptive
stNNI (Fig. 7b).

The A-stNNI proposal appeared to be the best
overall proposal by achieving consistent increases in
C-V efficiency and C-V coverage without leading to
significant increases in computational cost. The adaptive
N-edges proposals, the A-2SPR and A-PBJ presented
different but complementary behaviors. The A-2SPR was

very efficient at visiting a subset of the splits, while the A-
PBJ acted as a slightly less efficient N-edges version of the
A-stNNI. These two adaptive proposals outperformed
all their N-edges counterparts and therefore
represent the best alternatives to the eSPR and eTBR
proposals.

Mixture Performance and Metric Behaviors.—The mixed
and best proposal mixtures converged toward the
reference split frequencies as fast, if not faster, than
the naive mixture (Fig. 8a). These mixtures, containing
all types of proposals, were more consistent with
respect to MCMC convergence than the mixtures
composed of a single proposal type (e.g., adaptive). After
removing the burnin, mixtures containing adaptive
proposals accurately estimated the split frequencies 3–
12 times faster than the naive and guided mixtures
(Fig. 8b). According to the C-V efficiency and the MRT
metrics, the adaptive and best mixtures were up to 12 times
more efficient at sampling the posterior distribution of
trees (Fig. 8c,e). Their performance was closely followed
by the mixed mixture but remained unequaled by the
guided mixture. The C-V coverage metric indicated that
the guided mixture behaved similarly to the reference and
that the best mixture was the only one to consistently
perform as well or better than the naive mixture (Fig. 8d).
In summary, the adaptive, mixed and best mixtures more
frequently visited splits than the other mixtures but only
the best mixture was able to consistently improve the split
coverage (i.e., C-V coverage).

Most of the mixtures of proposals took slightly more
computational time to reach 10 million iterations than the
reference mixture. The best mixture was the only one to
have a similar computational cost (Fig. 8f). The decreases
in runtime observed on data set SIM2 and SIM3 were
due to a significant increase in the acceptance rate of
the adaptive proposals. The rejection of a proposal by
the MCMC process induces computational procedures
that restore the previous MCMC state. These procedures
involve costly operations (i.e., memory backups or re-
evaluations of likelihoods) that are avoided whenever
a move is accepted. Lastly, the only mixture that
significantly underperformed in terms of runtime was
the guided mixture due to the computational expense of
the G-stNNI proposal.

In addition to assessing the performance of the
different proposal mixtures on simulated data sets, this
experiment indicated that the C-V and MRT metric were
significantly more stable than the convergence metrics.
Convergence metrics are more likely to be impacted by
the starting tree topology and stochastic behavior of the
MCMC algorithm. More importantly, this experiment
highlighted that the C-V efficiency and the MRT
metrics were consistently measuring improvements
within the same order of magnitude for all data sets and
proposals.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab004#supplementary-data
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FIGURE 8. Relative performance gains of proposal mixtures on four simulated data sets (i.e., SIM1 to SIM4) using the naive mixture as
reference. a) and b) The acceleration in convergence time before and after removal of the burnin phase, respectively. Convergence thresholds
were fixed to a 2% and 1% average error per split. c–f) Increases in C-V efficiency, C-V coverage, MRT, and overall runtime, respectively. a), b), c)
and e) are weighted by the relative runtime of f). Absolute values are available in Figure S16 of the Supplementary material available on Dryad.

Proposal Mixture Performance on Empirical Data Sets
The best proposal mixture consistently outperformed

the naive mixture, regardless of whether MC3 was
used (Fig. 9c,d). On challenging data sets, the use of
the best mixture without MC3 increased the amount
of successful MCMC runs but did not guarantee
convergence within the imposed 10 million iterations
(Fig. 9a). The best mixture with MC3 was the only
setting under which convergence was consistently
achieved. Overall, the best mixture without MC3 led
to runs converging as fast as the naive mixture with
MC3 and surpassed its performance when MC3 was
not used (Fig. 9b). These improvements came at no
significant additional computational cost: the variation
in computational costs reached at most 11% of the
reference cost, depending on the data sets and mixtures
(Figs. S17f and S18 of the Supplementary material
available on Dryad).

Using the best mixture led on average to a 6-fold
increase in C-V efficiency (with and without MC3) when
compared to the reference mixture (naive plus MC3). The
magnitude of the observed improvements were different
depending on the data sets analyzed: the performance of
the best mixture was directly correlated with the amount
of information exploitable by the adaptive proposals in
the distribution of split frequencies (Text and Fig. S10 of
the Supplementary material available on Dryad).

Analyses on data sets with diffuse posterior tree
distributions (i.e., DS5, DS9, and DS11) had only limited
improvements in C-V efficiency that ranged from
2- to 2.7-fold. Removing duplicated sequences from
alignments DS9 and DS11 significantly increased their
relative performance (from 2.2- to 3.2- and 2- to 5.9-fold
increases, respectively; Fig. S10 of the Supplementary
material available on Dryad). For data sets with strong
phylogenetic signal (e.g., DS3), the relative performance
reached up to an 18-fold efficiency increase. These
observations could not be confirmed with the MRT
metric due to the difficulty of applying it to diffuse tree
topology distributions (Whidden and Matsen 2015).
However, the observed trends of improvements and
their magnitude concurred with the improvements
in convergence speed after burnin removal
(Fig. 9c).

Using the MC3 algorithm had a positive effect on the
convergence of Markov chains regardless of the proposal
mixture: all the runs converged with the best mixture
and only a few failed with the naive mixture. These
convergence failures happened on the three data sets
(i.e., DS1, DS2, DS4) with the highest C-V distances
(Fig. S17 of the Supplementary material available on
Dryad), indicating that many of their splits were difficult
to visit. Nonetheless, when MC3 was used, convergence
was reached on average 4.2 and 2 times faster before and
after burnin removal, respectively. These improvements
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FIGURE 9. Relative performance gains on empirical data sets using the naive mixture with MC3 as reference. a) The percentage of runs having
succeeded to converge within 10 million iterations. b) and c) The acceleration in convergence time before and after removal of the burnin phase,
respectively. Convergence thresholds were fixed to a 2% and 1% average error per split. Panels d) and e) report increases in C-V efficiency and
coverage. b), c) and d) are weighted by the relative runtime shown in Figure S18 of the Supplementary material available on Dryad. Absolute
values are available in Figure S17 of the Supplementary material available on Dryad.

regarding the convergence were not mirrored by the
C-V efficiency metric, indicating that the sampling
efficiency of the cold chain remained mostly unaffected
by MC3. The convergence improvements and small
but systematic improvements in C-V coverage resulting
from the use of MC3 were, however, consistent with
the effect of accepting bolder moves that could enable
the exploration of different peaks of the posterior
distribution (Fig. 9e).

In several instances, the best mixture slightly increased
the C-V coverage. The few instances in which the C-V
coverage decreased despite increased C-V efficiency and
faster convergences falls into two categories. First, this
phenomenon occurred on data sets having splits that
were difficult to access (i.e., DS1, DS2, DS4). Second,
it occurred in instances (i.e., DS2 and DS8) where the
A-2SPR proposal was only able to reach a subset of
splits due to the rigid nature of its moves (i.e., 2-edges),
but with high efficiency (i.e., with approximately 30%
acceptance rate). In both cases, the best mixture and

more precisely the adaptive tree proposals were only
able to improve the visit frequency of a subset of splits.
The resulting discrepancy in visit frequencies across all
splits led therefore to an increase in C-V distance. These
observations suggest that the dominant effect of the
adaptive proposals was to increase the overall frequency
at which appropriate moves were proposed, rather than
to specifically allow to visit splits unreachable by naive
proposals (e.g., multiple peaks).

In summary, using the best mixture consistently
improved the sampling of the posterior distribution. In
practice, it improved the odds of reaching convergence
on challenging data sets with and without MC3 (e.g.,
DS1 or DS4, Fig. 9a) and had a significant impact
on the computational time required to obtain accurate
estimates of split frequencies (Tables S3, S4 and Fig. S19
of the Supplementary material available on Dryad).
The computational time required to obtain accurate
split frequencies (i.e., convergence at 1% error per split
after burnin removal, Fig. 9c) reduced from 3 h on
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average with the naive mixture to 25 minutes with the
best mixture with MC3 on DS11. Similar reductions in
computational time were measured under the same
settings, for instance, on DS2 (3 h 20 min to 45 min) or DS4
(5 h 30 min to 40 min). Even for less challenging analyses
where MC3 was not required to reach convergence,
using the best mixture instead of the naive yielded
analogous improvements on the computational time
with for instance a reduction from 20 min to 4 min on
DS7 or from 1 h to 10 min on DS10.

DISCUSSION

In this study, I have presented the concept of adaptive
proposals for unrooted tree topologies and developed
a family of adaptive tree proposals. These adaptive tree
proposals generate moves that more efficiently sample
the posterior distribution of trees by exploiting an
estimate of the marginal split frequencies. This concept
was applied to two standard proposals (i.e., stNNI and
eSPR) generating specific type of moves. Additionally,
I presented a novel approach for the design of tree
proposals enabled by the concept of adaptive proposals.
This approach was used to design a proposal favoring
the most appropriate type of moves out of several
(e.g., NNI, SPR, or TBR) by identifying strongly and
weakly supported region of the phylogeny using path-
building mechanisms. I showed that, while being more
computationally expensive than standard proposals,
the theoretic computational complexity of adaptive
proposals was significantly lower than the complexity of
parsimony-guided proposals and likelihood evaluations
regardless of the tree size, alignment length and the
substitution models used.

The performance of these adaptive tree proposals
was assessed on simulated and empirical data sets
using the CoevRJ software. Using performance metrics
designed for these experiments, I showed that adaptive
proposals consistently outperformed their counterparts
on simulated data sets. Using an empirically tuned
proposal mixture to analyze 11 empirical data sets
resulted in 2- to 18-fold improvements in mixing
efficiency and up to 6 times faster convergence of MCMC
and MC3 runs when compared to a standard proposal
mixture composed of stNNI, eSPR, and eTBR proposals.
In practice, these performance improvements were
correlated with the amount of phylogenetic signal in the
alignments, and resulted in significant reductions of the
computational time required to accurately estimate the
split frequencies (e.g., from 3 h with naive proposals to
25 min with adaptive proposals).

Adaptive proposals proved to be superior to naive and
parsimony-guided proposals according to all metrics
of performance. The first key advantage of adaptive
proposals is their ability to locate regions of a tree
topology subject to uncertainties that could benefit from
being modified. Nonadaptive proposals always start by
arbitrarily choosing a region of the tree topology to

modify. After this first arbitrary choice, naive proposals
continue to apply randomized topological modification,
while guided proposals use a score (e.g., parsimony or
posterior probability; Höhna and Drummond 2012) to
select the most promising resulting tree from a finite
set of trees. Even if the guiding mechanism leads to
good alterations, these proposals remain limited by
the arbitrary initial choice. I investigated an alternative
approach for parsimony-guided proposals that involved
an exhaustive exploration of all possible stNNI moves for
a given tree. This proposal’s mixing efficiency was better
than naive proposals but worse than adaptive proposals.
Furthermore, its computational complexity exceeded the
cost of a likelihood evaluation by an order of magnitude,
and made the proposal generally impractical.

The second key advantage of adaptive proposals
is their ability to exploit the shape of the posterior
distribution of trees by cheaply approximating the
split frequencies during an MCMC run. Contrary to
guided proposals using proxy scores to approximate the
posterior distribution (e.g., parsimony), the performance
of adaptive proposals does not depend on the accuracy
or the computational efficiency of the proxy score.
However, this second key advantage is also a potential
pitfall because the adaptive proposals strongly rely
on adequate estimates of the split frequencies. Very
inaccurate estimates could lead adaptive proposals to
have worse performance than their naive counterparts.
This outcome was not observed on the 11 empirical
data sets analyzed in this study, despite the ruggedness
of their posterior distribution of trees (Whidden and
Matsen 2015).

The concept of adaptive proposals is not limited to
the three adaptive proposals developed in this study,
but opens new avenues toward the development of
other tree proposals. For instance, the design approach
used for the A-PBJ proposal that involves proposals
adaptively defining the move type (e.g., subtree swap
or pruning-and-regrafting) using the marginal split
frequencies, could lead to other novel proposals by
considering other path-building or structure-building
strategies. Another avenue for improvements would be
to estimate the joint distribution of split frequencies
and exploit this information to consider bolder and
more complex topological alterations. While the use of
adaptive proposals could clearly benefit other types of
phylogenetic inferences, these additional developments
would be particularly beneficial to models having
stronger constraints, such as clock-constrained trees or
the inference of gene-trees within species trees (Rannala
and Yang 2017).

In conclusion, the three adaptive tree topology
proposals defined in this study represent a practical
improvement to the existing tree proposals, regardless
of the substitution model considered. The concepts
developed offer a fresh perspective on the design of
tree proposals that should be advantageous to more
challenging types of phylogenetic inferences and could
therefore bring a new outlook to a challenging limitation
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existing since the early days of Bayesian inference of
phylogenies.
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