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We aimed to study the role of protein L-isoaspartyl methyl-
transferase (PIMT) in neuronal differentiation using basic 
fibroblast growth factor (bFGF)-induced neuronal differentiation, 
characterized by cell-body shrinkage, long neurite outgrowth, 
and expression of neuronal differentiation markers light and 
medium neurofilaments (NF). The bFGF-mediated neuronal 
differentiation of PC12 cells was induced through activation of 
mitogen-activated protein kinase (MAPK) signaling molecules 
[MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated 
kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 
3-kinase (PI3K)/Akt signaling molecules PI3Kp110, PI3Kp110, 
Akt, and mTOR. Inhibitors (adenosine dialdehyde and 
S-adenosylhomocysteine) of protein methylation suppressed 
bFGF-mediated neuronal differentiation of PC12 cells. PIMT- 
eficiency caused by PIMT-specific siRNA inhibited neuronal 
differentiation of PC12 cells by suppressing phosphorylation of 
MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt 
and mTOR in the PI3K/Akt signaling pathway. Therefore, these 
results suggested that PIMT was critical for bFGF-mediated 
neuronal differentiation of PC12 cells and regulated the MAPK 
and Akt signaling pathways. [BMB Reports 2016; 49(8): 
437-442]

INTRODUCTION

Neuronal differentiation is a complex process in which nerve 
cells acquire specific biochemical, physiological, and 

morphological properties during development. Differentiation 
involves many molecules including growth factors, intracellular 
signaling molecules, and transcription factors (1). Basic 
fibroblast growth factor (bFGF) is a potent neurogenic factor 
that regulates neuronal differentiation and development 
through activation of extracellular signal-regulated kinase (ERK) 
and early transcription factors, activator protein (AP)-1, and 
nuclear factor (NF)-B (2, 3). However, the detailed molecular 
mechanisms of bFGF-mediated neuronal differentiation and 
development, which vary among cell types, are still unclear. 

bFGF is a member of the fibroblast growth factor family, 
which functions in a variety of biological processes including 
cell growth, differentiation, and survival. bFGF was first used 
for research on the neuronal differentiation of bone marrow 
stromal cells (4). A number of in vitro and in vivo studies 
revealed bFGF functions in neuronal differentiation (5-8). 
bFGF reportedly induces neuronal differentiation of cells of 
neuronal origin and non-neuronal origin such as bone marrow 
stromal cells (4), adrenal chromaffin cells (7), retina epithelial 
cells (9), and retinal pigment cells (10). These results suggest 
that bFGF has a potent neuronal-inductive function. bFGF 
reportedly activates several downstream signaling pathways 
through binding with FGF receptors (FGFRs) (11, 12). Activated 
pathways include the signaling cascades of phospholipase C-, 
Src, Crk, SNT1/FRS2 (13), MAPK/ERK (8, 10, 14), mTOR (15), 
and RhoA (16). Although bFGF reportedly modulates these 
signaling pathways, the pathways critical for bFGF-mediated 
neuronal differentiation are unknown. In addition, whether 
bFGF activates unknown signaling pathways in bFGF-mediated 
neuronal differentiation still needs to be elucidated.

Protein L-isoaspartyl methyltransferase (PIMT), a member of 
the protein methyltransferase family, is a protein-repair enzyme 
that methylates isoaspartyl residues generated by asparagine 
deamidation. From aged proteins, it was found that PIMT plays 
a critical role in recovering function of aged protein (17-19). 
Because of the relevance of PIMT function for asparagine 
deamidation of proteins, most previous studies on PIMT have 
investigated its functions in aged protein repair (17, 20). A 
number of studies, however, report that asparagine 
deamidation is involved a variety of biological functions in 
addition to protein repair, including interaction with the 
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Fig. 1. bFGF induces neuronal differentiation of PC12 cells. (A) 
Neuronal differentiation of PC12 cells was induced by treatment 
with 50 ng/ml bFGF. (B, C) The mRNA and protein levels of 
NF-M and NF-L from PC12 cells treated with 50 ng/ml bFGF for 
indicated times were analyzed by RT-PCR and Western blot.

extracellular matrix (21, 22), apoptosis (23-26), synaptic 
transmission (27), and lifespan extension (28, 29). Recent 
studies report that protein arginine methyltransferase (PRMT), 
another member of the protein methyltransferase family, is 
involved in regulating neuronal differentiation and development 
(30-32). These findings strongly indicate that protein 
methyltransferase is critical for the regulation of neuronal 
differentiation and development, and PIMT, which is in the 
same protein methyltransferase family, is also involved in 
neuronal differentiation and development.

This study investigated how bFGF induces neuronal 
differentiation in PC12 cells and the cellular molecules critical 
for this process. We showed that both MAPK and PI3K/Akt 
signaling pathways are specifically activated in bFGF-mediated 
neuronal differentiation of PC12 cells. We demonstrated that 
PIMT, a member of the protein methyltransferase family, is 
crucial for bFGF-mediated neuronal differentiation of PC12 
cells and regulates the activity of signaling molecules in the 
MAPK and PI3K/Akt pathways. 
RESULTS AND DISCUSSION

We confirmed neuronal differentiation by bFGF using PC12 
cells. PC12 cells were treated with bFGF and morphological 
changes were monitored every 2 days for 6 days. In 
accordance with previous studies, bFGF induced neuronal 
differentiation of PC12 cells. Morphological changes of 
bFGF-treated PC12 cells included shrinkage of cell bodies and 
formation of long neurite outgrowths connecting to neighboring 
cells (Fig. 1A). These morphology changes started on day 2 
with full changes after day 4 and up to day 6 after bFGF 
treatment (Fig. 1A). NFs in neuronal cells are differentiation 

markers and a major component of the neuronal cytoskeleton. 
NFs are believed to provide structural support for axons and 
modulate axon diameters (33). To examine whether NF 
expression was induced in cells differentiated by bFGF, 
expression of NF-M and NF-L in bFGF-treated PC12 cells was 
determined. NF-M and NF-L mRNA gradually increased from 
day 2 to day 8 in bFGF-treated PC12 cells (Fig. 1B). NF-M and 
NF-L protein were also induced in PC12 cells with bFGF 
treatment; however, protein expression patterns were different 
from mRNA patterns. NF-M protein gradually increased up to 
day 4 with bFGF treatment and decreased afterward (Fig. 1C). 
NF-L protein was immediately induced, peaked at day 2 after 
bFGF treatment and gradually decreased afterward (Fig. 1C). 
The reason for the different mRNA and protein expression 
patterns was unclear, but might be explained by protein 
stability. These results indicated that bFGF induced neuronal 
differentiation of PC12 cells.

To investigate the molecular mechanisms by which bFGF 
induced neuronal differentiation, the activities of intracellular 
signaling molecules were examined in bFGF-treated PC12 
cells. bFGF binding to FGFR modulates cellular functions 
including cell proliferation, survival, and motility through 
activation of intracellular signaling pathways such as MAPK 
and PI3K (34). Therefore, MAPK and PI3K/Akt signaling 
pathways were examined in bFGF-treated PC12 cells during 
neuronal differentiation. The MAPK pathway intracellular 
signaling molecules, MEK1/2, ERK1/2, and p90RSK, were 
activated in PC12 cells treated with bFGF (Fig. 2A). PI3K/Akt 
pathway signaling molecules were also triggered by bFGF. 
PI3Kp110 and PI3Kp110 were gradually activated with bFGF 
treatment while Akt was rapidly activated before decreasing 
(Fig. 2B). Although both PI3Ks and Akt were activated by bFGF 
in PC12 cells, the molecules had different activation patterns, 
suggesting that PI3Ks and Akt are activated by bFGF in distinct 
ways. To determine if MAPK and PI3K/Akt signaling pathways 
are critical for bFGF-mediated neuronal differentiation of PC12 
cells, the modulation of cell-body shrinkage and neurite 
outgrowths was examined in the presence of the MAPK 
inhibitor U0126 or the PI3K/Akt inhibitor LY294002. PC12 
cells exhibited morphological changes with bFGF alone and 
these changes were suppressed in bFGF-treated PC12 cells in 
the presence of U0126 or LY294002 (Fig. 2C). NF-M 
expression induced by bFGF was also decreased by U0126 or 
LY294002 (Fig. 2D). The activity of mTOR, a downstream 
molecule regulated by PI3K/Akt signaling pathways (35), was 
also examined in bFGF-treated PC12 cells. Phosphorylation of 
mTOR was induced by bFGF in PC12 cells (Fig. 2E). 
Morphological changes induced by bFGF were significantly 
suppressed when mTOR was inhibited by the specific inhibitor 
rapamycin (Fig. 2F upper). NF-M protein upregulation by bFGF 
was also dose-dependently reduced by rapamycin (Fig. 2E 
lower). Cross-specificity tests of the inhibitors confirmed that 
each was specific for its target and did not affect other signaling 
pathways (data not shown). These results suggested that 
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Fig. 2. bFGF-mediated neuronal differentiation of PC12 cells 
activates MAPK and PI3K/Akt signaling pathways. (A, B, D, E, G) 
Levels of phosphorylated and total MEK1/2, ERK1/2, p90RSK, 
PI3Kp110, PI3Kp110, Akt, NF-M, and mTOR from whole 
lysates of PC12 cell treated with 50 ng/ml bFGF in the absence 
or presence of U0126 (D left), LY294002 (D right) or rapamycin 
(G) for 3 days were analyzed by Western blotting. (C, F) 
Neuronal differentiation of PC12 cells was induced by treatment 
with 50 ng/ml bFGF in the absence or presence of U0126 (10 
M), LY294002 (50 M) or rapamycin (100 nM) for 6 days.

bFGF-mediated neuronal differentiation of PC12 cells was 
specifically regulated by the signaling pathways. These results 
indicated that bFGF induced neuronal differentiation of PC12 
cells through activation of both the MAPK and PI3KAkt 
signaling pathways.

Protein methylation is a post-translational modification 
known to regulate signal transduction pathways similar to 
phosphorylation. Cimato et al., reported that nerve growth 
factor modulates methylation of several proteins and protein 
methylation is involved in neuronal differentiation (36). 
Therefore, we explored protein methylation in bFGF-mediated 
neuronal differentiation. For this, PC12 cells were treated with 
bFGF in the absence or presence of protein-methylation 
inhibitors adenosine dialdehyde (AdOx) and S-adenosyl 
L-homocysteine (SAH), and neuronal differentiation pattern of 
PC12 cells was examined. Morphological changes of cell-body 
shrinkage and extended neurite outgrowth induced by bFGF 
were suppressed by the inhibitors (Fig. 3A). Expression of 
neuronal differentiation markers NF-L and neuron-specific class 
III beta-tubulin (Tuj-1) was examined in PC12 cells treated with 
inhibitors. Expression of NF-L and Tuj-1 was induced by bFGF 
and dose-dependently decreased with protein methylation 
inhibitors (Fig. 3B). Previous studies reported that protein 
methyltransferases, such as histone methyltransferase and 
PRMTs are involved in neuronal differentiation and development 
through regulation of protein methylation (37, 38). Based on 
these observations, the protein methyltransferase PIMT was 
examined. PIMT-deficient PC12 cells were generated by 
transfecting PC12 cells with three different PIMT-specific 
siRNAs; expression was measured by Western blot. All 

PIMT-specific siRNAs inhibited PIMT expression. PIMT siRNA 
3 was most effective at inhibiting PIMT (Fig. 3C) and was used 
for subsequent experiments. PIMT-deficient PC12 cells were 
treated with bFGF and morphological changes were examined. 
Morphological changes were induced by bFGF in SCR- 
ransfected control PC12 cells and changes were significantly 
suppressed by bFGF in PIMT-deficient PC12 cells (Fig. 3D). 
Expression of Tuj-1 was also determined in PIMT-deficient 
PC12 cells. In accordance with the morphology changes, Tuj-1 
expression increased with bFGF in control PC12 cells and 
expression was significantly decreased in PIMT-deficient cells 
(Fig. 3E). These results suggested that PIMT is critical for 
bFGF-mediated neuronal differentiation of PC12 cells through 
regulation of protein methylation.

Since bFGF induced neuronal differentiation of PC12 cells 
through activation of MAPK and PI3K/Akt signaling pathways 
(Fig. 2), we investigated how PIMT regulated these pathways 
in bFGF-mediated neuronal differentiation of PC12 cells. The 
activities of MAPK and PI3K/Akt pathway signaling molecules 
were determined in PIMT-deficient PC12 cells. Phosphorylation 
of in MAPK pathway signaling molecules c-Raf, MEK1/2, 
ERK1/2, and p90RSK was determined by Western blot. 
Phosphorylation of MEK1/2 and ERK1/2 was suppressed while 
phosphorylation of c-Raf was unchanged in PIMT-deficient 
PC12 cells treated with bFGF (Fig. 4A). The activities of 
PI3K/Akt pathway signaling molecules were also measured in 
PIMT-deficient PC12 cells. Akt phosphorylation was 
significantly decreased while PI3Kp110, PI3Kp110, and 
PDK1 were not changed in PIMT-deficient PC12 cells treated 
with bFGF (Fig. 4B). Akt, PI3Kp110, and PI3Kp110 were 
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Fig. 3. PIMT induces bFGF-mediated neuronal differentiation of PC12 cells. (A, D) Neuronal differentiation of PC12 cells was triggered by 
bFGF (50 ng/ml) treatment in the absence or presence of AdOx (1 and 5 M), SAH (1 and 10 M) or under transfection with control 
SCR or PIMT siRNA for 6 days. (B, C, E) NF-M, Tuj-1, and PIMT from whole lysates of PC12 cells treated with bFGF in the absence or 
presence of AdOx (upper) and SAH (lower) for 3 days or under transfection with 20 nM control SCR siRNA or PIMT siRNA (1-3) for 2 
(C) or 3 (E) days were detected by Western blot. 

Fig. 4. PIMT induces bFGF-mediated 
neuronal differentiation of PC12 cells 
by activating MAPK and Akt signaling 
pathways. (A-C) Phosphorylated and 
total forms of c-Raf, MEK1/2, ERK1/2, 
p90RSK, PI3Kp110b, PI3Kp110g, PDK1,
Akt, and mTOR from PC12 cells, 
transfected with control SCR or PIMT 
siRNA for 48 h, treated with 50 ng/ml 
bFGF for 5 or 30 min were detected 
by Western blot. (D) Binding level of 
MEK1 with PIMT was evaluated by 
immunoprecipitation with anti-PIMT 
from whole lysates of PC12 cells treat-
ed with vehicle or 50 ng/ml bFGF for 
5 min. (E) Proposed model for the 
role of PIMT in bFGF-mediated neuro-
nal differentiation of PC12 cells.

activated in PC12 cells by bFGF (Fig. 2B), indicating that PIMT 
specifically targeted and regulated the activity of only Akt, 
which is downstream of PI3Ks in the PI3K/Akt signaling 
pathway. In addition to PIMT, another mechanism might 
regulate the PI3K/Akt signaling pathway by activating 
PI3Kp110 and PI3Kp110 in bFGF-mediated neuronal 
differentiation. Phosphorylation of mTOR, which is downstream 
in the Akt signaling pathway, was inhibited in PIMT-deficient 
PC12 cells treated with bFGF (Fig. 4C). Since PIMT clearly 
regulated the activities of MAPK signaling pathways in 
bFGF-treated PC12 cells, we examined whether PIMT 
interacted with one of the upstream MAPK signaling molecules, 
MEK1/2, by immunoprecipitation and Western blotting. As we 

expected, PIMT interacted with phosphorylated and total forms 
of MEK1/2 but not with phosphorylated c-Raf, PI3Kp110, and 
PI3Kp110 in the MAPK and Akt pathways (Fig. 4D). These 
results indicated that MEK1/2 and Akt might be PIMT 
substrates for transducing bFGF-mediated signaling to 
downstream pathways. These results suggested that PIMT 
induced bFGF-mediated neuronal differentiation of PC12 cells 
by modulating the activities of MEK1/2 and ERK1/2 in the 
MAPK and Akt signaling pathways.

In summary, this study showed that bFGF induced neuronal 
differentiation of PC12 cells through the activation of the 
MAPK and PI3K/Akt signaling pathways. PIMT was crucial for 
bFGF-mediated neuronal differentiation of PC12 cells through 
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regulating MEK1/2 and ERK1/2 activities in the MAPK and Akt 
signaling pathways (Fig. 4E). This study proposes a new role 
for the protein methyltransferase PIMT in neuronal differentiation 
and provides new information for understanding the molecular 
mechanism of neuronal differentiation regulation and factors 
critical for this event. PIMT could be a target for diseases with 
neuronal differentiation defects.

MATERIALS AND METHODS

Materials
PC12 cells were from the Korea Cell Line Bank (Seoul, Korea). 
Roswell Park Memorial Institute 1640 (RPMI1640) cell culture 
medium, fetal bovine serum (FBS), phosphate-buffered saline 
(PBS), streptomycin, penicillin, and L-glutamine were from 
Gibco (Grand Island, NY, USA). Phosphorylated-protein and 
total protein-specific antibodies [neurofilament-medium (NF-M), 
NF-light (L), MEK1/2, ERK1/2, p90RSK, PI3Kp110, PI3Kp110, 
Akt, mTOR, Tuj-1, PIMT, c-Raf, PDK1, and -actin] were from 
Cell Signaling Technology (Beverly, MA, USA). bFGF, AdOx, 
and SAH were from Sigma-Aldrich (St. Louis, MO, USA). 
U0126, LY294002, and rapamycin were from Calbiochem (La 
Jolla, CA, USA). Lipofectamine 2000 reagent and siRNAs 
specific for PIMT were from Thermo Fisher Scientific (Waltham, 
MA, USA). Protein A-Sepharose beads were from GE 
Healthcare Life Sciences (Pittsburgh, PA, USA). PCR primers 
were synthesized by and PCR premix was from Bioneer Inc. 
(Daejeon, Korea). 

Cell culture and in vitro neuronal differentiation of PC12 cells
PC12 cells were cultured in RPMI 1640 medium containing 
10% heat-inactivated FBS, 100 g/ml streptomycin, 100 U/ml 
penicillin, and 2 mM L-glutamine at 37oC in a 5% CO2 
humidified incubator. Cells were split once a week and 
medium refreshed three times per week. For neuronal 
differentiation, PC 12 cells were collected by centrifugation 
(1000 × g for 3 min at RT) and washed once with 1X PBS. 
Cells were resuspended in RPMI 1640 culture medium with 
and incubated with bFGF as indicated. Neuronal differentiation 
was determined by observing morphological changes such as 
shrinkage of cell bodies, neurite outgrowth, and NF expression.

PIMT siRNA transfection
PC12 cells were plated in antibiotic-free RPMI 1640 medium 
24 h before transfection and transiently transfected with either 
control scrambled siRNA (SCR) or PIMT-specific siRNA 
(siPIMT) using Lipofectamine 2000 reagent according to the 
manufacturer’s instructions. At 48 h after transfection, cells 
were to determine PIMT expression, signaling pathways, and 
neuronal differentiation. PIMT siRNA sequences are in Table 1. 

Reverse transcriptase polymerase chain reaction and PCR 
amplification of target genes
PC12 cells were treated with bFGF for indicated times. After 

discarding media, total RNA was extracted using TRI reagent 
according to the manufacturer’s instructions. Extracted RNA 
was used immediately or stored at −80oC. cDNA was 
synthesized from 1 g total RNA using reverse transcriptase- 
olymerase chain reaction (RT-PCR) premix (39) and used to 
amplify target NF-L and NF-M genes using target-specific 
primers. PCR primer sequences are in Table 2.

Western blots and immunoprecipitation
Whole-cell lysates of PC12 cells were prepared by lysing cells 
as reported previously (40,41). Protein samples were used 
immediately or stored at −20oC. For Western blots, PC12 
lysates were subjected to SDS-polyacrylamide electrophoresis 
and transferred to polyvinylidene difluoride membranes. 
Phosphorylated and total target proteins were detected using 
specific antibodies and immune complexes were visualized 
using an enhanced chemiluminescence system according to the 
manufacturer’s instruction. For immunoprecipitation, equal 
amounts (500 g) of whole-cell lysates from PC12 cells treated 
with or without 50 ng/ml bFGF for 5 min were precleared with 
20 l protein A-Sepharose beads (50% v/v) for 1 h at 4oC with 
gentle rotation. Lysates were then incubated with 1 g of 
anti-PIMT overnight at 4oC with gentle rotation. Immune 
complexes were immobilized using 20 l protein A-Sepharose 
beads (50% v/v) at 4oC for 4 h with gentle rotation and washed 
with pre-chilled 1X PBS five times. Immunoprecipitated proteins 
were analyzed by Western blot as described above using 
antibodies specific for phosphorylated or total MEK1/2 and Akt.
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